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Motivation

We consider problems of compressible flows from
computational fluid dynamics (CFD).

Problems are nonlinear.

Both unsteady and steady problems are solved via implicit
time stepping schemes involving Newtons method.

Thus, solving a CFD problem amounts to solving sequences of
linear, usually unsymmetric, sparse blocksystems.

Solving these systems takes the majority of computing time.

Thus, speeding up this part of the solver is worthwhile!
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The Euler equations

Hyperbolic system of conservation laws (mass, momentum, energy)
modeling inviscid flow:

∂tρ +∇x ·m = 0, (1)

∂tmi +
2∑

j=1

∂xj (mivj + pδij) = 0, i = 1, 2, (2)

∂t(ρE ) +∇x · (Hm) = 0. (3)

With u = (ρ,m1,m2, ρE )T this gives

ut +∇x · f(u) = 0.

Closed by equation of state p = (γ − 1)ρe.
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Finite volume scheme

Integration over control volume σ and the
divergence theorem give

d

dt

∫
σ
u dx +

∮
∂σ

(f1(u)n1 + f2(u)n2) ds = 0.

Considering mean values in each cell

ui (t) :=
1

|σi |

∫
σi

u dx

and a polygonal mesh, we obtain:

d

dt
ui (t) = − 1

|σi |
∑

j∈N(i)

2∑
k=1

|lkij |
2

(
2∑

`=1

f`
(
u(xk

ij , t)
)

nk
ij ,`

)
.
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Discrete equations

Numerical flux function: AUSMDV or low Mach
preconditioned Lax-Friedrichs-scheme

HLF (uL,uR ;n) =
1

2
(f(uL)+f(uR))n− 1

2
D(uL,uR ;n)·(uR−uL)

Here steady state problems, thus implicit Euler in time:

Ωun+1 = Ωun + ∆tH(un+1)

Solution of nonlinear equation system with one Newton step
per timestep:

A∆u = rhs(un)
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The linear system

System matrix: A =
[
Ω + ∆t ∂H(u)

∂u

]
un

.

This system is sparse, nonnormal, not diagonally dominant
and sometimes ill conditioned.

Small ∆t means easy systems, but low convergence rate of
nonlinear iteration.

Linear equation systems solved with right preconditioned
BiCGSTAB.
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The reference preconditioning technique

Preconditioning via ILU(0).

As the matrices are not independent, the ILU(0) is stored and
recomputed every k timesteps (Freezing + Recomputing).

The optimal choice of k depends on the precise problem and
is between 5 and 50.

For a good k, this leads to effective preconditioners, so that
the systems take between 5 and 30 BiCGSTAB iterations.

Over the last decades, lot of research on this. Today,
improvement of preconditioner alone difficult.

Idea: Try to share some of the computational effort among
the whole sequence.
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Notation and Setting

Given a sequence of linear equation systems of same
dimension.

Reference system Ax = b with reference preconditioner
M = (LD)U or M = L(DU).

D is blockdiagonal, L, U block triangular with ones on the
diagonal.

Current system: A+x = b+.

Difference matrix B = A− A+.
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Related Work

We look for preconditioner M+ that is obtained algebraically.
Related work:

Approximate updates for the SPD case (Meurant 2001, Benzi,
Bertaccini 2003, Bertaccini 2004)

Updating for nonsymmetric systems for nonblock
preconditioners (Duintjer Tebbens, Tůma 2007)

Trivially: Ideal preconditioner of same accuracy as M is given by

‖A−M‖ = ‖A+ − (M− B)‖.

Problem: Systems with M− B in general not easy to solve!



Updating preconditioners for sequences of non-symmetric linear systems

Idea

Consider cheap approximations of M− B that lead to useful
preconditioners. If the upper triangle contains significant
information:

M− B = L(DU− L−1B) ≈ L(DU− B)

Then approximate DU− B via btriu(DU− B) to obtain:

M+ = L(DU−btriu(B)).

Or otherwise by same reasoning from M− B = (LD− BU−1)U:

M+ = (LD−btril(B))U.
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Properties of the new method

Theorem (Accuracy)

Let ‖ · ‖ be ‖ · ‖F . If

ρ =
‖btril(B)(I−U)‖ (2‖E− bstriu(B)‖+ ‖btril(B)(I−U)‖)

‖btril(B)‖2
< 1,

where bstriu denotes the block strict upper triangular part, then
the accuracy ‖A+ − (LD−btril(B))U‖ of the updated
preconditioner is higher than the accuracy of the frozen
preconditioner ‖A+ − LDU‖ with

‖A+ − (LD−btril(B))U‖ ≤
√
‖A+ − LDU‖2 − (1− ρ)‖btril(B)‖2.
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Chosing the right Triangle

Three different options (using the Frobenius-Norm):

Stable update criterion: ‖U− I‖ and ‖L− I‖
Information flow criterion: ‖btril(B)‖ and ‖btriu(B)‖
Unscaled stable update criterion: Compare ‖D−DU‖ with
‖LD−D‖.

Two problems:

1 A criterion query is not without cost and is not necessary
every step. But how often is useful?

2 Every scaling with D−1 is costly due to blockstructure.

Here: Periodic recomputation of preconditioner, only then a query.
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Steady and unsteady flows

While the update is cheap, it is not without cost. Especially
near steady state, updating becomes unnecessary.

Therefore, store the number of iterations in the first step
(iter0).

Do not update in the second step.

In the following steps, switch to updating, once the number of
iterations has crossed a threshhold (> iter0 + k)

Reset after recomputation of reference preconditioner.
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Results Cylinder, Supersonic

Figure: Pressure Isolines, steady state of a Quartercylinder at Mach 10
after 3000 timesteps and BiCGSTAB iterations for the first 500. 20994
cells, 83976 unknowns.
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Results Cylinder, Supersonic

Figure: BiCGSTAB iterations for the first 500 timesteps. 20994 cells,
83976 unknowns.
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Results Cylinder, Supersonic

No updating Stable Unsc. stable Inf. flow

Per. Iter. Time Iter. Time Iter. Time Iter. Time

10 10683 7020 11782 7284 11782 7443 11782 7309

20 12294 6340 12147 6163 12147 6300 12147 6276

30 13787 7119 12503 5886 12503 5894 12503 5991

40 15165 6356 12916 5866 12916 5835 12916 5856

50 16569 6709 11962 5821 13139 5670 13139 5925

CPU-Times and Iterationnumbers after 3000 timesteps.
Speedup only during first 500 timesteps!
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Results Cylinder, Supersonic

Here, unknowns were reordered to respect physical flow of
information, leading to a mostly triangular matrix. Thus:

1 Algorithm always choses the lower left part.

2 Updates are close to refactorization in every step.

i ‖A(i) − LDU‖F ‖A(i) −M(i)‖F Bound from th. ρ

2 37.454 34.277 36.172 0.571

3 37.815 34.475 36.411 0.551

4 42.096 34.959 36.938 0.245

5 50.965 35.517 37.557 0.104

6 55.902 36.118 38.308 0.083
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Results NACA-Profile, Mach 0.8

Figure: Pressure Isolines, steady state of a NACA0012-profile at Mach
0,8 after 750 time steps and BiCGSTAB iterations for the first 50. 4605
cells and 18420 unknowns.
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Results NACA-Profile, Mach 0.8

Figure: BiCGSTAB iterations for the first 50 timesteps. 4605 cells and
18420 unknowns.
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Results NACA-Profile, Mach 0.8

No updating Stable Unsc. stable Inf. flow

Per. Iter. Time Iter. Time Iter. Time Iter. Time

10 5375 543 5336 498 5336 494 5336 483

20 5454 497 5364 469 5364 468 5364 459

30 5526 491 5379 464 5379 467 5379 453

40 5558 491 5411 456 5411 462 5411 452

50 5643 525 5413 466 5413 470 5413 448

CPU-Times and Iterationnumbers after 750 timesteps.
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Summary and Outlook

Implicit Finite Volume method for the Euler equations.

Black Box Updating technique for the sequence of linear
equation systems for the Block-ILU-preconditioner.

New technique is better than the reference scheme for
unsteady situations.

New technique is not worse than freezing with periodic
recomputing for steady situations.

New technique is robust for a large class of problems.

Outlook: Unsteady test cases. Matrix-free? Spatial
adaptation?
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