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Department of Computer Engineering, Bilkent University,
e-mail: {bozkurti,tugrul}@cs.bilkent.edu.tr
Xiaobai Sun
Department of Computer Science
Duke University,
e-mail: xiaobai@cs.duke.edu
Kishor S. Trivedi
Department of Electrical and Computer Engineering
Duke University,
e-mail: kst@ee.duke.edu



Outline Introduction Contribution Conclusion Bibliography

1 Introduction
Introduction and Related Work

2 Contribution
Background Information
Solution Method
Numerical Experiments

3 Conclusion
Summary
Future Work

4 Bibliography



Outline Introduction Contribution Conclusion Bibliography

Introduction and Related Work

Introduction

A decompositional iterative method for the steady-state
analysis of Kronecker structured Markov chains.
The Markovian system, which is formed by a composition
of subsystems using the Kronecker sum operator for local
transitions and the Kronecker product operator for
synchronized transitions [1], is assumed to have irreducible
subsystem matrices associated with local transitions.
In contrast with [2], the interactions among subsystems,
which are captured by synchronized transitions, are not
assumed to be weak.
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Introduction and Related Work

Related Work

Ciardo and Trivedi’s decomposition approach when the
submodels are nearly independent.[2]
Iterative method of Tomek and Trivedi [3]
Based on decomposition, product form solution,
approximative.
Interaction response is assumed to be weak.
Bucholz’s iterative decomposition and aggregation
methods [4, 5]
Both approaches produce approximate results.
Method in [4] is adaptive, states with high probability are
considered in detail, and states with low probability are
aggregated.
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Background Information

An Example Model

Two submodels coupled by a snychronizing transition
(recovery from total failure) with rate µ
k-th subsystem has nk redundant components, fails with
rate λk , locally repaired independently with rate µk

W synchronization matrix, two nonzero elements
W (n1n2,0) = µ,W (n1n2,n1n2) = −µ

Q(k) =


−λk λk
µk −(λk + µk ) λk

. . . . . . . . .
µk −µk

, k = 1,2

Q = Q(1) ⊕Q(2) + W
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Background Information

Steady State Equations

Let πij be the probability of the model being in state (i,j) and
let πi(k) submodel k being in state i , k = 1,2.
Steady-state balance equations in these local and global
state variables can then be represented in the form of local
equations for each submodel k, k = 1,2.
0 = −λkπ0(k) + µkπ1(k) + µπn1n2

0 = −(λk + µk )πi(k) + λkπi−1(k) + µkπi+1(k), i = 1 : nk − 2,
0 = λkπnk−1(k) − µkπnk (k) − µπn1n2
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Background Information

Exploiting the local equations

µ = 0, independent subsystems, Kronecker product of the
local solutions give the solution
Nearly independent submodels, Kronecker product
solution gives an approximate solution
Iterative scheme of Tomek and Trivedi [3] is used to
improve approximation
The coupling variable πn1n2 is replaced by πn1(1) ∗ πn2(2) in
[2] (synchronization replacement)
Refine the local solution of one submodel while holding
fixed the iterative solution of other submodels.
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Exploiting the local equations (cont.)

The goodness of the approximation depends on the
difference µ(πn1n2 − πn1(1)πn2(2))

Idea: Calculate numerically significant deviation from the
product form solution and use it with synchronizing
transitions.
π = π(1) ⊗ π(2) − y
π(k)Q(k) = vk (π), k = 1...2
Vectors vk describe the global transitions
For our small model
v(1)(π) = (µπn1n2 ,0, . . . ,0,−µπn1n2)
v(2)(π) = (µπn1n2 ,0, . . . ,0,−µπn1n2)
with πn1n2 = πn1(1)πn2(2) − yn1n2
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Solution Method

Iterative Algorithm

How to compute the global deviation? :
πQ = 0, π = π(1) ⊗ π(2) − y
⇒yQ = (π(1) ⊗ π(2))Q
Let Q = U − L be a split of the generator matrix Q,
U is the upper triangular portion, L has the rest
Local state response equtions
π(k)Q(k) = vk (π), k = 1...K
Global deviation equations
yU = yL +⊗K

k=1π(k)Q
Use above equations in an iterative method.
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Solution Method

Iterative Algorithm

1.Initial step: set y [0] = 0, π[0] = 0.

2.Local iteration(s): π[i+1]
(k) Qk = vk (π[i]), k = 1...K

3.Global iteration(s): y [i+1]U = y [i]L +⊗K
k=1π

[i+1]
(k) Q

4.Normalization and termination check:
π = ⊗K

k=1π
(k) − y and normalize π such that πe = 1.

Exit if the current iterate meets certain prescribed
termination criteria; otherwise return to step 2.
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Numerical Experiments

Numerical Experiments
Problems

Experiments are performed on 3 problems which are
extensions of the given simple model.
Failure rate λk = 0.4 and local repair rate µk = 0.3
Problem A and problem B have 3 subsystems, each
subsystem has 10 states. There is one global transition.
Problem A: (9,9,9)→ (0,0,0) with rate µa
Problem B: (3,0,0)→ (1,1,1) with rate µb

Problem C has 4 subsystems, each subsystem has 20
states. One global transition.
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Numerical Experiments

Numerical Experiments
Setting

Platform: Intel Core2Duo processor with 4GB main
memory running Linux.
Proposed method is compared to Power
method,Gauss-Seidel, BICGSTAB and GMRES.
For GMRES, Krylov subpace of dimension 20 is used.
Stopping criterion: a tolerance of 10−10 on the norm of the
residual or maximum number of iterations of 5000
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Numerical Experiments

Numerical Experiments
Results

Table: ProblemA (rate == 0.1)

Method Iterations Residual Cpu Time(secs)
Proposed 260 6.8e-11 6.0e-06
Power 760 7.4e-11 3.0e-06
GaussSeidel 320 9.7e-11 4.0e-06
GMRES(20) 95 1.6e-11 0.00e+0
BICGSTAB 72 4.2e-11 0.00e+0
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Numerical Experiments

Numerical Experiments
Results

Table: ProblemA (rate == 1)

Method Iterations Residual Cpu Time(secs)
Proposed 200 6.5e-11 4.0e-06
Power 580 8.6e-11 2.0e-06
GaussSeidel 220 3.6e-11 3.0e-06
GMRES(20) 100 1.9e-11 0.00e+0
BICGSTAB 74 3.5e-11 0.00e+0
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Numerical Experiments

Numerical Experiments
Results

Table: ProblemB (rate == 0.1)

Method Iterations Residual Cpu Time(secs)
Proposed 70 7.2e-11 1.0e-06
Power 840 9.8e-11 3.0e-06
GaussSeidel 340 7.5e-11 5.0e-06
GMRES(20) 99 1.6e-11 1.0e-06
BICGSTAB 80 8.5e-11 0.00e+0
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Numerical Experiments

Numerical Experiments
Results

Table: ProblemB (rate == 1)

Method Iterations Residual Cpu Time(secs)
Proposed 110 9.5e-11 2.0e-06
Power 840 9.8e-11 3.0e-06
GaussSeidel 340 7.5e-11 4.0e-06
GMRES(20) 100 9.5e-11 1.0e-06
BICGSTAB 82 9.5e-11 0.00e+0
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Numerical Experiments

Numerical Experiments
Results

Table: ProblemC (rate == 0.1)

Method Iterations Residual Cpu Time(secs)
Proposed 10 2.2e-12 3.4e-05
Power 2740 9.7e-11 1.8e-03
GaussSeidel 1080 6.6e-11 2.1e-03
GMRES(20) 800 6.6e-11 1.2e-03
BICGSTAB 164 1.4e-11 1.7e-04
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Numerical Experiments

Numerical Experiments
Results

Table: ProblemC (rate == 5)

Method Iterations Residual Cpu Time(secs)
Proposed 10 1.8e-11 3.4e-05
Power 5000 1.1e-08 3.4e-03
GaussSeidel 1080 9.3e-11 2.1e-03
GMRES(20) 1019 3.1e-11 1.6e-03
BICGSTAB 142 9.2e-11 1.5e-04
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Conclusion
Summary

An iterative method for structured Markov Chains based on
decomposition is presented.
Currently works for systems whose state space is equal
the product state space of the subsystems and whose
local transition matrices are irreducible.
(SAN like systems or HMMs with one macrostate)
Comparable performance against some known iterative
solution methods.
GMRES and BICGSTAB perform better in most of the
cases but they require more memory.
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Future Work

Conclusion
Future Work

A thorough comparison of the solution method to state of
the art iterative solvers on other problems.
Handle the case of reducible subsystems.
Extend the solution method to multiple macrostates if
possible.
Identify for which kinds of problems the method is superior
to other methods.
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