Model Reduction Using Multi-level Substructuring

Frank Blömeling f.bloemeling@tu-harburg.de

Institute of Numerical Simulation

24.08.2007

Dynamical systems

system completely determined by the mapping

 $G: u \mapsto y$

Linear time-invariant (LTI) dynamical system:

 $E\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = 0$ y(t) = Cx(t) + Du(t),

(1)

 $A, E \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n} \text{ and } D \in \mathbb{R}^{p \times m}$

Linear time-invariant (LTI) dynamical system:

 $E\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = 0$ y(t) = Cx(t) + Du(t),

 $A, E \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n} \text{ and } D \in \mathbb{R}^{p \times m}$

- $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p \Rightarrow m$ inputs, p outputs • $x(t) \in \mathbb{R}^n \Rightarrow n$ state space variables (order)
- abbreviation:

$$G = \left[\begin{array}{c|c} sE - A & B \\ \hline C & D \end{array} \right]$$

(1)

Linear time-invariant (LTI) dynamical system:

 $E\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = 0$ y(t) = Cx(t) + Du(t),

 $A, E \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n} \text{ and } D \in \mathbb{R}^{p \times m}$

• $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p \Rightarrow m$ inputs, p outputs

• $x(t) \in \mathbb{R}^n \Rightarrow n$ state space variables (order)

abbreviation:

$$G = \left[\begin{array}{c|c} sE - A & B \\ \hline C & D \end{array} \right]$$

(1)

Linear time-invariant (LTI) dynamical system:

 $E\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = 0$ y(t) = Cx(t) + Du(t),

 $A, E \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n} \text{ and } D \in \mathbb{R}^{p \times m}$

- $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p \Rightarrow m$ inputs, p outputs
- $x(t) \in \mathbb{R}^n \Rightarrow n$ state space variables (order)
- abbreviation:

$$G = \left[\begin{array}{c|c} sE - A & B \\ \hline C & D \end{array} \right]$$

(1)

Frequency domain

• Laplace transformation: $u \mapsto U(s) := \int_0^\infty e^{-st} u(t) dt$

System output is obtained by simple multiplication:

 $Y = G \cdot U$

transfer function:

 $G(s) = C(sE - A)^{-1}B + D$

Model reduction

Problem: state space dimension *n* is much too large

∜

Replace system matrices

$$\begin{bmatrix} sE - A & B \\ \hline C & D \end{bmatrix} \longrightarrow \begin{bmatrix} sE^{(k)} - A^{(k)} & B^{(k)} \\ \hline C^{(k)} & D \end{bmatrix}$$

Model reduction

Problem: state space dimension *n* is much too large

\Downarrow

Replace system matrices

$$\begin{bmatrix} sE - A & B \\ \hline C & D \end{bmatrix} \longrightarrow \begin{bmatrix} sE^{(k)} - A^{(k)} & B^{(k)} \\ \hline C^{(k)} & D \end{bmatrix}$$

- reduced order k is much smaller
- reproduce fundamental input/output behaviour, i.e., $G pprox G^{(k)}$
- preserve essential system properties
- w.l.o.g. *D* = 0

Methods

- small-scale problems:
 - balancing methods (balanced truncation, stochastic balancing, positive real balancing, ...)
 - optimal Hankel norm approximation
 - proper orthogonal decomposition
- Iarge-scale problems:
 - moment-matching methods (Arnoldi, Lanczos, Rational Krylov)
 - Iow-rank ADI iteration

Methods

- small-scale problems:
 - balancing methods (balanced truncation, stochastic balancing, positive real balancing, ...)
 - optimal Hankel norm approximation
 - proper orthogonal decomposition
- Iarge-scale problems:
 - moment-matching methods (Arnoldi, Lanczos, Rational Krylov)
 - low-rank ADI iteration

What if application not possible or inefficient?

Methods

- small-scale problems:
 - balancing methods (balanced truncation, stochastic balancing, positive real balancing, ...)
 - optimal Hankel norm approximation
 - proper orthogonal decomposition
- Iarge-scale problems:
 - moment-matching methods (Arnoldi, Lanczos, Rational Krylov)
 - low-rank ADI iteration

What if application not possible or inefficient?

Remedy

Combine your favourite method with multi-level substructuring!

Substructuring

Strategy:

- Decompose large system in many small decoupled ones
- Reduce solely the small problems

 $\bigcup_{\text{Reduction methods are applicable}}$

Substructuring

Strategy:

- Decompose large system in many small decoupled ones
- Reduce solely the small problems

 $\bigcup_{\text{Reduction methods are applicable}}$

Problems:

- decomposition not equivalent to overall system
- arising boundaries too large \Rightarrow multi-level approach

Splitting of state space:

$$\mathbb{R}^{n} = \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \mathbb{R}^{n_{\Gamma}}$$

$$\downarrow \downarrow$$

$$A = \begin{pmatrix} A_1 & A_{1,\Gamma} \\ A_2 & A_{2,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,2} & A_{\Gamma} \end{pmatrix}, \quad E = \begin{pmatrix} E_1 & E_{1,\Gamma} \\ E_2 & E_{2,\Gamma} \\ E_{\Gamma,1} & E_{\Gamma,2} & E_{\Gamma} \end{pmatrix},$$
$$B = \begin{pmatrix} B_1 \\ B_2 \\ B_{\Gamma} \end{pmatrix}, \quad C = \begin{pmatrix} C_1 & C_2 & C_{\Gamma} \end{pmatrix}$$

• $n_{\Gamma} \ll n_i, i = 1, 2$

Transformation

State space transformation:

 $(\widehat{A},\widehat{B},\widehat{C},\widehat{E}) = (LAR,LB,CR,LER)$

$$L = \begin{pmatrix} I & & & \\ & I & & \\ -A_{\Gamma,1}A_1^{-1} & -A_{\Gamma,2}A_2^{-1} & I \end{pmatrix}, R = \begin{pmatrix} I & & & -A_1^{-1}A_{1,\Gamma} \\ & & I & & -A_2^{-1}A_{2,\Gamma} \\ & & & & I \end{pmatrix}$$

Transformation

State space transformation:

$$(\widehat{A},\widehat{B},\widehat{C},\widehat{E})=(LAR,LB,CR,LER)$$

$$L = \begin{pmatrix} I & & & \\ & I & & \\ -A_{\Gamma,1}A_1^{-1} & -A_{\Gamma,2}A_2^{-1} & I \end{pmatrix}, R = \begin{pmatrix} I & & & -A_1^{-1}A_{1,\Gamma} \\ & & I & & -A_2^{-1}A_{2,\Gamma} \\ & & & & I \end{pmatrix}$$

- equivalent realization of the system, i.e., $\left[\begin{array}{c|c} sE A & B \\ \hline C & \end{array} \right] = \left[\begin{array}{c|c} sE \widehat{A} & \widehat{B} \\ \hline \widehat{C} & \end{array} \right]$

- Â block-diagonal
- essential parts of matrices don't change ٠
- twosided block-Gaussian elemination (never build L and R explicitly)

Subsystems

$$\widehat{A} = \begin{pmatrix} A_1 & & \\ & A_2 & \\ & & \widehat{A}_{\Gamma} \end{pmatrix}, \ \widehat{E} = \begin{pmatrix} E_1 & & \widehat{E}_{1,\Gamma} \\ & E_2 & \widehat{E}_{2,\Gamma} \\ \widehat{E}_{\Gamma,1} & & \widehat{E}_{\Gamma,2} & & \widehat{E}_{\Gamma} \end{pmatrix}$$

Subsystems for subdomains Ω_i , i = 1, 2:

$$G_i = \left[egin{array}{c|c} sE_i - A_i & B_i \ \hline C_i & \end{array}
ight]$$

Output: Subsystem for interface Γ:

$$G_{\Gamma} = \left[egin{array}{c|c} s\widehat{E}_{\Gamma} - \widehat{A}_{\Gamma} & \widehat{B}_{\Gamma} \ \hline \widehat{C}_{\Gamma} & \end{array}
ight],$$

Multi-level

Multi-level

Nested arrow head structure

$$E = \begin{pmatrix} A_{1} & A_{1,\Gamma_{1}} & & A_{1,\Gamma_{0}} \\ A_{2} & A_{2,\Gamma_{1}} & & A_{2,\Gamma_{0}} \\ A_{\Gamma_{1,1}} & A_{\Gamma_{1,2}} & A_{\Gamma_{1}} & & A_{\Gamma_{1},\Gamma_{0}} \\ & & A_{3} & A_{3,\Gamma_{2}} & A_{3,\Gamma_{0}} \\ & & A_{4} & A_{4,\Gamma_{2}} & A_{4,\Gamma_{0}} \\ & & A_{\Gamma_{2,3}} & A_{\Gamma_{2,4}} & A_{\Gamma_{2}} & A_{\Gamma_{2,\Gamma_{0}}} \\ \hline & & A_{\Gamma_{0,1}} & A_{\Gamma_{0,2}} & A_{\Gamma_{0,\Gamma_{1}}} & A_{\Gamma_{0,3}} & A_{\Gamma_{0,4}} & A_{\Gamma_{0,\Gamma_{2}}} & A_{\Gamma_{0}} \end{pmatrix}$$

Nested arrow head structure

Subdomains:

$$\left[\begin{array}{c|c} sE_i - A_i & B_i \\ \hline C_i & \end{array}\right], \quad i = 1 \dots, 4$$

1,2

Interfaces:
$$\begin{bmatrix} s\widehat{E}_{\Gamma_j} - \widehat{A}_{\Gamma_j} & \widehat{B}_{\Gamma_j} \\ \hline \widehat{C}_{\Gamma_j} & \end{bmatrix}, \quad j = 0,$$

partitioning is done automatically by a graph partitioner

exact at zero, i.e.,

$$G(0)=\sum_{i}G_{i}(0)+\sum_{j}G_{\Gamma_{j}}(0)$$

- decomposition of the state space is A-orthogonal in the symmetric case
- derivation from continuous settings ⇒ smoothness condition on interfaces
- "small" parts of the matrix \hat{E} are ignored

MLS model order reduction

Principle steps:

Build subsystems by using multi-level substructuring

Reduce the subsystems (including interfaces), i.e., determine V_i and W_i s.t.

$$\widehat{G}_{i}^{(k_{i})} = \left[egin{array}{c|c} sW_{i}^{H}\widehat{E}_{i,i}V_{i} - W_{i}^{H}\widehat{A}_{i,i}V_{i} & W_{i}^{H}\widehat{B}_{i} \\ \hline \widehat{C}_{i}V_{i} & \end{array}
ight]$$

Project the transformed original system onto

 $\mathcal{V} := \operatorname{colspan}\{V_1\} \times \operatorname{colspan}\{V_2\} \times \ldots,$

i.e.

MLS model order reduction

Principle steps:

- Build subsystems by using multi-level substructuring
- Reduce the subsystems (including interfaces), i.e., determine V_i and W_i s.t.

$$G_i^{(k_i)} = \left[egin{array}{c|c} sW_i^H \widehat{E}_{i,i} V_i - W_i^H \widehat{A}_{i,i} V_i & W_i^H \widehat{B}_i \ \hline \widehat{C}_i V_i & \end{array}
ight]$$

Project the transformed original system onto

$$\mathcal{V} := \operatorname{colspan}\{V_1\} \times \operatorname{colspan}\{V_2\} \times \ldots,$$

i.e.

MLS model order reduction

Principle steps:

- Build subsystems by using multi-level substructuring
- Reduce the subsystems (including interfaces), i.e., determine V_i and W_i s.t.

$$G_{i}^{(k_{i})} = \left[egin{array}{c|c} s \mathcal{W}_{i}^{H} \widehat{\mathcal{E}}_{i,i} \mathcal{V}_{i} - \mathcal{W}_{i}^{H} \widehat{\mathcal{A}}_{i,i} \mathcal{V}_{i} & \mathcal{W}_{i}^{H} \widehat{\mathcal{B}}_{i} \ \hline \widehat{\mathcal{C}}_{i} \mathcal{V}_{i} & ert \end{array}
ight]$$

Project the transformed original system onto

 $\mathcal{V} := \text{colspan}\{V_1\} \times \text{colspan}\{V_2\} \times \dots,$

i.e.,

$$\begin{array}{lcl} \boldsymbol{A}_{i,i}^{(k)} &=& \boldsymbol{W}_i^H \widehat{\boldsymbol{A}}_{i,i} \boldsymbol{V}_i, \\ \boldsymbol{E}_{i,j}^{(k)} &=& \boldsymbol{W}_i^H \widehat{\boldsymbol{E}}_{i,j} \boldsymbol{V}_j, \\ \boldsymbol{B}_i^{(k)} &=& \boldsymbol{W}_i^H \widehat{\boldsymbol{B}}_i, \\ \boldsymbol{C}_i^{(k)} &=& \widehat{\boldsymbol{C}}_i \boldsymbol{V}_i \end{array}$$

- $k = \sum_i k_i$
- free choice of reduction method
- applicable in particular if other methods fail due to problem dimension
- multi-level substructuring improves performance for very large systems
- sparse *B* or $C \Rightarrow$ many subsystems may be neglected

Error sources

Two error sources:

- Seduction of subsystems ← controlled by reduction method
- Multi-level substructuring
 - error sources sum up
 - error due to MLS depends on the projection error of the coupling blocks

Error sources

Two error sources:

- Multi-level substructuring
- error sources sum up
- error due to MLS depends on the projection error of the coupling blocks

Consequence

Error may be large even if the subsystems are well approximated!

Error sources

Two error sources:

- Multi-level substructuring
- error sources sum up
- error due to MLS depends on the projection error of the coupling blocks

Consequence

Error may be large even if the subsystems are well approximated!

usually not the case in practical applications

Remark on reduction by Krylov subspace methods

Problem:

$$\mathcal{V} := \operatorname{colspan}\{V_1\} \times \operatorname{colspan}\{V_2\} \times \dots$$

gets too large

Remedy:

- Perform MLS model order reduction
- Solution Apply the Krylov method a second time to $(A^{(k)}, B^{(k)}, C^{(k)}, E^{(k)})$

Second-order systems

$$\begin{aligned} E\ddot{x}(t) + D\dot{x}(t) + Ax(t) &= Bu(t) \\ y(t) &= Cx(t), \end{aligned}$$

- structure preserving model reduction method
- avoid enlargement of the state space

Partition the state space recursively

- State space transformation s.t. A is block-diagonal
- Build subsystems from diagonal blocks
- Apply second-order reduction method to subsystems
- Project the overall system

- Partition the state space recursively
- State space transformation s.t. A is block-diagonal
- Build subsystems from diagonal blocks
- Apply second-order reduction method to subsystems
- Project the overall system

- Partition the state space recursively
- State space transformation s.t. A is block-diagonal
- Build subsystems from diagonal blocks
- Apply second-order reduction method to subsystems
- Project the overall system

- Partition the state space recursively
- State space transformation s.t. A is block-diagonal
- Build subsystems from diagonal blocks
- Apply second-order reduction method to subsystems
- Project the overall system

- Partition the state space recursively
- State space transformation s.t. A is block-diagonal
- Build subsystems from diagonal blocks
- Apply second-order reduction method to subsystems
- Project the overall system

- Partition the state space recursively
- State space transformation s.t. A is block-diagonal
- Build subsystems from diagonal blocks
- Apply second-order reduction method to subsystems
- Project the overall system
- equivalent to first-order version applied to system in companion form
- reduced system has second-order structure
- other structure may be destroyed

Tunable optical filter

- optical filter device tuned by thermal means
- spatial discretization of the instationary heat equation yields

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t), \end{aligned}$$

106.437 state variables, 1 input and 5 outputs

Partitioning

max. order	SpD	interfaces	domains	levels
500	2	236	237	8

- reduction of subsystems by using balanced truncation
- absolute error tolerance: 10⁻²

Performance

mem	t _{par}	t _{tr}	t _{red}	t _{total}
480 MB	697 sec	489 sec	438 sec	1624 sec

• 457/473 subsystems dropped

reduced order: 15

24 / 27

Butterfly gyro

- micro-mechanical gyroscope
- spatial discretization of elastodynamic equations yields

$$\begin{aligned} E\ddot{x}(t) + D\dot{x}(t) + Ax(t) &= Bu(t), \\ y(t) &= Cx(t) \end{aligned}$$

• 17.361 state variables, 1 input and 12 outputs

Partitioning

max. order	SpD	interfaces	domains	levels
200	2	80	79	7

reduction of subsystems by using SOBT

Performance

mem	t _{par}	t _{tr}	t _{red}	t _{total}
330 MB	144 sec	49 sec	12 sec	205 sec

• 151/159 subsystems dropped

reduced order: 40

