MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

Ulrike Baur joint work with Peter Benner

Mathematics in Industry and Technology Faculty of Mathematics Chemnitz University of Technology baur@mathematik.tu-chemnitz.de

Computational Methods with Applications Harrachov, 19–25 August 2007

Outline

Balancing-related model reduction by a data-sparse cross-Gramian approach

- Large-scale systems
- Model reduction cross-Gramian approach
- The sign function method
- ullet ${\cal H}$ -matrix implementation
- Numerical results

Large-scale dynamical systems

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

$$y(t) = Cx(t),$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$.

Assumptions on $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times p}$:

- A asymptotically stable, i.e. $\lambda(A) \subset \mathbb{C}^-$
- large-scale, e.g. $n = \mathcal{O}(10^5)$, and $n \gg m, p$
- controllable and observable

We consider large-scale systems arising from control problems for instationary PDEs semi-discretized by FEM, FDM or BEM.

Model reduction - main issues

Find a reduced-order model of order $r \ll n$

$$\frac{d}{dt}\hat{x}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t), \quad \hat{x}(0) = \hat{x}_0$$
$$\hat{y}(t) = \hat{C}\hat{x}(t) + Du(t), \quad t \ge 0$$

- $(\hat{A}, \hat{B}, \hat{C}, D) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{r \times m} \times \mathbb{R}^{p \times r} \times \mathbb{R}^{p \times p}$
- \bullet \hat{A} is asymptotically stable
- small error $\|G \hat{G}\|_{\infty}$,

$$||y - \hat{y}||_2 \le ||G - \hat{G}||_{\infty} ||u||_2,$$

where

$$G(s) = C(sI_n - A)^{-1}B + D,$$

 $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B} + D.$

Balanced truncation computes reduced order system

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V$$

where $V, W \in \mathbb{R}^{n \times r}$ are computed from T which diagonalizes controllability Gramian \mathcal{P} and observability Gramian \mathcal{Q} :

$$TPT^T = T^{-T}QT^{-1} = \operatorname{diag}(\sigma_1, \dots, \sigma_n), \quad \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n$$

$$V$$
, W can be computed by $w_k^T(\mathcal{PQ}) v_k = \sigma_k^2$, $k = 1, ..., r$

- $\lambda(\hat{A}) \subset \mathbb{C}^-$

System Gramians

Controllability Gramian ${\mathcal P}$ and observability Gramian ${\mathcal Q}$ defined by

$$\mathcal{P} = \int_{0}^{\infty} e^{At} BB^{T} e^{A^{T}t} dt, \quad \mathcal{Q} = \int_{0}^{\infty} e^{A^{T}t} CC^{T} e^{At} dt.$$

Gramians equivalently given by solutions of Lyapunov equations

$$AP + PA^T + BB^T = 0,$$
 $A^TQ + QA + C^TC = 0$

Thus, main computational task in balanced truncation:

Compute solutions of large-scale matrix equations!

Model reduction - cross-Gramian approach

Define the cross-Gramian X for square systems (m = p) by

$$AX + XA + BC = 0$$

and project the system onto the dominant invariant subspace of X corresponding to r largest eigenvalues.

Model reduction - cross-Gramian approach

Define the cross-Gramian X for square systems (m = p) by

$$AX + XA + BC = 0$$

and project the system onto the dominant invariant subspace of X corresponding to r largest eigenvalues.

lf

- system is SISO (p = m = 1) [Fernando/Nicholson 83] or
- symmetric MIMO [Laub/Silverman/Verma 83, Fernando/Nicholson 84].

then

$$X^2 = \mathcal{PQ}$$
 and $\sigma_k = |\lambda_k(X)|$.

Model reduction - cross-Gramian approach

Define the cross-Gramian X for square systems (m = p) by

$$AX + XA + BC = 0$$

and project the system onto the dominant invariant subspace of X corresponding to r largest eigenvalues.

lf

- system is SISO (p = m = 1) [Fernando/Nicholson 83] or
- symmetric MIMO [Laub/Silverman/Verma 83, Fernando/Nicholson 84].

then

$$X^2 = \mathcal{PQ}$$
 and $\sigma_k = |\lambda_k(X)|$.

Model order reduction with cross-Gramian:

Aldhaheri 91, Antoulas/Sorensen 00

Low rank solution of Sylvester equation

Sylvester equation AX + XA + BC = 0

$$AX + XA + BC = 0$$

In many situations: $\operatorname{rank}(X,\tau) = n_{\tau} \ll n$, e.g. $n_{\tau} = \mathcal{O}(\log(1/\tau)\log(n))$ [Grasedyck 04].

Compute low-rank factors of X:

$$X \approx YZ$$
, $Y \in \mathbb{R}^{n \times n_{\tau}}$, $Z \in \mathbb{R}^{n_{\tau} \times n}$.

- low-rank ADI [Benner 05] analogous to [Penzl 00, Li/White 02]
- implicitly restarted method [Antoulas/Sorensen 00]
- multigrid method [Grasedyck/Hackbusch 04]
- sign function method [Benner 04, B. 05]

Sign function method in factored form

Newton iteration for the solution $X \approx YZ$ of AX + XA + BC = 0:

(1)
$$A_0 = A$$
 $A_{k+1} = \frac{1}{2}(A_k + A_k^{-1})$ $\rightarrow -I_r$

(2)
$$B_0 = B$$
 $B_{k+1} = \frac{1}{\sqrt{2}} [B_k, A_k^{-1} B_k] \rightarrow \sqrt{2} Y$

(2)
$$B_0 = B$$
 $B_{k+1} = \frac{1}{\sqrt{2}} [B_k, A_k^{-1} B_k] \rightarrow \sqrt{2}Y$
(3) $C_0 = C$ $C_{k+1} = \frac{1}{\sqrt{2}} \begin{bmatrix} C_k \\ C_k A_k^{-1} \end{bmatrix} \rightarrow \sqrt{2}Z$

Complexity:

(1):
$$\mathcal{O}(n^3)$$
 \Rightarrow hierarchical matrices

Storage:

(1):
$$A_k \in \mathbb{R}^{n \times n}$$
 \Rightarrow hierarchical matrices

$$(2) + (3): B_k \in \mathbb{R}^{n \times 2^k p}, C_k \in \mathbb{R}^{2^k m \times n} \Rightarrow row compression$$

Sign function method - row compression

In each Newton step compute:

Ocompute RRQR
$$\begin{bmatrix} C_k \\ C_k A_k^{-1} \end{bmatrix} = U \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \pi_C$$

$$R_{11} \in \mathbb{R}^{s \times s}, \ s = \operatorname{rank}(C_{k+1}, \tau)$$

② Compute RRLQ
$$\begin{bmatrix} B_k, A_k^{-1}B_k \end{bmatrix} U = \pi_B \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} V$$

 $L_{11} \in \mathbb{R}^{t \times t}, t = \operatorname{rank}(B_{k+1}, \tau)$

- **3** Partition V: $V_{11} \in \mathbb{R}^{t \times s}$
- $\begin{array}{c} \text{ If } (t < s) \\ B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \pi_B \left[\begin{array}{c} L_{11} \\ L_{21} \end{array} \right], \qquad C_{j+1} \leftarrow \frac{1}{\sqrt{2}} V_{11} \left[R_{11} \ R_{12} \right] \pi_C \\ \text{else } B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \pi_B \left[\begin{array}{c} L_{11} \\ L_{21} \end{array} \right] V_{11}, \quad C_{j+1} \leftarrow \frac{1}{\sqrt{2}} \left[R_{11} \ R_{12} \right] \pi_C \end{array}$

$$\frac{1}{\sqrt{2}}B_k \to Y \in \mathbb{R}^{n \times n_\tau}$$
 $\frac{1}{\sqrt{2}}C_k \to Z \in \mathbb{R}^{n_\tau \times n}$

\mathcal{H} -matrices [Hackbusch 98]

 \mathcal{H} -matrices provide data-sparse representation for certain densely populated matrices (FEM $^{-1}$, BEM, ...).

- hierarchy of blocks, approximation by matrices of rank $k(\epsilon)$
- approximation error:

$$\frac{\|A - A_{\mathcal{H}}\|_2}{\|A\|_2} \le \epsilon$$

- storage for $A_{\mathcal{H}} \in \mathbb{R}^{n \times n}$: $\mathcal{O}(n \log_2(n) k(\epsilon))$
- formatted arithmetic with complexity:

 \odot , Inv_H : $\mathcal{O}(n \log_2^2(n) k(\epsilon)^2)$

n = 4096. $\epsilon = 10^{-4}$.

Data-sparse sign function method

Newton iteration for the solution $X \approx YZ$ of AX + XA + BC = 0:

$$(1) A_0 = A_{\mathcal{H}} A_{k+1} = \frac{1}{2}(A_k \oplus \operatorname{Inv}_{\mathcal{H}}(A_k)) \to -I_n$$

(2)
$$B_0 = B$$
 $B_{k+1} = \frac{1}{\sqrt{2}} [B_k, \text{Inv}_{\mathcal{H}}(A_k)B_k] \rightarrow \sqrt{2}Y$

(2)
$$B_0 = B$$
 $B_{k+1} = \frac{1}{\sqrt{2}} [B_k, \operatorname{Inv}_{\mathcal{H}}(A_k)B_k] \rightarrow \sqrt{2}Y$
(3) $C_0 = C$ $C_{k+1} = \frac{1}{\sqrt{2}} \begin{bmatrix} C_k \\ C_k \operatorname{Inv}_{\mathcal{H}}(A_k) \end{bmatrix} \rightarrow \sqrt{2}Z$

Complexity:

(1):
$$\mathcal{O}(n \log_2^2(n) k(\epsilon)^2)$$
 \Rightarrow hierarchical matrices

Storage:

(1):
$$A_k : \mathcal{O}(n \log_2(n) k(\epsilon)) \Rightarrow \text{hierarchical matrices}$$

(2) + (3): $B_k \in \mathbb{R}^{n \times n_\tau}, C_k \in \mathbb{R}^{n_\tau \times n} \Rightarrow \text{row compression}$

Model order reduction with cross-Gramian

Compute basis of dominant invariant subspace of $X \approx YZ$

$$W^T X V = T$$
 with $\lambda(T) = \{\sigma_1, \dots, \sigma_r\}$

① Compute basis \tilde{V} of right invariant subspace of ZY

 \Rightarrow basis of right dominant invariant subspace of YZ:

$$V = Y \tilde{V}(:, 1:r)$$

Model order reduction with cross-Gramian

Compute basis of dominant invariant subspace of $X \approx YZ$

$$W^T X V = T$$
 with $\lambda(T) = \{\sigma_1, \cdots, \sigma_r\}$

① Compute basis \tilde{V} of right invariant subspace of ZY \Rightarrow basis of right dominant invariant subspace of YZ:

$$V = Y\tilde{V}(:,1:r)$$

② Compute basis \tilde{W} of left invariant subspace of ZY \Rightarrow basis of left dominant invariant subspace of YZ:

$$W^T = \tilde{W}^T(1:r,:)Z - - - -$$

3 Orthogonalize W and V: $W^TV = I_r$

Model order reduction with cross-Gramian

Compute basis of dominant invariant subspace of $X \approx YZ$

$$W^T X V = T$$
 with $\lambda(T) = \{\sigma_1, \cdots, \sigma_r\}$

① Compute basis \tilde{V} of right invariant subspace of ZY \Rightarrow basis of right dominant invariant subspace of YZ:

$$V = Y\tilde{V}(:,1:r)$$

② Compute basis \tilde{W} of left invariant subspace of ZY \Rightarrow basis of left dominant invariant subspace of YZ:

$$W^T = \tilde{W}^T(1:r,:)Z$$

③ Orthogonalize W and V: $W^TV = I_r$

Reduced system of order r: $\hat{A} = W^T A V$, $\hat{B} = W^T B$, $\hat{C} = C V$

\mathcal{H} -matrix - accuracy of reduced model

Recall: balanced truncation error bound

$$\|y - \hat{y}\|_2 \le \|G - \hat{G}\|_{\infty} \|u\|_2$$
 with $\|G - \hat{G}\|_{\infty} \le 2 \sum_{k=r+1}^n \sigma_k \le \text{tol}$

\mathcal{H} -matrix - accuracy of reduced model

Recall: balanced truncation error bound

$$\|y - \hat{y}\|_{2} \le \|G - \hat{G}\|_{\infty} \|u\|_{2}$$
 with $\|G - \hat{G}\|_{\infty} \le 2 \sum_{k=r+1}^{n} \sigma_{k} \le \text{tol}$

Theorem [B./Benner 06]

For symmetric A, $A_{\mathcal{H}}$ with eigenvalues $\lambda_n \leq \cdots \leq \lambda_1 < 0$ and

$$||A - A_{\mathcal{H}}||_2 \le c\epsilon$$

we have

$$\|G - \hat{G}\|_{\infty} \le \|G - G_{\mathcal{H}}\|_{\infty} + \|G_{\mathcal{H}} - \hat{G}\|_{\infty}$$

 $\le c \epsilon \frac{1}{\lambda_1^2} \|C\|_2 \|B\|_2 + 2 \sum_{k=r+1}^n \sigma_k.$

Numerical results - 2d heat equation

$$\frac{\partial x}{\partial t}(t,\xi) - a \Delta x(t,\xi) = b(\xi)u(t), \qquad \xi \in [0,1]^2, \ t \in (0,\infty)$$

•
$$y(t) = x(t,\xi)_{|_{\Omega_o}}$$

- *n* = 16, 384
- diffusion: a = 1
- HLib 1.3 [Börm/Grasedyck/Hackbusch]
- $\tau = \epsilon = 10^{-4}$
- rel. residual of X: 2.5×10^{-8}
- tol= $10^{-4} \Rightarrow r = 4$

Numerical results - 2d heat equation

$$\frac{\partial x}{\partial t}(t,\xi) - a(\xi) \Delta x(t,\xi) = b(\xi)u(t), \qquad \xi \in [0,1]^2, \ t \in (0,\infty)$$

varying diffusion $a(\xi)$:

- $\tau = \epsilon = 10^{-4}$
- tol= $10^{-4} \Rightarrow r = 3$

Numerical results - convection-diffusion equation

$$\frac{\partial x}{\partial t}(t,\xi) - a \Delta x(t,\xi) - c \cdot \nabla x(t,\xi) = b(\xi)u(t), \ \xi \in [0,1]^2, \ t \in (0,\infty)$$

- n = 16,384
- convection: $c = (0,1)^T$
- diffusion: $a = 10^{-4}$
- $\tau = \epsilon = 10^{-6}$
- tol= $10^{-4} \Rightarrow r = 9$

Numerical results - MIMO example

optimal cooling of steel profiles [Benner/Saak 05] nonsymmetric MIMO system with n=5177 m=p=6 $\tau=\epsilon=10^{-4}$, tol= 10^{-4}

Conclusions

 With H-matrix arithmetic we can solve large-scale Sylvester equations

n	# iter.	n_{τ}		time[sec]		rel. residual		rel. error
		\mathcal{H}	full	\mathcal{H}	full	\mathcal{H}	full	
1024	11	12	12	16	40	1.26e-07	1.62e-09	2.43e-05
4096	12	14	14	196	2434	5.79e-08	2.48e-10	3.81e-05
16,384	13	15	-	1776	,	2.55e-08	-	-
65,536	14	16	-	13,176	-	1.46e-08	-	-
262,144	15	17	-	116,225	1	-	-	-

- H-matrix based sign function solver well suited for the solution of large-scale Sylvester equations arising from FEM/BEM discretizations of elliptic partial differential operators.
- With H-matrix based Sylvester solver we obtain efficient new implementation of model reduction method based on cross-Gramian.

Conclusions

 With H-matrix arithmetic we can solve large-scale Sylvester equations

n	# iter.	n_{τ}		time[sec]		rel. residual		rel. error
		\mathcal{H}	full	\mathcal{H}	full	\mathcal{H}	full	
1024	11	12	12	16	40	1.26e-07	1.62e-09	2.43e-05
4096	12	14	14	196	2434	5.79e-08	2.48e-10	3.81e-05
16,384	13	15	-	1776	-	2.55e-08	-	-
65,536	14	16	-	13,176	-	1.46e-08	-	-
262,144	15	17	-	116,225	-	-	-	-

- H-matrix based sign function solver well suited for the solution of large-scale Sylvester equations arising from FEM/BEM discretizations of elliptic partial differential operators.
- With H-matrix based Sylvester solver we obtain efficient new implementation of model reduction method based on cross-Gramian.

Thank you for your attention!