Outline	Introduction	Contribution	Conclusion oo	Bibliography

Decompositional Analysis of Kronecker Structured Markov Chains

Yujuan Bao İlker N. Bozkurt Tuğrul Dayar Xiaobai Sun Kishor S. Trivedi

August 20, 2007

Outline	Introduction 00	Contribution	Conclusion 00	Bibliography
Contact I	nfo			

• Yujuan Bao

e-mail: yujuan.bao@google.com

- İlker N. Bozkurt, Tuğrul Dayar Department of Computer Engineering, Bilkent University, e-mail: {bozkurti,tugrul}@cs.bilkent.edu.tr
- Xiaobai Sun Department of Computer Science Duke University, e-mail: xiaobai@cs.duke.edu
- Kishor S. Trivedi
 Department of Electrical and Computer Engineering
 Duke University,
 e-mail: kst@ee.duke.edu

Outline	Introduction	Contribution	Conclusion oo	Bibliography

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Introduction and Related Work

2 Contribution

- Background Information
- Solution Method
- Numerical Experiments

3 Conclusion

- Summary
- Future Work

Outline	Introduction ●○	Contribution	Conclusion	Bibliography
Introduction and Related Work				
Introduction	on			

- A decompositional iterative method for the steady-state analysis of Kronecker structured Markov chains.
- The Markovian system, which is formed by a composition of subsystems using the Kronecker sum operator for local transitions and the Kronecker product operator for synchronized transitions [1], is assumed to have irreducible subsystem matrices associated with local transitions.
- In contrast with [2], the interactions among subsystems, which are captured by synchronized transitions, are not assumed to be weak.

- Ciardo and Trivedi's decomposition approach when the submodels are nearly independent.[2]
- Iterative method of Tomek and Trivedi [3]
- Based on decomposition, product form solution, approximative.
- Interaction response is assumed to be weak.
- Bucholz's iterative decomposition and aggregation methods [4, 5]
- Both approaches produce approximate results.
- Method in [4] is adaptive, states with high probability are considered in detail, and states with low probability are aggregated.

Outline	Introduction	Contribution •••••	Conclusion	Bibliography
Background Information				
An Examp	ble Model			

- Two submodels coupled by a snychronizing transition (recovery from total failure) with rate μ
- k-th subsystem has n_k redundant components, fails with rate λ_k, locally repaired independently with rate μ_k
- *W* synchronization matrix, two nonzero elements $W(n_1n_2, 0) = \mu$, $W(n_1n_2, n_1n_2) = -\mu$

•
$$Q_{(k)} = \begin{pmatrix} -\lambda_k & \lambda_k & & \\ \mu_k & -(\lambda_k + \mu_k) & \lambda_k & \\ & \ddots & \ddots & \ddots \\ & & \mu_k & -\mu_k \end{pmatrix}, k = 1, 2$$

• $Q = Q_{(1)} \oplus Q_{(2)} + W$

Outline	Introduction	Contribution	Conclusion	Bibliography	
Background Info	rmation				
Steady State Equations					

- Let π_{ij} be the probability of the model being in state (i,j) and let π_{i(k)} submodel k being in state i, k = 1, 2.
- Steady-state balance equations in these local and global state variables can then be represented in the form of local equations for each submodel k, k = 1,2.

•
$$0 = -\lambda_k \pi_{0(k)} + \mu_k \pi_{1(k)} + \mu \pi_{n_1 n_2}$$

• $0 = -(\lambda_k + \mu_k)\pi_{i(k)} + \lambda_k \pi_{i-1(k)} + \mu_k \pi_{i+1(k)}, i = 1 : n_k - 2,$
• $0 = \lambda_k \pi_{n_{k-1}(k)} - \mu_k \pi_{n_k(k)} - \mu \pi_{n_1 n_2}$

Outline	Introduction	Contribution	Conclusion	Bibliography
Background Inforr	nation			
Exploiti	ng the local	equations		

- $\mu = 0$, independent subsystems, Kronecker product of the local solutions give the solution
- Nearly independent submodels, Kronecker product solution gives an approximate solution
- Iterative scheme of Tomek and Trivedi [3] is used to improve approximation
- The coupling variable π_{n1n2} is replaced by π_{n1(1)} * π_{n2(2)} in
 [2] (synchronization replacement)
- Refine the local solution of one submodel while holding fixed the iterative solution of other submodels.

Outline	Introduction	Contribution	Conclusion oo	Bibliography
Background Information				
Exploiting	the local equ	ations (cont.)		

- The goodness of the approximation depends on the difference μ(π_{n1n2} π_{n1(1)}π_{n2(2)})
- Idea: Calculate numerically significant deviation from the product form solution and use it with synchronizing transitions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

•
$$\pi = \pi_{(1)} \otimes \pi_{(2)} - y$$

•
$$\pi_{(k)}Q_{(k)} = v_k(\pi), k = 1...2$$

- Vectors v_k describe the global transitions
- For our small model

$$\begin{aligned} \mathbf{v}_{(1)}(\pi) &= (\mu \pi_{n_1 n_2}, \mathbf{0}, \dots, \mathbf{0}, -\mu \pi_{n_1 n_2}) \\ \mathbf{v}_{(2)}(\pi) &= (\mu \pi_{n_1 n_2}, \mathbf{0}, \dots, \mathbf{0}, -\mu \pi_{n_1 n_2}) \\ \text{with } \pi_{n_1 n_2} &= \pi_{n_1(1)} \pi_{n_2(2)} - \mathbf{y}_{n_1 n_2} \end{aligned}$$

Outline	Introduction 00	Contribution	Conclusion	Bibliography
Solution Method				
Iterative A	lgorithm			

- How to compute the global deviation? : $\pi Q = 0, \pi = \pi_{(1)} \otimes \pi_{(2)} - y$ $\Rightarrow yQ = (\pi_{(1)} \otimes \pi_{(2)})Q$
- Let Q = U L be a split of the generator matrix Q,
 U is the upper triangular portion, L has the rest

• Local state response equtions

$$\pi_{(k)}\mathcal{Q}_{(k)}=\mathbf{v}_k(\pi), k=1...K$$

- Global deviation equations $yU = yL + \bigotimes_{k=1}^{K} \pi_{(k)}Q$
- Use above equations in an iterative method.

Outline	Introduction	Contribution	Conclusion	Bibliography
Solution Method				
Iterative	e Algorithm			

- 1.Initial step: set $y^{[0]} = 0, \pi^{[0]} = 0.$
- 2.Local iteration(s): $\pi_{(k)}^{[i+1]}Q_k = v_k(\pi^{[i]}), k = 1...K$
- 3.Global iteration(s): $y^{[i+1]}U = y^{[i]}L + \bigotimes_{k=1}^{K} \pi^{[i+1]}_{(k)}Q$
- 4.Normalization and termination check: π = ⊗^K_{k=1}π^(k) − y and normalize π such that πe = 1. Exit if the current iterate meets certain prescribed termination criteria; otherwise return to step 2.

Outline	Introduction 00	Contribution ○○○○○●○○○○○○	Conclusion 00	Bibliography
Numerical Experiments				
Numerical Problems	Experiments	6		

- Experiments are performed on 3 problems which are extensions of the given simple model.
- Failure rate $\lambda_k = 0.4$ and local repair rate $\mu_k = 0.3$
- Problem A and problem B have 3 subsystems, each subsystem has 10 states. There is one global transition.
- Problem A: $(9,9,9) \rightarrow (0,0,0)$ with rate μ_a Problem B: $(3,0,0) \rightarrow (1,1,1)$ with rate μ_b
- Problem C has 4 subsystems, each subsystem has 20 states. One global transition.

(ロ) (同) (三) (三) (三) (○) (○)

Outline	Introduction	Contribution	Conclusion 00	Bibliography
Numerical Experiments				
Numerical Setting	Experiments	\$		

- Platform: Intel Core2Duo processor with 4GB main memory running Linux.
- Proposed method is compared to Power method,Gauss-Seidel, BICGSTAB and GMRES.
- For GMRES, Krylov subpace of dimension 20 is used.
- Stopping criterion: a tolerance of 10⁻¹⁰ on the norm of the residual or maximum number of iterations of 5000

Outline	Introduction 00	Contribution ○○○○○○○●○○○○○	Conclusion oo	Bibliography
Numerical Experiments				
Numerical Results	Experiments	3		

Table: ProblemA (rate == 0.1)

Method	Iterations	Residual	Cpu Time(secs)
Proposed	260	6.8e-11	6.0e-06
Power	760	7.4e-11	3.0e-06
GaussSeidel	320	9.7e-11	4.0e-06
GMRES(20)	95	1.6e-11	0.00e+0
BICGSTAB	72	4.2e-11	0.00e+0

Outline	Introduction	Contribution ○○○○○○○○●○○○○	Conclusion	Bibliography
Numerical Experiments				
Numerical Results	Experiments	5		

Table: ProblemA (rate == 1)

Method	Iterations	Residual	Cpu Time(secs)
Proposed	200	6.5e-11	4.0e-06
Power	580	8.6e-11	2.0e-06
GaussSeidel	220	3.6e-11	3.0e-06
GMRES(20)	100	1.9e-11	0.00e+0
BICGSTAB	74	3.5e-11	0.00e+0

<□ > < @ > < E > < E > E のQ @

Outline	Introduction	Contribution	Conclusion 00	Bibliography
Numerical Experiments				
Numerical Results	Experiments	3		

Table: ProblemB (rate == 0.1)

Method	Iterations	Residual	Cpu Time(secs)
Proposed	70	7.2e-11	1.0e-06
Power	840	9.8e-11	3.0e-06
GaussSeidel	340	7.5e-11	5.0e-06
GMRES(20)	99	1.6e-11	1.0e-06
BICGSTAB	80	8.5e-11	0.00e+0

Outline	Introduction	Contribution	Conclusion	Bibliography
Numerical Experiments				
Numerical Results	Experiment	S		

Table: ProblemB (rate == 1)

Method	Iterations	Residual	Cpu Time(secs)
Proposed	110	9.5e-11	2.0e-06
Power	840	9.8e-11	3.0e-06
GaussSeidel	340	7.5e-11	4.0e-06
GMRES(20)	100	9.5e-11	1.0e-06
BICGSTAB	82	9.5e-11	0.00e+0

<□ > < @ > < E > < E > E のQ @

Outline	Introduction	Contribution ○○○○○○○○○○○●○	Conclusion oo	Bibliography
Numerical Experiments				
Numerical Results	Experiments	5		

Table: ProblemC (rate == 0.1)

Method	Iterations	Residual	Cpu Time(secs)
Proposed	10	2.2e-12	3.4e-05
Power	2740	9.7e-11	1.8e-03
GaussSeidel	1080	6.6e-11	2.1e-03
GMRES(20)	800	6.6e-11	1.2e-03
BICGSTAB	164	1.4e-11	1.7e-04

Outline	Introduction 00	Contribution ○○○○○○○○○○○○	Conclusion oo	Bibliography
Numerical Experiments				
Numerica Results	Experiments	6		

Table: ProblemC (rate == 5)

Iterations	Residual	Cpu Time(secs)
10	1.8e-11	3.4e-05
5000	1.1e-08	3.4e-03
1080	9.3e-11	2.1e-03
1019	3.1e-11	1.6e-03
142	9.2e-11	1.5e-04
	Iterations 10 5000 1080 1019 142	IterationsResidual101.8e-1150001.1e-0810809.3e-1110193.1e-111429.2e-11

Outline	Introduction	Contribution 0000000000000	Conclusion ●○	Bibliography
Summary				
Conclus Summary	sion			

- An iterative method for structured Markov Chains based on decomposition is presented.
- Currently works for systems whose state space is equal the product state space of the subsystems and whose local transition matrices are irreducible. (SAN like systems or HMMs with one macrostate)
- Comparable performance against some known iterative solution methods.
- GMRES and BICGSTAB perform better in most of the cases but they require more memory.

(ロ) (同) (三) (三) (三) (○) (○)

Outline	Introduction	Contribution	Conclusion ○●	Bibliography
Future Work				
Conclusio	on			

- A thorough comparison of the solution method to state of the art iterative solvers on other problems.
- Handle the case of reducible subsystems.
- Extend the solution method to multiple macrostates if possible.
- Identify for which kinds of problems the method is superior to other methods.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline	Introduction	Contribution	Conclusion	Bibliography
	Tugrul Dayar. Ana products. <i>MAM 20</i> <i>N. Langville, W. J.</i>	lyzing Markov chain 006: Markov Annive Stewart, Boson Bo	ns based on Kr rsary Meeting, poks, Raleigh, i	onecker Eds. A. North
	Carolina, USA, 20)06, pp. 279–300.		

- G.Ciardo and K.S.Trivedi. A decomposition approach for stochastic reward net models. *Performance Evaluation*, 18:37-59, 1993
- L.A.Tomek and K.S.Trivedi. Fixed point iteration in availability modelling. *Proceedings of the 5th International GI/ITG/GMA Conference on Fault-Tolerant Computing Systems, pages 229-240, 1991*
- Peter Buchholz. Adaptive Decomposition and Approximation For The Analysis of Stochastic Petri Nets Performance Evaluation, 56:23-52, 2004

Outline	Introduction	Contribution	Conclusion 00	Bibliography
	Peter Buchholz. Itera of Labeled GSPNs In Application and Theo 226-245, 1998	tive Decompositi International Conf Pry of Petri Nets	ion and Aggre ference on the 1998, LNCS 1	gation ? 1420:

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶