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Problem Description
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Our Aim

Our aim:
» Simulate propagation of transient electromagnetic fields
(TEM) in the subsurface.

» Fields are a response to controlled electromagnetic sources.
» Here: Vertical magnetic dipole.

» Solve the forward problem.
Practical aspects:

» TEM is an important method in geophysical exploration to
infer properties of the subsurface.
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Typical Setup
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Governing Equations

Quasi-static Maxwell's equations:

1
Vx ( V x e) + Oioe = —045° (Maxwell)
i
where
e=e(x,t) is the electric field,
w=pu(x) is the magnetic permeability,
o=o(x) is the electric conductivity,
je =73z, t) is the impressed source current density

with z € Q C R3 and ¢t € R.
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Further Assumptions

» Typically, the spatial domain €2 is a parallelepiped with its
upper boundary at ground level or above it.

» We assume the perfect conductor boundary condition
n x e =0 on 0.

» The impressed source current is typically of shut-off type, i.e.
of the form
J(=,t) = q(z) H(-1)
with H denoting the Heaviside unit step function and the
vector field g being the spatial current pattern.

> In our case the right-hand side of (Maxwell) vanishes since we
are looking at times ¢ > 0.
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Spatial Discretization
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Spatial Discretization
Subdivision of spatial domain 2:

» Graded grid.

» Increasing cell size as we move away from the source.
» Staggered grid (Yee grid).
» Electric components e at the center of the edges.
» Magnetic components h at the center of the faces.
» System of elementary electric and magnetic loops.
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Example of a Graded Grid
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Computational Strategies
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Computational Strategies

» We usually start with an initial solution to the electric field eg
at a time # > 0. Our interest lies in computing e; = e(?;) at
few times t; with ¢;_1 < ¢; for 0 < j < n.

» Depending on the used method we have different possibilities:

» Small steps calculating e; from e;_;.

» Steps of increasing size calculating e; from eg.
» One big step calculating e, from eg.

@ t
to t2 to tn
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Time-Stepping Methods
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Du Fort-Frankel Method

Proposed by [Wang & Hohmann, 1993].
Explicit.
Solves coupled first-order Maxwell’s equations.

Uses Yee grid for spatial dicretization.

vV vVv.v. vy

Computes time-interleaved electric fields e; and magnetic
fields h; in a leap-frog type iteration.

€1 hj,1 €; hj €41 hj+1

t
h update:

tj—1 b ti+1
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Stability of the Du Fort-Frankel Method

This method was shown to be stable if

Aty = j+1—tj<Axmin«/%

where

AZmin
Hmin

Omin
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is the minimal magnetic permeability,

is the minimal electric conductivity.
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Krylov Subspace Methods Krylov Subspace Methods for TEM
23/08/2007, Harrachov Martin Afanasjew et al., TU Freiberg




Rewriting the Problem (1)

To apply Krylov subspace methods we have to rewrite our problem.
Starting with (Maxwell) we get

dre = -2 Vx <1w e>. (PDE)
o 7

This reduces to the solution of a linear first-order ordinary
differential equation

Ore = Ae, e(ty) = ep, (ODE)

where A represents the discrete action of —1/oc Vx (1/,Vx -) on
the spatial discretization of the electric field e.
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Rewriting the Problem (II)

An explicit solution of (ODE) is given by
e(t) = T4 gy

Thus, we have to evaluate the exponential function for a sparse
matrix times a vector, which is what Krylov subspace methods are
well suited for.
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Arnoldi/Lanczos Procedure

» We define the m-th Krylov subspace as follows
Ko (A, b) = span{b,Ab, Ab, .. .,Amflb}.

» Generate an orthornormal basis V,, = [v1, o, ..., vy] of
Km(A, b) using a Gram-Schmidt procedure/three-term
recurrence relation satisfying

V.IAV,, = H,

with H,,, € R™*™ upper Hessenberg/tridiagonal.

» Calculate the Arnoldi approximation of order m
F™ = (6]l Vinf (H) [1,0,...,0]"
L m. m M AR ]
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Time-Stepping, Recycling, and Restarts (1)

» Remember: Given ey at time #y we are interested in evaluating
the electric fields e, ea,..., e, attimes t; < fp < ... < 1,
from an interval [ty, t,].

» Time-stepped Arnoldi

» In each time step we compute
Fiir € KA, £ for f(z) = el
with " = ep and m = m(j) ~ ||(tj41 — t;) A||1/2. Such a
choice of m(j) guarantees a certain relative error for our
approximation.

» This approach requires us to build a new Krylov subspace in

every time step.
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Time-Stepping, Recycling, and Restarts (I1)

» Arnoldi with Recycling
» Similarly to the time-stepped variant we compute in each step

7' € Kin(A, o) for f(z) = elt00)?
with m = m(j) ~ ||(¢; — to) AHl/Q. This allows us to reuse

basis vectors from the j — 1-th step and only compute the
additional basis vectors v,y 11, Urn(j)425 -« » Um(j+1)-
» Restarted Arnoldi Method

» If A cannot be symmetrized the unrestarted Arnoldi method
might require a prohibitively high number of basis vectors. To
overcome this problem a restared Arnoldi method was
proposed in [Eiermann & Ernst, 2006] where we discard all but
the last basis vector after every m steps and start to build a
new Krylov subspace starting with this last vector.

» See Stefan Giittel's talk today at 18:20 (same session).
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Numerical Examples
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Setup

Vertical magnetic dipole of unit strength located at the origin.
Yee discretization of (PDE).

Grid with 58 x 58 x 58 cells, i.e. 565326 unknowns.

Constant coefficients jt = 1.26 - 1076, o = 1.00 - 10~

24 logarithmically equidistant time steps from the interval
[to, tn] = [1075,1073] seconds.
Everything implemented in pure MATLAB (Release 2007a).

vV v v v Yy

v
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Du Fort-Frankel Method vs. ROCK4
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Lanczos Method: Time-Stepping vs. Recycling (1)
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Lanczos Method: Time-Stepping vs. Recycling (I1)
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Restarted Arnoldi

(1)

» Algorithm 1: Proposed in [Eiermann & Ernst, 2006].
» Algorithm 2: Improved variant of Algorithm 1.

» m = oo (I): Standard Lanczos (unrestarted).

» m = oo (II): Two-pass Lanczos (unrestarted).

Algorithm 1 Algorithm 2
m time [s] | mvp acc. time [s] | mvp acc.
oo (I) 118 1072 | 9.93e-13 86 1072 | 9.93e-13
oo (II) 176 2144 | 9.93e-13 144 2144 | 9.93e-13
90 273 1350 | 1.92e-13 118 1350 | 2.01e-13
70 339 1400 | 3.28e-13 112 1400 | 9.13e-13
50 613 1600 | 2.10e-13 very slow convergence
30 2014 | 2040 | 5.64e-13 divergence
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Restarted Arnoldi (I1)
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Summary and Future Work
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Summary and Future Work

» Summary

» We successfully applied various methods to our model problem.

> Restarted Krylov subspace methods might become a viable
alternative to the well known Du Fort-Frankel and Spectral
Lanczos Decomposition methods.

» Future work

> Implicit time stepping.
FE discretization.
» Heterogeneous materials.
> Error estimates.

v

» References

» Implementation of a Restarted Krylov Subspace Method for
the Evaluation of Matrix Functions [A, Eiermann, Ernst, &

Gittel, 2007].
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