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Large-scale dynamical systems |

9t = Ax()+ Bu(®). x(0)=x.
y(t) = (),
where x(t) € R", u(t) € R™, y(t) € RP. oo

Assumptions on (A, B, C, D) € R™" x R"™™M x RPX" x RP*P:
@ A asymptotically stable, i.e. A\(A) C C~
o large-scale, e.g. n = O(10°), and n>> m, p
@ controllable and observable

We consider large-scale systems arising from control problems for
instationary PDEs semi-discretized by FEM, FDM or BEM.
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Model reduction - main issues |

Find a reduced-order model of order r < n

d . - A . s
Ex(t) = AX(t)+ Bu(t), £(0)=%o

9(t) = Cx(t)+ Du(t), t>0
o (A, B,C,D) e R™" x R™*M x RPX! x RPXP

o Ais asymptotically stable

o small error |G — G|,
ly =9l2 < [1G = Glloo|lull2;
where

G(s) = C(sl,—A)'B+D,
G(s) = C(sl,—A)*B+D.
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Model reduction - balanced truncation  [Moore 81]

Balanced truncation computes reduced order system
A=WTAv, B=wTB, C=cVv

where V., W € R™" are computed from T which diagonalizes
controllability Gramian P and observability Gramian Q:

TPTT = T-TQT7 ! =diag(oy,--- ,04), 01>02> >0,

V, W can be computed by WkT(PQ) Vg = ai, k=1,...,r

Q \NA)cC
Q |y —Jll2 =116 = Gllssllulla < 237511 ok [lull2
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System Gramians

Controllability Gramian P and observability Gramian Q defined by
(e} (e}
P = / ABBTA tdt, Q= / ATt CCT ettt
0 0

Gramians equivalently given by solutions of Lyapunov equations
AP+ PAT +BBT =0, ATQ+QA+C'C=0

Thus, main computational task in balanced truncation:

Compute solutions of large-scale matrix equations!
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Model reduction - cross-Gramian approach

Define the cross-Gramian X for square systems (m = p) by

AX+XA+BC=0

and project the system onto the dominant invariant subspace of X
corresponding to r largest eigenvalues.
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Model reduction - cross-Gramian approach

Define the cross-Gramian X for square systems (m = p) by

AX+XA+BC=0

and project the system onto the dominant invariant subspace of X
corresponding to r largest eigenvalues.

If
@ system is SISO (p = m = 1) [Fernando/Nicholson 83] or
@ symmetric MIMO [Laub/Silverman/Verma 83,
Fernando/Nicholson 84].

then
X2 =PQ and oy = |\ (X)].
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Model reduction - cross-Gramian approach

Define the cross-Gramian X for square systems (m = p) by

AX+XA+BC=0

and project the system onto the dominant invariant subspace of X
corresponding to r largest eigenvalues.

If
@ system is SISO (p = m = 1) [Fernando/Nicholson 83] or
@ symmetric MIMO [Laub/Silverman/Verma 83,
Fernando/Nicholson 84].
then
X2 =PQ and oy = |\ (X)].

Model order reduction with cross-Gramian:
Aldhaheri 91, Antoulas/Sorensen 00

Ulrike Baur Cross-Gramian model reduction



Low rank solution of Sylvester equation

Sylvester equation AX+ XA+ BC=0

In many situations: rank(X,7) = n. < n,
e.g. ny = O(log(1/7)log(n)) [Grasedyck 04].

Compute low-rank factors of X:

X=~YZ, YeR™", ZecR"*",

@ low-rank ADI [Benner 05] analogous to
[Penzl 00, Li/White 02]

@ implicitly restarted method
[Antoulas/Sorensen 00]

@ multigrid method [Grasedyck/Hackbusch T e W W W
04]

@ sign function method [Benner 04, B. 05]
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Sign function method in factored form I

Newton iteration for the solution X ~ YZ of AX + XA+ BC =0:

(1) A=A A1 = 3(A+AD — =y
() Bo=B Bui = J5[Bi AdBi] — V2Y
C
B G-C Gu = 5| G| - vz
Complexity:
(1): O = hierarchical matrices
Storage:
(1): A eR™" = hierarchical matrices

(2)+ (3): By e R™2'P G e RZ“™1 = row compression
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Sign function method - row compression |

In each Newton step compute:

Ci Ri1 R
@ Compute RRQR [ _ ] =U
P CkAkl [ 0 R22 ] TC

Ri1 € RS%% s = rank(Ck+1,7')

1 L11 0
© Compute RRLQ [Bk, Al Bk] U=rmp 74
Loy Ly
Ly; € R™, ¢t = rank(Byi1,7)
© Partition V: Vi1 € R¥XS
Q If(t<s)
L
Bji1 +— %WB [ Li ] , Cit1 %Vn [Ri1 Riz]mc

L
else Bji1 %WB [ Li ] Vi,  Gy1 % [Ri1 Ri2] 7c

%Bk — Y e Rm¥mr %Ck — Z ¢ RMTX0
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H-matrices [Hackbusch 98]

H-matrices provide data-sparse representation for certain
densely populated matrices (FEM~1, BEM, ...).

@ hierarchy of blocks, approximation by
matrices of rank k(e)

@ approximation error:

1A= Anla
1All2
@ storage for Ay € R"*": O(n log,(n) k(e))
@ formatted arithmetic with complexity:

Ax : O(n logy(n) k(e))

@ 1 O(nlogi(n) k(e))
®, Invyy : O(n loga(n) k(€)?)

Blockwise SVD of Ay,
n = 4096, ¢ = 1074,
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Data-sparse sign function method |

Newton iteration for the solution X ~ YZ of AX + XA+ BC = 0:

(1) A=Ay A1 = 3(Acelnvy(A)) — —
() Bo=B  Ben = L[Bi, vu(A)Bi] — V2Y
3 G=C Gun = 5 [ CkIm(f:;(Ak) ] - V2
Complexity:

(1): O(n log3(n) k(€)?) = hierarchical matrices
Storage:

(1)1 Ak : O(n logy(n) k(e)) = hierarchical matrices
(2)+(3): Bk e R™" (€ R™*" = row compression
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Model order reduction with cross-Gramian

Compute basis of dominant invariant subspace of X ~ YZ
WTXV =T with N(T)={o1,--- ,0,}

@ Compute basis V of right invariant subspace of ZY

I_A_IHII AN

QR fact. product QR

= basis of right dominant invariant subspace of YZ:

V=YV(1:r) ]
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Model order reduction with cross-Gramian

Compute basis of dominant invariant subspace of X ~ YZ

WTXV =T with \(T)={o1,--- ,0,}

@ Compute basis V of right invariant subspace of ZY
= basis of right dominant invariant subspace of YZ:

V=YV(1:r) ]

@ Compute basis W of left invariant subspace of ZY
= basis of left dominant invariant subspace of YZ:

WT =WT@1:r,))Z -F
@ Orthogonalize W and V: WTV =,
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Model order reduction with cross-Gramian

Compute basis of dominant invariant subspace of X ~ YZ

WTXV =T with \(T)={o1,--- ,0,}

@ Compute basis V of right invariant subspace of ZY
= basis of right dominant invariant subspace of YZ:

V=YV(1:r) ]

@ Compute basis W of left invariant subspace of ZY
= basis of left dominant invariant subspace of YZ:

WT =WT@1:r,))Z -F
@ Orthogonalize W and V: WTV =,
Reduced system of order 1 A= WTAV, B=WTB, C=CV
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H-matrix - accuracy of reduced model

Recall: balanced truncation error bound

n
ly =902 <16 = Gllsollullz - with |G = Glloc <2 > ok < tol
k=r+1
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H-matrix - accuracy of reduced model

Recall: balanced truncation error bound

n
Iy =92 < 16 = Gllocllulls with G~ Glloe <2 3 o < tol
k=r+1

Theorem [B./Benner 06]
For symmetric A, Ay with eigenvalues A\, < --- < A\; <0 and

HA — AHH2 S ce

we have

16 = Gllw < 116G~ Grlloo + [Gr — Glloo

IN

n
cexz ICI2 IIBll2 + 2 Y ox.
! k=r+1
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Numerical results - 2d heat equation

Ox
E(t,f)—an(t,g) = b(g)u(t% §€ [07 1]27 te (0700)
o y(t) = x(t,8)q, .. S
o n=16,384 _
o diffusion: a =1 '%_ \'“’“\,\
o HLib 1.3 1 0"}
[Borm/Grasedyck /Hackbusch] S e
® 7—:6:10_4 - | CG:r=4
—BT:d
@ rel. residual of X: 25 x 1078 ¥ ’:gﬁ:é
o tol=10"%* = r=4 10° 10° 162 16“ 10°
Frequency @
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Numerical results - 2d heat equation

Ox

5 (£:6) = a(€) Ax(1.) = b(§)u(t).

varying diffusion a(¢&):

@ n=16,384
eT=€e=10""
otol=10"*=r=3

1GG @) - G )|

10°

10

Ulrike Baur

€012, te(0,0)

Cross-Gramian model reduction

5 b == TN
-10| o
---BT:r=3
“““ CG:r=3
5 —BT:d
—CG:%
—tol
107 10’ 10° 10* 10
Frequency w




Numerical results - convection-diffusion equation

%(t,&) —alAx(t,€) — c-Vx(t,€) = b(&)u(t), € €[0,1]?, t € (0, 00)

10°F ~.
e n=16,384 Tl
@ convection: ¢ = (0,1)7 el
LG 4 107"} e
o diffusion: a =10~ L
— . _10-6 -~ BT:r=9 e
oT7=€c=1 .~
g ¢ o= | CG:r=9 Sa
@tol=10"*=r=9 || —BT8 J
10 7f|—cCG:3 1
—tol
10° 10t 1w0f 10° 10° 10* 10°
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Numerical results - MIMO example

optimal cooling of steel profiles [Benner/Saak 05]
nonsymmetric MIMO system with n =5177 m=p =06
r=¢=10"%, tol= 10"

From in(1) to out(1) Fromin(2) to out(1)

IG( ©) — GG )
IG( ©) ~ GG W

0° w0t w0t 1 10° 10° 10° 100 w0t w0 1 10 10 10

Frequency w Frequency @
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Conclusions

@ With H-matrix arithmetic we can solve large-scale Sylvester

€q uations

n # iter. nr time[sec] rel. residual rel. error

H | full H full H full
1024 11 12 12 16 40 1.26e-07 1.62e-09 2.43e-05
4096 12 14 14 196 2434 5.79%-08 2.48e-10 3.81e-05
16,384 13 15 - 1776 - 2.55e-08 - -
65,536 14 16 - 13,176 - 1.46e-08 - -
262,144 15 17 - 116,225 - - - -

@ H-matrix based sign function solver well suited for the solution
of large-scale Sylvester equations arising from FEM /BEM
discretizations of elliptic partial differential operators.

@ With H-matrix based Sylvester solver we obtain efficient new
implementation of model reduction method based on
cross-Gramian.
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@ With H-matrix arithmetic we can solve large-scale Sylvester

€q uations

n # iter. nr time[sec] rel. residual rel. error

H | full H full H full
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16,384 13 15 - 1776 - 2.55e-08 - -
65,536 14 16 - 13,176 - 1.46e-08 - -
262,144 15 17 - 116,225 - - - -

@ H-matrix based sign function solver well suited for the solution
of large-scale Sylvester equations arising from FEM /BEM
discretizations of elliptic partial differential operators.

@ With H-matrix based Sylvester solver we obtain efficient new
implementation of model reduction method based on
cross-Gramian.

Thank you for your attention !
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