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Abstract

Every nonsingular totally nonnegative matrix (i. e., matrix all square submatrices
of which have nonnegative determinants) can be written in the “standard” form
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where each By, (resp., Cy) is a lower (resp., upper) triangular tridiagonal nonnegative
matrix with ones along the diagonal and zeros in the first n — k — 1 positions in the
first subdiagonal (resp., superdiagonal) and D is a diagonal matrix with positive
diagonal entries.

This standard form need not be unique. We say that A; is majorized by Az, A1 < Aa,
if for some standard forms for A; and A, the corresponding B;’s and C;’s in Aj
have non-zero entries in all positions in which the B;’s and C;’s in A; have non-
zero entries. We thus obtain a partial ordering of nonsingular totally nonnegative
matrices.

In a recent paper, T.L. Markham and the author have shown (even in a more general
non-commutative setting) that A; < Ay implies QA; < QA2 as well as A1Q < A2Q
for any nonsingular totally nonnegative matrix ).

For oscillatory matrices, i. e. for totally nonnegative matrices some power of which
is already totally positive, we have the following:

THEOREM 1. A nonsingular n x n totally nonnegative matrix is oscillatory if and
only if for each k = 2,...,n there is at least one B; which has an off-diagonal positive
entry in the kth row and at least one C; which has an off-diagonal positive entry in
the kth column.

Basic oscillatory matrices are then defined as oscillatory matrices in which for each
k exactly one of the matrices B; and exactly one of the matrices C; has such positive
off-diagonal entry.

THEOREM 2. A matrix is oscillatory if and only if it is a product of a basic
oscillatory matrix with a nonsingular totally nonnegative matrix.

THEOREM 3. Among nonsingular totally nonnegative matrices, basic oscillatory
matrices are characterized by the fact that they are irreducible and have both sub-
diagonal and superdiagonal rank one.

Here, subdiagonal (resp., superdiagonal) rank of a square matrix is the maximum
rank of any submatrix which has all entries in the subdiagonal (resp., superdiagonal)
part of the matrix.



