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> {y(t) = Cx(t) + Du(t),

m states x(t) € R”,

Introduction

m inputs u(t) € R,
m outputs y(t) € RP.
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MODEL

REDUCTION
ontacmrse | Original System Reduced-Order System

SYSTEMS

Rl - () - s . {30 = At ¢ but)
e y(t) = Cx(t) + Du(t), y(t) = Cx(t) + Du(t).
m states x(t) € R”, m states X(t) € R", r < n,
m inputs u(t) € R, m inputs u(t) € R,
m outputs y(t) € R”. m outputs y(t) € R”.

E B

|ly — 7|l < tolerance - ||ul| for all admissible input signals.




Model Reduction for Linear Systems

MODEL
REDUCTION
FOR

DATA-SPARSE
SYSTEMS
B B Linear Systems in Frequency Domain

Ulri Saur

Application of Laplace transformation (x(t) — x(s), X(t) — sx(s))
to linear system with x(0) = 0:

sx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),

Introduction

yields |/O-relation in frequency domain:

y(s) = ( Clsly, — A)1B + D)u(s)
=:G(s)

G is the transfer function of X.
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Introduction
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x>+
|

A% +Bu, AeR™, BeRxm
y = Cx+ Du, CeRPXr D e RPX™
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Brsiey B Approximate the dynamical system

Ulr

Summary

x = Ax+ Bu, AeRM™"  BeR™mMm
y = Cx+ Du, C eRPX" D e RP*™

Introduction

by reduced-order system

x>+
|

A% +Bu, AeR™, BeRxm
y = Cx+ Du, CeRPXr D e RPX™

of order r < n, such that
ly =91l = |Gu = Gul| < |G — G|||jul| < tolerance - ||u]].

= Approximation problem: min . &, G — G].
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MODEL

RED S O Feedback Control — controllers designed by LQR/LQG, Ha, Hoo
R methods are LTI systems of order > n, but

Peter Benner technological implementation needs order ~ 10.

Ulrike Baur

Optimization /open-loop control — time-discretization of already
— large-scale systems leads to huge number of equality
e constraints in mathematical program.

Microelectronics — verification of VLSI/ULSI chip design requires
high number of simulations for different input signals,
various effects due to progressive miniaturization lead
to large-scale systems of differential(-algebraic)
equations (order ~ 10%).

MEMS/Microsystem design — smart system integration needs
compact models for efficient coupled simulation.
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MODEL

REDUCTION Feedback Control — controllers designed by LQR/LQG, Ha, Hoo
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R methods are LTI systems of order > n, but

Peter Benner technological implementation needs order ~ 10.

Ulrike Baur

Optimization /open-loop control — time-discretization of already
— large-scale systems leads to huge number of equality
e constraints in mathematical program.

Microelectronics — verification of VLSI/ULSI chip design requires
high number of simulations for different input signals,
various effects due to progressive miniaturization lead
to large-scale systems of differential(-algebraic)
equations (order ~ 10%).

MEMS/Microsystem design — smart system integration needs
compact models for efficient coupled simulation.

Here, we consider large-scale systems arising from control problems
for instationary PDEs semi-discretized by FEM, FDM or BEM.
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Balanced Truncation
The Basic Ideas

REDUCTION
FOR
DATA-SPARSE

SYSTEMS m A system X, realized by (A, B, C, D), is called balanced, if
Pete solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+C'C = 0,

Thie Ere [tz satisfy: P = Q = diag(o1,...,0,) with o1 > 09 > ... > 0, > 0.

m {01,...,0,} are the Hankel singular values (HSVs) of X.

m Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)
_ A A B
- <[A21 Azz]’{Bz]’[Cl Cz]’D)

N

m Truncation ~~ (/2\ B,C, [A)) = (A11, B1, G, D).
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Balanced Truncation
The Basic Ideas

e Implementation: SR Method

FOR
DATA-SPARSE

SYSTEMS Compute Cholesky factors of the solutions of the Lyapunov
Plaies B equations,
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P=S"S, Q=R'R.
Compute SVD

21 v.T
T _ 1
SR —[Ul,Ug]l 22][\/;}

The Basic Ideas

Set
W=RTVis[Y?  v=5Tus Y2

Reduced model is (WT AV, WTB, CV, D).
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Balanced Truncation
The Basic Ideas

MODEL
REDUCTION
FOR
DATA-SPARSE
SYSTEMS

Peter Benner
Hike B Properties:

m Reduced-order model is stable with HSVs o4, ..., 0,.

The Basic Ideas m Adaptive choice of r via computable error bound:

n
ly=sl< (2> ok) lull.
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C = G- GAGAx, D = D-GALB.
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DATA-SPARSE BT ROM satisfies: |imw—>oo(G(Jw) -
SYSTEMS
Now, want zero steady-state error: G

&(w)) = 0.
(0) = G(0).

Assume system is minimal and balanced. (Can be attained using BT!)
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Compute SPA reduced-order model by setting x>(t) = 0 (x1(t) € R"):

The Basic Ideas

& X(t) = Ax(t)+ Bu(t), t>0, £(0)= %,
1 9(t) = Cx(t)+ Du(t), t>0,
where
/E\ = An— ApAy A, % = By — ApAy B,
C = G- GAGAx, D = D-GALB.

SPA shares properties with BT: stability preservation, error bound!
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rw Balanced Truncation Using H-Matrix Arithmetic

MODEL

REDUCTION ; R, . 3y .
ol General misconception: complexity O(n?) true for several imple-

RAS mentations! (e.g., MATLAB, SLICOT).

SYSTEMS

Lot Here: e-approximate BT with complexity O(r - n - Iog2 n - log? %)
— |nstead of Gramia ns P’ Q o Eigenvalues of Gramian in decreasing order
compute S, R € R"™*k, .
k < n, such that \
10"
P~ SST, Q~ RRT. & 10 h

— Compute S, R with
problem-specific Lyapunov
solvers of “low” complexity B I
directly.

~> need solver for large-scale matrix equations which computes S, R
directly!
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Peter B
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rw H-Sign Function Method for Lyapunov Equations

Sign Function Iteration for Dual Lyapunov Equations

MODEL Simultaneously solve

REDUCTION

DATAF—(S)FF’{ARSE AP + PAT—|—BBT = O, ATQ+ QA + CTC =0

SYSTEMS

Pet

for low-rank factors S, R of P, Q:
With By = B, Cy = C, iterate

—Iy ‘oo Air — FA+AT,
s EX g o L[a A'E]
i— C,'
\/§RT e CH»] — % |: CiA,'_l :| )

Problem 1: Workspace doubles per iteration step.
= apply rank-revealing QR (LQ) factorization to Bji1, Ci11,
= approximate low-rank factors 5 € Rk R e R"*ke,
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Sign Function Iteration for Dual Lyapunov Equations

MODEL Simultaneously solve

REDUCTION
Rl T T _ T T _
DATA-SPARSE AP+ PA" +BB' = 0, AQ+QRA+C'C =0

SYSTEMS

Pet

for low-rank factors S, R of P, Q:
With By = B, Cy = C, iterate

—l, == Air — 3(A+ AT,
VIS TE B« 8 AE ]
VIRT = G < \%[C,-f\i._l}’
Problem 2:

m Algorithm involves inv, add of dense matrices: O(n?).
m Even if A is sparse, A~! is dense = O(n?) storage.

Here: A in data-sparse H-matrix format
~~ use formatted arithmetic @, Invyy.
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FOR .
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H-Sign

Function for ;
Lyapanoy ‘H-matrix definition

H(Tixs, k) = {M € R"™/|rank (M|;xs) < k V leaves t xs of T;x/}.
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AEODEL Given index set | = {1,...,n} (e.g., numbering of FE nodes),

FOR .
OATA oo ReE construct block cluster tree T;y«;:
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+

_|_

e Leaf of T;«; = low-rank matrix =
H-Sign

Function for ;
Lyapanoy ‘H-matrix definition

H(Tixs, k) = {M € R"™/|rank (M|;xs) < k V leaves t xs of T;x/}.

m Storage requirements for K € H(T;x;, k) : O(n log(n) k);
m arithmetic employs truncated SVD to close the set of
H-matrices;
m complexity: Kx : O(n log(n) k)
KeM . O(n log(n) k?),
K ® M, Invy(K):  O(nlog?(n) k?).
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e WHILE ||Ajfq + /n]|2 > tol

Algorithm:

A1 —  3(A @ Invy(A)),

Bii1 < \/iirrlq ([ B Invy(A)Bi ]),

Function for

‘H-Sign
Lyapunov C 1 — erqr Ci
I Gy V2 C,'IIIVH (A,) ’




H-Sign Function Method for Lyapunov Equations

MODEL
REDUCTION
FOR
DATA-SPARSE

SYSTEMS A — (A)H, By — B, CO = C
R0 S WHILE ||A;q + Io|l2 > tol

Algorithm:

A,'+1 — %(A,‘@II’IVH(A,')),

Bii1 < \/iirrlq ([ B Invy(A)Bi ]),

Function for

‘H-Sign
Lyapunov C 1 — erqr Ci
I Gy V2 C,'IIIVH (A,) ’

S~ 1 | . P~ Ll | T

O f’_ILrgoB,, R~ ﬁillpo]oci

with linear-polylogarithmic complexity: O(nlog?(n)k?).
m Storage requirements for A: O(nlog(n)k).

m Adaptive rank choice k w.r.t. given H-approximation error .



Numerical Example

Performance, accuracy of Lyapunov solver (with 7 = € = 10~%)

MODEL
REDUCTION

DATA SPARSE ®m 2d heat equation, 2 = aAx(t,&) + b(&)u(t), u(t) € R;

SYSTEMS
B B m n = dim of FE space;

V m use HLib 1.3 by Bérm, Grasedyck, Hackbusch .

N [ ko [ R [ RO
Example 256 32,896 | 11 | 8.2-10°8 5
1,024 524,800 | 13 | 1.1-10~° E
4,096 8,390,656 | 14 | 1.7-10~° 5

16,384 134,225,920 | 15 | 1.1-107°

n = 262,144: kp = 17 = 4.25 MB for solution instead of 64 GB!



rw Error Analysis for Transfer Function Approximation

e For balanced truncation we have absolute error bound:

FOR
DATA-SPARSE

n
oo ly = 9lla < 116 = Glloollullz - with |G = Gllec <2 Y ok < tol.
r k=r+1

Worst-case error: |G — Glloo < |G = Giloo + ||Gr — G0 with
———
<tol
m G(s) = C(sl, — A)~1B: original transfer function,
" GH( ) = C(sl, — Ay) "1 B: H-approximation to G(s),
Eror Anlysis G(s) = C(sl, — A)~1B: reduced-order system.



Error Analysis for Transfer Function Approximation

e For balanced truncation we have absolute error bound:

FOR
DATA-SPARSE

n
oo ly = 9lla < 116 = Glloollullz - with |G = Gllec <2 Y ok < tol.
r k=r+1

Worst-case error: |G — Glloo < |G = Giloo + ||Gr — G0 with
———
<tol
m G(s) = C(sl, — A)~1B: original transfer function,
" GH( ) = C(sl, — Ay) "1 B: H-approximation to G(s),
Eror Anlysis G(s) = C(sl, — A)~1B: reduced-order system.

For A, Ay, symmetric and with ||A — A2 < ce, e have
G = Gllos < ce||Cll2||B]l2 \max |Al2+2kzrj+lak + O().

BT error



Numerical Examples |

2d heat equation, FEM discretization

MODEL
REDUCTION a

p = CAX(£.) + b(E)u(),

SYSTEMS o

e S FEM ~ n = 16384.

Lyapunov solver yields kp = kg = 16; for given tolerance 104, we
obtain r = 4. The computed error bound is 9.18 - 1072,

Magnitude of absolute error

2d heat equation, n = 16,384, t= ¢ = l.e-0F and tol = 1.e-04

Numerical 10
Examples
10t
)
3 Ay
- e Y
i 7/ N i
5, ~ N
[©] ! AN
' s N\
= i \
5 10° A A 4
5 Vs \
g / N
o N
: 5 \
10 i N
,/ kY
& Y
7
>
e =
0 10° 0 0 10°

Frequency o



Numerical Examples |

2d heat equation, FEM discretization

MODEL
REDUCTION
FOR
DATA-SPARSE
SYSTEMS

Pt B % — alx(t,€) + b(E)u(t),

FEM ~~» n = 16384.
Lyapunov solver yields kp = kg = 16; for given tolerance 107*, we
obtain r = 4. The computed error bound is 9.18 - 10~5.

Numerical
Examples

Memory requirements

B Y — (AB,C): 2048.2 MB,
oo @ o= dBedt o (An,B,C): 1713 MB,

and o= T: S = (AB0): 0.49 KB.




Numerical Examples Il

3d heat equation, BEM discretization

MODEL
REDUCTION
FOR 8X

DASEAS?FE’QRSSE E = an(t,£) + b(f)u(t),
S BEM ~» n = 8192. Note: A is dense!
Magnitude of absolute error

5 BEM example, n= 32768, =¢= 1606 and tol = 1.e-04

Numerical
Examples

16 o) - G, o)

Frequency @




Numerical Examples [ll, FEM discretizations

2d heat equation with jumping coefficients
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REDUCTION
FOR
DATA-SPARSE
SYSTEMS
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= a(&)Ax(t, &) + b(&)u(t),

Numerical
Examples
E T ~
+ PN
L = T W
6 LKy
= & \v\'\
L o
(Iﬂ 10° o N B
=] R
= ‘\‘ \‘\
SRR TR 1
- === lede- ledr=10 el
—=-1=lede= 1.e6r=10 -
gl e edes om0 LR
—=-1=leBe=1e6r=11 ~.
* o=leBe=leBr=11 ™
tol = Led
" . .
10 10° 10° 10" 10°

Frequency o



Numerical Examples [V

2d convection-diffusion equation, FEM discretization

MODEL
REDUCTION

DATA.SPARSE % = aAX(t,f)—l—C'VX(t,f)—f—b(f)U(t),

SYSTEMS ot

Peter Benner

Wit e with constant convection ¢ = (0,1)7 and a(¢) = 1074

Magnitude of absolute error

. Convection-diffusion eq. with n = 16,384, 1 = 1.-06, ¢ = 1.e-06, tol = 1.e-04

Numerical L E|

Examples T N

lIG @ - G @l
Ve

el ==-BT: =11 S
== SPAIr=11 N

—_—10

o 2

10 10
Frequency o
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FOR With H-matrix arithmetic we can solve large-scale Lyapunov,
DATA-SPARSE

SYSTEMS Sylvester (— next talk), and Stein equations.

Peter Benner

Ulrike Baur m Well suited approach for solving matrix equations arising from
FEM/BEM discretizations of elliptic partial differential operators
(solvers for generalized Lyapunov equations, Sylvester and Stein
equations also available).

m Based on Lyapunov solver we obtain efficient new
implementation of model reduction method based on balanced
truncation and singular perturbation approximation.

Conclusions

m Analogous implementation of BT and SPA for discrete-time
systems available.

m Model reuction based on cross-Gramian approach — next talk.
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FOR With H-matrix arithmetic we can solve large-scale Lyapunov,
DATA-SPARSE

SYSTEMS Sylvester (— next talk), and Stein equations.

Peter Benner

Ulrike Baur m Well suited approach for solving matrix equations arising from
FEM/BEM discretizations of elliptic partial differential operators
(solvers for generalized Lyapunov equations, Sylvester and Stein
equations also available).

m Based on Lyapunov solver we obtain efficient new
implementation of model reduction method based on balanced
truncation and singular perturbation approximation.

Conclusions

m Analogous implementation of BT and SPA for discrete-time
systems available.

m Model reuction based on cross-Gramian approach — next talk.

m Work in progress: extend approach to unstable situations based
on unstable balancing ~~ solve algebraic Bernoulli equations
using H-matrix-based sign function implementation.
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