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Introduction

Evolution of surfaces applications in material science (microstructure prediction,
material proterties, void electromigration in semiconductors), image processing, etc.
Overview Deckekelnick, Dzuik, Elliott (2005)
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Introduction

Surface di�usion sharp interface model

V = −∆sκ on Γ(t)

• Γ(t) void surface

• ∆s surface Laplacian

• V velocity of Γ(t)

• κ curvature
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Phase-�eld model
Di�use interface with interface width ≈ γπ

Alternatives to phase-�eld approach
• Direct methods for approximation of the surface di�usion model, problems with

topological changes

• Level set methods can handle topological changes
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Phase-�eld model

• γ > 0 interfacial parameter

• uγ(·, t) ∈ K := [−1, 1], t ∈ [0, T ] conserved order parameter; uγ(·, t) = −1 void,
uγ(·, t) = 1 conductor

• wγ(·, t) chemical potential

• φγ(·, t) electric potential

Phase �eld approximation of surface di�usion (di�use interface)

γ
∂uγ

∂t −∇.( b(uγ)∇wγ ) = 0 in ΩT := Ω× (0, T ],
wγ = −γ ∆uγ + γ−1 Ψ′(uγ) in ΩT , where |uγ| < 1,

+ I.C. + B.C.
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Phase-�eld model

Degenerate coe�cients
b(s) := 1− s2, ∀ s ∈ K

Obstacle-free energy

Ψ(s) :=
{

1
2

(
1− s2

)
if s ∈ K,

∞ if s 6∈ K,

restricts uγ(·, ·) ∈ K.

Approximation of the sharp interface model γ → 0 then {x;uγ(x, t) = 0} → Γ(t),
Γ(t) is the solution of the sharp interface problem

Advantages of phase-�eld approach

• no explicit tracking of the interface needed

• can handle topological changes
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Numerical approximation

Un
ε ∈ Sh ⇔ uγ

Wn
ε ∈ Kh ⇔ wγ

Φn
ε ∈ Sh ⇔ φγ

Double obstacle formulation (ε regularisation parameter)

γ

(
Un

ε − Un−1
ε

τn
, χ

)h

+ (Ξε(Un−1
ε )∇Wn

ε , ∇χ) = 0 ∀ χ ∈ Sh,

γ (∇Un
ε ,∇[χ− Un

ε ]) ≥ (Wn
ε + γ−1 Un−1

ε , χ− Un
ε )h ∀ χ ∈ Kh,

discrete inner product (mass lumping) (η1, η2)h :=
∫
Ω

πh(η1(x) η2(x)) dx

Ξε(·) ≈ b(·)

Convergence (Existence) 2D: Barrett, Nürnberg, Styles (2004), 3D: Ba¬as, Nürnberg
(2006) h → 0, ε → 0, τ = O(h2)
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Matrix formulation

The discrete system

Find {Un
ε ,Wn

ε} ∈ KJ × RJ such that

γ (V − Un
ε )T B Un

ε − (V − Un
ε )T M Wn

ε ≥ (V − Un
ε )T s ∀ V ∈ KJ ,

γ M Un
ε + τn An−1 Wn

ε = r

Mij := (χi, χj)h, Bij := (∇χi,∇χj), An−1
ij := (Ξε(Un−1

ε )∇χi,∇χj)

r := γ M Un−1
ε − α τn An−1 Φn

ε ∈ RJ , s := γ−1 M Un−1
ε ∈ RJ .
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Block Gauss-Seidel algorithm with projection

Projected block Gauss-Seidel

(V − Un,k
ε )T (γ (BD −BL) Un,k

ε −M Wn,k
ε ) ≥ (V − Un,k

ε )T (s + γ BT
L Un,k−1

ε )
γ M Un,k

ε + τn (AD −AL) Wn,k
ε = r + τn AT

L Wn,k−1
ε

2× 2 system for every vertex; explicit solution

[
Un,k

ε

]
j

=

[
Mjj r̂j + τn An−1

jj ŝj

γ [Mjj]2 + τn γ An−1
jj Bjj

]
K[

Wn,k
ε

]
j

=
r̂j − γ Mjj [Un,k

ε ]j
τn An−1

jj
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Uzawa algorithm

Uzawa-Multigrid algorithm Gräser, Kornhuber (2005), derived from the formulation
of Blowey, Elliott (1991, 1992),
Outer Uzawa-type iterations constrained minimisation, two sub-steps

• γ (V −Un,k
ε )T B Un,k

ε ≥ (V −Un,k
ε )T s+(V −Un,k

ε )T M Wn,k−1
ε ∀ V ∈ KJ

• Wn,k
ε = Wn,k−1

ε + S−1
(
−γ M Un,k

ε − τn An−1 Wn,k−1
ε + r

)
S−1 - preconditioner
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Uzawa algorithm

Preconditioner
If we know the exact coincidence/contact set

Ĵ(Un
ε ) =

{
j ∈ J :

∣∣∣[Un
ε ]j
∣∣∣ = 1

}
,

the problem becomes linear(
γ B̂(Un

ε ) −M̂(Un
ε )

γ M τn An−1

)(
Un

ε

Wn
ε

)
=
(

ŝ(Un
ε )

r

)
.

with

B̂ij =
{

δij i ∈ Ĵ
Bij else

,

M̂ij =
{

0 i ∈ Ĵ
Mij else

, j ∈ J,

and

ŝi =
{

γ [Un
ε ]i i ∈ Ĵ

si else
.
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Uzawa algorithm

Optimal choice Schur complement

S(Un
ε ) = MB̂(Un

ε )−1M̂(Un
ε ) + τn An−1

Approximation Un,k
ε ≈ Un

ε

S = S(Un,k
ε ) = MB̂(Un,k

ε )−1M̂(Un,k
ε ) + τn An−1

Uzawa with the preconditioner S(Uk)

γ (V − Un,k
ε )T B Un,k

ε ≥ (V − Un,k
ε )T s + (V − Un,k

ε )T M Wn,k−1
ε ∀ V ∈ KJ ,

Wn,k
ε = S(Un,k

ε )−1
(
−MB̂(Un,k

ε )−1 ŝ(Un,k
ε ) + r

)
.
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Uzawa algorithm

Solution of the subproblems

• �rst step, elliptic variational inequality with double obstacle, we can use standard
methods: projected Gauss-Seidel or Monotone multigrid; iterations can be stopped
when we obtain convergence in the coincidence step - only few iterations.
input Wn,k−1

ε , output Un,k
ε

• second step is equivalent to the solution of linear symmetric saddle point problem(
γ2 B̃ −γ M̂(Un,k

ε )
−γ M̂(Un,k

ε ) −τn An−1

)(
Ũk

Wn,k
ε

)
=
(

γ s̃
−r̃

)

standard W -cycle multigrid method for saddle point problems (Stokes equations, mixed
FEM), canonical restriction and prolongation, block Gauss-Seidel smoother (1 smoothing
step), alternative (Vanka type (1986)) smoother Schröberl, Zulehner (2003).

input Ĵk = Ĵ(Un,k
ε ), output Wn,k

ε
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Uzawa algorithm

Numerical implementation (more natural, but no proof of convergence)
Ξε(Un−1

ε ) ↔ πh[b(Un−1
ε )], π[b(Un−1

ε )] ≡ 0 on Jdeg

An−1 - has zero rows due to the degeneracy of b(·)

Degenerate set j ∈ Jdeg :=
{
j ∈ J : πh

[
b(Un−1

ε )
]
≡ 0 on supp(χj)

}
Solution
We use the fact (Jdeg ⊂ Ĵk) Un,k

j = Un−1
j for all j ∈ Jdeg We obtain an equivalent

saddle point problem with regular matrix A−1
deg(

γ2 B̃ −γ M̂

−γ M̂ −τn An−1
deg

)(
Ũk

W̃ k

)
=
(

γ s̃
−r̃deg

)
,

where W̃ j = Wn−1
j for j ∈ Jdeg.
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Uzawa algorithm

Complete algorithm

1. Initialization: Start with inital guess Un,0
ε = Un−1

ε , set Ĵ0 = Ĵ(Un,0
ε ) and compute

Wn,0
ε by solving the linear saddle point problem with coincidence set Ĵ0.

2. Uzawa iterations: for k = 1, . . . do

• 1st sub-step Compute the approximate coincidence set Ĵk = Ĵ(Un,k
ε ), where Un,k

ε

is obtained from the elliptic variational inequality by PGS or MMG.
• If Ĵk = Ĵk−1 go to step 3.
• 2nd sub-step Solve a linear symmetric saddle point problem by the multigrid method

with block Gauss�Seidel smoother to obtain Wn,k
ε .

• If max
j∈J

|
[
Wn,k

ε

]
j
−
[
Wn,k−1

ε

]
j
| < tol, with tol being the prescribed tolerance, go

to step 3.

3. Uzawa iterations have converged: Compute Un,k+1
ε up to the desired accuracy from

the elliptic variational inequality from the 1st sub-step using Wn,k
ε .

4. Set Un
ε = Un,k+1

ε , Wn
ε = Wn,k

ε .
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Numerical experiments

FEM code Alberta; adaptive meshes:
if |Un| < 1 (i.e. in the interfacial region) set h = hmin ≈ 1

Nf
else (|Un| = 1) set

h = hmax = 1
Nc

.

Comparison of Uzawa and Gauss-Seidel methods γ = 1
12π

Nf τ GS Uzawa-MG ratio
128 1e-6 14227m 3445m 4.13
64 4e-6 252m 146m 1.72
32 1.e-5 9m40s 11m20s 0.85

Table 1: Computation times for di�erent values of h

γ Nf τ GS Uzawa-MG ratio
1/12π 128 1e-6 14227m 3445m 4.13
1/6π 64 4e-6 853m 259m 3.29
1/3π 32 1.e-5 93m 30m 3.1

Table 2: Computational times for di�erent values of γ
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Multigrid algorithm - notation

Problem matrix on �ne mesh

A =
(

B −M
M A

)
Saddle point problem with variational inequality

A
(

U
W

)
≥
(

r
s

)
U ∈ KJ

Intergrid transfer operators (canonical restriction and prolongation) Ic
f , If

c

Coarse matrix Ac

Ac =
(

Ic
f B If

c −Ic
f M If

c

Ic
f M If

c Ic
f A If

c

)
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Multigrid algorithm

Two-grid scheme for the solution of

A
(

U
W

)
≥
(

r
s

)
U ∈ KJ

• pre smoothing
m iteration of projected Gauss-Seidel (U0,W 0) → (Um,Wm)

• coarse grid correction solve the coarse problem exactly

1. compute residual (Qu, Qw) = (r, s)−A(Um,Wm)
2.

Ac

(
V u

V w

)
≥
(

Ic
fQu

Ic
fQw

)
V u ∈ KJc

∗

3. update solution (Um+1,Wm+1) = (Um + If
c V u,Wm + If

c V w)

• post smoothing
m iteration of projected Gauss-Seidel (Um+1,Wm+1) → (U2m+1,W 2m+1)
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Coarse grid correction

We require
|Um+1 + If

c V u| ≤ 1

New obstacle for V u

−1− Um+1 ≤ If
c V u ≤ 1− Um+1

associated with the �ne mesh, but to compute V u on the coarse grid we need a �coarse
obstacle�.

Solution Mandel (1984) look for V u ∈ KJc
∗ where

KJc
∗ =

{
V ∈ RJc;Qc

f(−1− Um+1) ≤ V ≤ Rc
f(−1− Um+1)

}
with upper/lower

obstacle restriction operators de�ned as[
Qc

fv
]
(p) = max

{
v(q); q ∈ N f ∩ int suppχp, χp ∈ V c

h

}
,[

Rc
fv
]
(p) = min

{
v(q); q ∈ N f ∩ int suppχp, χp ∈ V c

h

}
,

with p ∈ N k−1, v ∈ V f
h .

Kornhuber (1994) slightly better obstacle restriction (suitable linear combination instead
of min/max).
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Coarse grid correction - mltiple grids

Restrictions for numerical convergence grid on the lowest has to be �ne enough; number
of grid levels depends on γ and hmin, we need:

• small γ for good approximation of the sharp interface problem

• small hmin (depending on γ) for good approximation of the continuous phase-�eld
model

Feasible parameter combnations in 3D

• γ = 1
12π , Nf = 1

128, 6 mesh points in the interface, 2-level method

• γ = 1
9π , Nf = 1

128, 8 mesh points in the interface, 3-level method

Coarse grid solver inexact solution with projected GS, 30 iteration are enough for the
3-level method.
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Numerical experiments

Meshes on di�erent levels
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Comparison of the Multigrid and Uzawa methods

3D computation with about 900000 degrees of freedom, γ = 1
9π

method total iteration CPU time
MG 2063 2200m
Uzawa-MG 4760 3390m

Table 3: 3-level MG vs. Uzawa (8-level); W-cycle, 1 smoothing step

Multigrid computations are about 1.5 times faster with 2× less iterations.
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Numerical experiments

γ = 1
12π , T = 0.06, τ = 10−6, Nf = 128, Nc = 2

Figure 1: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 0, 0.001, 0.005.
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Numerical experiments

γ = 1
12π , T = 0.06, τ = 10−6, Nf = 128, Nc = 2

Figure 2: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 0.01, 0.015, T = 0.06.
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Numerical experiments

γ = 1
12π , T = 0.08, τ = 5× 10−6, Nf = 48, Nc = 2

Figure 3: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 0, 0.001, 0.005.
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Numerical experiments

γ = 1
12π , T = 0.08, τ = 5× 10−6, Nf = 48, Nc = 2

Figure 4: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 0.01, 0.015, T = 0.08.
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Numerical experiments

γ = 1
12π , T = 0.06, τ = 1× 10−6, Nf = 128, Nc = 2

Figure 5: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 0, 0.0015, 0.003.
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Numerical experiments

γ = 1
12π , T = 0.06, τ = 1× 10−6, Nf = 128, Nc = 2

Figure 6: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 0.00505, 0.0051, T = 0.06.
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Numerical experiments

γ = 1
12π , T = 0.001,τ = 10−5, Nf = 64, Nc = 2

Figure 7: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 0, 1.5× 10−4, 3.5× 10−4.

�ubomír Ba¬as Harrachov 2007 29/39



30

Numerical experiments

γ = 1
12π , T = 0.001,τ = 10−5, Nf = 64, Nc = 2

Figure 8: (α = 0) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0 at
times t = 4× 10−4, 4.5× 10−4, 1× 10−3.
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Numerical experiments

α = 114, γ = 1
12π , T = 5× 10−4, τ = 1× 10−7, Nf = 128, Nc = 16

Figure 9: (α = 114π) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0
at times t = 0, 8× 10−5, 1.2× 10−5.
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Numerical experiments

α = 114, γ = 1
12π , T = 5× 10−4, τ = 1× 10−7, Nf = 128, Nc = 16

Figure 10: (α = 114π) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0
at times t = 2× 10−4, 2.4× 10−4, 3.6× 10−4.
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Numerical experiments

α = 114, γ = 1
12π , T = 5× 10−4, τ = 10−7, Nf = 128, Nc = 16

Figure 11: (α = 114π) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0
at times t = 0, 8× 10−5, 1.2× 10−5.
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Numerical experiments

α = 114, γ = 1
12π , T = 5× 10−4, τ = 10−7, Nf = 128, Nc = 16

Figure 12: (α = 114π) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0
at times t = 2× 10−4, 2.4× 10−4, 3.6× 10−4.
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Numerical experiments

α = 300, γ = 1
12π , T = 1.25× 10−4, τ = 10−7, Nf = 128 , Nc = 16

Figure 13: (α = 300π) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0
at times t = 0, 2.5× 10−5, 7.5× 10−5.
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Numerical experiments

α = 300, γ = 1
12π , T = 1.25× 10−4, τ = 10−7, Nf = 128 , Nc = 16

Figure 14: (α = 300π) Zero level sets for Uε(x, t), with cut through the mesh at x3 = 0
at times t = 1.15× 10−4, 1.2× 10−4, T = 1.25× 10−4.
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Numerical experiments

α = 120, γ = 1
12π , T = 2.7× 10−4, τ = 10−7, Nf = 128 , Nc = 16

Figure 15: (α = 120π) Zero level sets for Uε(x, t) at times t = 0, 7× 10−5, 1.3× 10−4.
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Numerical experiments

α = 120, γ = 1
12π , T = 2.7× 10−4, τ = 10−7, Nf = 128 , Nc = 16

Figure 16: (α = 120π) Zero level sets for Uε(x, t) at times
t = 1.9× 10−4, 2.3× 10−4, T = 2.7× 10−4.
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Final remarks

• fast coarse solver needed for e�ciency

• limited �exibility with respect to γ

• robust except above remarks

• ≈ 2× less iterations than Uzawa

• theory?
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