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Model Reduction Introduction

Original System

Σ :


ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order System

bΣ :


˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t) + D̂u(t).

states x̂(t) ∈ Rr , r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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outputs ŷ(t) ∈ Rp.

Goal:
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˙̂x(t) = Âx̂(t) + B̂u(t),
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Model Reduction for Linear Systems

Linear Systems in Frequency Domain

Application of Laplace transformation (x(t) 7→ x(s), ẋ(t) 7→ sx(s))
to linear system with x(0) = 0:

sx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),

yields I/O-relation in frequency domain:

y(s) =
(

C (sIn − A)−1B + D︸ ︷︷ ︸
=:G(s)

)
u(s)

G is the transfer function of Σ.
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Model Reduction for Linear Systems

Summary

Approximate the dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m,

by reduced-order system

˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rp×r , D̂ ∈ Rp×m,

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: minorder (Ĝ)≤r ‖G − Ĝ‖.
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Application Areas

Feedback Control – controllers designed by LQR/LQG, H2, H∞
methods are LTI systems of order ≥ n, but
technological implementation needs order ∼ 10.

Optimization/open-loop control – time-discretization of already
large-scale systems leads to huge number of equality
constraints in mathematical program.

Microelectronics – verification of VLSI/ULSI chip design requires
high number of simulations for different input signals,
various effects due to progressive miniaturization lead
to large-scale systems of differential(-algebraic)
equations (order ∼ 108).

MEMS/Microsystem design – smart system integration needs
compact models for efficient coupled simulation.

. . .

Here, we consider large-scale systems arising from control problems
for instationary PDEs semi-discretized by FEM, FDM or BEM.
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Balanced Truncation
The Basic Ideas

Idea:

A system Σ, realized by (A,B,C ,D), is called balanced, if
solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A, B, C , D) 7→ (TAT−1, TB, CT−1, D)

=

„»
A11 A12

A21 A22

–
,

»
B1

B2

–
,
ˆ

C1 C2

˜
, D

«
Truncation  (Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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Balanced Truncation
The Basic Ideas

Implementation: SR Method

1 Compute Cholesky factors of the solutions of the Lyapunov
equations,

P = STS , Q = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RTV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ,D).
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Balanced Truncation
The Basic Ideas

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(
2

∑n

k=r+1
σk

)
‖u‖2.
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Singular Perturbation Approximation
(Balanced Residualization)

BT ROM satisfies: limω→∞(G (ω)− Ĝ (ω)) = 0.
Now, want zero steady-state error: G (0) = Ĝ (0).

Assume system is minimal and balanced. (Can be attained using BT!)

Compute SPA reduced-order model by setting ẋ2(t) = 0 (x1(t) ∈ Rr ):

Σ̂ :

{
˙̂x(t) = Âx(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉ x̂(t) + D̂u(t), t ≥ 0,

where

Â := A11 − A12A
−1
22 A21, B̂ := B1 − A12A

−1
22 B2,

Ĉ := C1 − C2A
−1
22 A21, D̂ := D − C2A

−1
22 B2.

SPA shares properties with BT: stability preservation, error bound!
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Ĉ := C1 − C2A
−1
22 A21, D̂ := D − C2A

−1
22 B2.

SPA shares properties with BT: stability preservation, error bound!



MODEL
REDUCTION

FOR
DATA-SPARSE

SYSTEMS

Peter Benner,
Ulrike Baur

Introduction

Balanced
Truncation

The Basic Ideas

H-BT

Numerical
Examples

Conclusions

References

Singular Perturbation Approximation
(Balanced Residualization)

BT ROM satisfies: limω→∞(G (ω)− Ĝ (ω)) = 0.
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Balanced Truncation Using H-Matrix Arithmetic

General misconception: complexity O(n3) — true for several imple-
mentations! (e.g., Matlab, SLICOT).
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Balanced Truncation Using H-Matrix Arithmetic

General misconception: complexity O(n3) — true for several imple-
mentations! (e.g., Matlab, SLICOT).

Here: ε-approximate BT with complexity O(r · n · log2 n · logq 1
ε ):
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Balanced Truncation Using H-Matrix Arithmetic

General misconception: complexity O(n3) — true for several imple-
mentations! (e.g., Matlab, SLICOT).

Here: ε-approximate BT with complexity O(r · n · log2 n · logq 1
ε ):

– Instead of Gramians P,Q
compute S ,R ∈ Rn×k ,
k � n, such that

P ≈ SST , Q ≈ RRT .

– Compute S ,R with
problem-specific Lyapunov
solvers of “low” complexity
directly.
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Balanced Truncation Using H-Matrix Arithmetic

General misconception: complexity O(n3) — true for several imple-
mentations! (e.g., Matlab, SLICOT).

Here: ε-approximate BT with complexity O(r · n · log2 n · logq 1
ε ):

– Instead of Gramians P,Q
compute S ,R ∈ Rn×k ,
k � n, such that

P ≈ SST , Q ≈ RRT .

– Compute S ,R with
problem-specific Lyapunov
solvers of “low” complexity
directly.

 need solver for large-scale matrix equations which computes S ,R
directly!
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H-Sign Function Method for Lyapunov Equations
Sign Function Iteration for Dual Lyapunov Equations

Simultaneously solve

AP + PAT + BBT = 0, ATQ + QA + CTC = 0

for low-rank factors S ,R of P,Q:

With B0 = B, C0 = C , iterate

−In
i→∞←− Ai+1 ← 1

2 (Ai + A−1
i ),

√
2S

i→∞←− Bi+1 ← 1√
2

[
Bi A−1

i Bi

]
,

√
2RT i→∞←− Ci+1 ← 1√

2

[
Ci

CiA
−1
i

]
,
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Sign Function Iteration for Dual Lyapunov Equations
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√
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i
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,

Problem 1: Workspace doubles per iteration step.

⇒ apply rank-revealing QR (LQ) factorization to Bi+1,Ci+1,

⇒ approximate low-rank factors S̃ ∈ Rn×kP , R̃ ∈ Rn×kQ .
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H-Sign Function Method for Lyapunov Equations
Sign Function Iteration for Dual Lyapunov Equations

Simultaneously solve
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Problem 2:

Algorithm involves inv, add of dense matrices: O(n3).

Even if A is sparse, A−1 is dense ⇒ O(n2) storage.

Here: A in data-sparse H-matrix format
 use formatted arithmetic ⊕, InvH.
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A Very Brief H-Matrix Primer

Given index set I = {1, . . . , n} (e.g., numbering of FE nodes),
construct block cluster tree TI×I :

Leaf of TI×I ≡ low-rank matrix ⇒

H-matrix definition

H(TI×I , k) := {M ∈ RI×I | rank (M|t×s) ≤ k ∀ leaves t×s of TI×I}.

Storage requirements for K ∈ H(TI×I , k) : O(n log(n) k);

arithmetic employs truncated SVD to close the set of
H-matrices;

complexity: Kx : O(n log(n) k)
K ⊕M : O(n log(n) k2),
K �M, InvH(K ): O(n log2(n) k2).
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H-matrices;

complexity: Kx : O(n log(n) k)
K ⊕M : O(n log(n) k2),
K �M, InvH(K ): O(n log2(n) k2).
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H-Sign Function Method for Lyapunov Equations

Algorithm:

A0 ← (A)H, B0 ← B, C0 ← C :

WHILE ‖Ai+1 + In‖2 > tol

Ai+1 ← 1
2 (Ai ⊕ InvH(Ai )),

Bi+1 ← 1√
2
rrlq

([
Bi InvH(Ai )Bi

])
,

Ci+1 ← 1√
2
rrqr

([
Ci

Ci InvH(Ai )

])
.

 S̃ ≈ 1√
2

lim
i→∞

Bi , R̃ ≈ 1√
2

lim
i→∞

CT
i

with linear-polylogarithmic complexity: O(n log2(n)k2).

Storage requirements for A: O(n log(n)k).

Adaptive rank choice k w.r.t. given H-approximation error ε.
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Ci
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lim
i→∞
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CT
i

with linear-polylogarithmic complexity: O(n log2(n)k2).

Storage requirements for A: O(n log(n)k).

Adaptive rank choice k w.r.t. given H-approximation error ε.
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Numerical Example
Performance, accuracy of Lyapunov solver (with τ = ε = 10−4)

2d heat equation, ∂x
∂t = α∆x(t, ξ) + b(ξ)u(t), u(t) ∈ R;

n = dim of FE space;

use HLib 1.3 by Börm, Grasedyck, Hackbusch .

n unknowns kP ‖R(P)‖2

256 32,896 11 8.2 · 10−8

1,024 524,800 13 1.1 · 10−6

4,096 8,390,656 14 1.7 · 10−6

16,384 134,225,920 15 1.1 · 10−6

n = 262, 144: kP = 17 ⇒ 4.25 MB for solution instead of 64 GB!
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Error Analysis for Transfer Function Approximation

For balanced truncation we have absolute error bound:

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2 with ‖G − Ĝ‖∞ ≤ 2
n∑

k=r+1

σk ≤ tol.

Worst-case error: ‖G − Ĝ‖∞ ≤ ‖G − GH‖∞ + ‖GH − Ĝ‖∞︸ ︷︷ ︸
≤tol

with

G (s) = C (sIn − A)−1B: original transfer function,

GH(s) = C (sIn − AH)−1B: H-approximation to G (s),

Ĝ (s) = Ĉ (sIr − Â)−1B̂: reduced-order system.

Theorem

For A, AH symmetric and with ‖A− AH‖2 ≤ cε, we have

‖G − Ĝ‖∞ ≤ c ε ‖C‖2‖B‖2 max
λ∈λ(A)

1

|λ|2
+2

n∑
k=r+1

σk︸ ︷︷ ︸
BT error

+O(ε2).
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Numerical Examples I
2d heat equation, FEM discretization

∂x

∂t
= α∆x(t, ξ) + b(ξ)u(t),

FEM  n = 16384.
Lyapunov solver yields kP = kQ = 16; for given tolerance 10−4, we
obtain r = 4. The computed error bound is 9.18 · 10−5.

Magnitude of absolute error
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Numerical Examples I
2d heat equation, FEM discretization

∂x

∂t
= α∆x(t, ξ) + b(ξ)u(t),

FEM  n = 16384.
Lyapunov solver yields kP = kQ = 16; for given tolerance 10−4, we
obtain r = 4. The computed error bound is 9.18 · 10−5.

Memory requirements

for n = 16, 384
and r = 7 :

Σ = (A,B,C ) : 2048.2 MB,
Σh = (AH,B,C ) : 171.3 MB,

Σ̂ = (Â, B̂, Ĉ ) : 0.49 KB.
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Numerical Examples II
3d heat equation, BEM discretization

∂x

∂t
= α∆x(t, ξ) + b(ξ)u(t),

BEM  n = 8192. Note: A is dense!

Magnitude of absolute error
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Numerical Examples III, FEM discretizations
2d heat equation with jumping coefficients

∂x
∂t = α(ξ)∆x(t, ξ) + b(ξ)u(t),

α1 = 1
α2 = 10−4

α3 = 10

Magnitude of absolute error
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Numerical Examples IV
2d convection-diffusion equation, FEM discretization

∂x

∂t
= α∆x(t, ξ) + c · ∇x(t, ξ) + b(ξ)u(t),

with constant convection c = (0, 1)T and α(ξ) ≡ 10−4.

Magnitude of absolute error
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With H-matrix arithmetic we can solve large-scale Lyapunov,
Sylvester (→ next talk), and Stein equations.

Well suited approach for solving matrix equations arising from
FEM/BEM discretizations of elliptic partial differential operators
(solvers for generalized Lyapunov equations, Sylvester and Stein
equations also available).

Based on Lyapunov solver we obtain efficient new
implementation of model reduction method based on balanced
truncation and singular perturbation approximation.

Analogous implementation of BT and SPA for discrete-time
systems available.

Model reuction based on cross-Gramian approach → next talk.

Work in progress: extend approach to unstable situations based
on unstable balancing  solve algebraic Bernoulli equations
using H-matrix-based sign function implementation.
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