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We want to solve the eigenvalue problem

GX(R) = X(R)Λ

We seek, first and foremost, an eigensolver that minimizes the
amount of memory required to solve the problem.

For symmetric matrices the Lanczos algorithm without
re-orthogonalization is a good choice.

only two vectors are stored in memory



Eigensolvers for unsymmetric matrices

For unsymmetric matrices the established methods are :

variants of the Arnoldi algorithm

the unsymmetric (or two-sided) Lanczos algorithm (ULA)

In this talk I present a method that in some sense is better
than both.



What are the deficiencies of Arnoldi ?

It requires storing many vectors in memory. Every Arnoldi
vector is orthogonalized against all of the previous computed
Arnoldi vectors.

The CPU cost of the orthogonalization also increases with the
number of iterations.

These problems are to some extent mitigated by using the
implicitly restarted Arnoldi (IRA) technique (ARPACK).
Nevertheless, for large matrices it is not possible to use
ARPACK on a computer that does not have a lot of memory.
ARPACK is best if one wants extremal eigenvalues.



What are the deficiencies of the ULA ?

In its primitive form it seldom yields accurate eigenvalues.

Re-biorthogonalization improves the accuracy but negates the
method’s memory advantage.



The new method (RULE) in a nutshell

No re-biorthogonalization of the Lanczos vectors ; regardless
of the number of required iterations only 4 Lanczos vectors
are stored in memory

The method may be used to compute either extremal or
interior eigenvalues

We use approximate right and left eigenvectors obtained from
the ULA to build a projected matrix which we diagonalize



The take-home message

The RULE makes it possible to extract accurate eigenvalues
from large Krylov spaces.

It is a good alternative to ARPACK

if the matrix for which eigenvalues are desired is so large that
the memory ARPACK requires exceeds that of the computer
if one wishes interior eigenvalues.



The ULA

Two sets of Lanczos vectors are obtained from two three-term
recurrence relations,

GVm = VmTm + ρm+1vm+1e∗m
G∗Wm = WmT ∗m + γ∗m+1wm+1e∗m ,

δk = w∗kvk = 1



The scalars αk , ρk , and γk are elements of the tridiagonal matrix
Tm = W∗

mGVm,

Tm =


α1 γ2

ρ2 α2 γ3

ρ3 α3
. . .

. . .
. . . γm

ρm αm

 .

Eigenvalues of the matrix Tm are computed by solving

TmZ = ZΘm .



The ULA does not work !

Roundoff errors lead to loss of biorthogonality of the Lanczos
vectors.
→ near but poor copies

it is not possible to find a Krylov subspace size m for which an
eigenvalue of the matrix Tm accurately approximates an
eigenvalue of the matrix G

for each nearly converged eigenvalue of the matrix G there is
a cluster of closely spaced eigenvalues of Tm, but the norm of
differences between eigenvalues in the cluster may be so large
that it is difficult to identify the cluster and impossible to
determine an accurate value for the eigenvalue

the width of the clusters increases with m
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What is the RULE ?

Using the ULA, compute an unsymmetric tridiagonal matrix
Tm for a large value of m.

Transform Tm to obtain a complex symmetric tridiagonal
matrix with the same eigenvalues

Compute eigenvalues of Tm

Form clusters of eigenvalues of Tm. Two eigenvalues are in
the same cluster if

|θk − θj | ≤ η max(|θk |, |θj |) ,

where η is a user defined tolerance.
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Identify and remove one-eigenvalue clusters that are spurious

For each non-spurious cluster compute an average eigenvalue

Use these average eigenvalues as shifts with inverse iteration
to determine approximate right and left eigenvectors of the
matrix Tm ;
zj
r and zj

l are the right and left eigenvectors of Tm

Determine approximate left and right eigenvectors of the
matrix G by reading Lanczos vectors vk and wk from disk and
combining them according to

rj =
m∑

k=1

zj
r (k)vk , lj =

m∑
k=1

zj
l (k)wk ,

where zj
r (k) (zj

l (k)) is the kth component of zj
r (zj

l ).



To solve

GX(R) = X(R)Λ ,

replace
X(R) ' X̂(R) = RkY(R) .

This yields,
GRkY(R) = RkY(R)Λ̃ ,

Solve the generalized eigenvalue problem,

GkY(R) = SkY(R)Λ̃ ,

where Gk = L∗kGRk and Sk = L∗kRk .

Eigenvalues are computed in groups



How do we choose m ?

Increasing m does degrade the approximate eigenvectors so there is
no need to carefully search for the best m. We choose a large value
of m, generate Lanczos vectors, and compute Gk . We compare the
eigenvalues determined with those computed with a larger value of
m and increase m if necessary.



How do we choose η ?

If η is too small :

Several rj and lj vectors are nearly parallel.

This occurs if several of the clusters contain eigenvalues of the
matrix Tm associated with one exact eigenvalue of the matrix G.

To minimize the near linear dependance of the vectors rj and lj and

to reduce the number of the {zj
r , z

j
l} pairs, we retain only pairs for

which Ritz values obtained from inverse iteration differ by more
than η max(|θmj

j |, |θ
mk
k |).
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How do we choose η ?

If η is too large :

Eigenvalues of the matrix Tm associated with two or more exact
eigenvalues will be lumped into a single cluster and one will miss
eigenvalues.
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One could actually use the RULE with η = 0 (i.e. cluster width of
zero).

This would increase the number of {zj
r , z

j
l} pairs to compute and

make the calculation more costly.

We put η equal to be the square root of the machine precision.



Numerical experiments

TOLOSA matrices from the matrix market.

The largest matrix is 2000 × 2000.

The eigenvalues of interest are the three with the largest imaginary
parts.



Distribution of eigenvalues of the TOLOSA2000 matrix



Error in extremal eigenvalues of the TOLOSA2000 matrix

Eigenvalue ULA∗ RULE∗∗ ARPACK† |x∗(L)x(R)|
−723.2940− 2319.859i 5.4E-05 6.3E-07 2.5E-09 7.8574E-04
−723.2940 + 2319.859i 5.4E-05 6.3E-07 2.5E-09 7.8574E-04
−726.9866− 2324.992i 4.8E-06 8.8E-11 1.4E-07 7.8360E-04
−726.9866 + 2324.992i 4.8E-06 8.5E-11 1.4E-07 7.8360E-04
−730.6886− 2330.120i 6.7E-07 1.2E-11 4.6E-08 7.8148E-04
−730.6886 + 2330.120i 6.7E-07 1.2E-11 4.6E-08 7.8148E-04

∗ 170 Lanczos iterations ; 340 matrix-vector products
∗∗ 170 Lanczos iterations ; 346 matrix-vector products
† ARPACK parameters : k = 6, p=300, 2 restarts, 888

matrix-vector products



A larger matrix - The AIRFOIL matrix

It is 23’560 × 23’560.

We focus on the eigenvalues of largest magnitude.



Distribution of eigenvalues of the Airfoil-23’560 matrix



Error in extremal eigenvalues of the Airfoil-23’560 matrix

Eigenvalue ULA∗ RULE∗∗ ARPACK† RULE Residual |x∗(L)x(R)|
−37.18288 + 200.1360i 1.1E-08 7.1E-13 2.3E-07 3.3E-08 0.21239
−37.18288− 200.1360i 1.1E-08 4.3E-13 2.3E-07 3.5E-08 0.21239
−37.14444 + 200.2190i 3.8E-09 7.4E-13 4.8E-07 1.1E-07 0.21716
−37.14444− 200.2190i 3.8E-09 5.8E-13 4.8E-07 9.1E-08 0.21716
−42.81924 + 200.1356i 7.5E-08 1.1E-12 1.9E-07 1.2E-07 0.21236
−42.81924− 200.1356i 7.5E-08 7.0E-13 1.9E-07 7.0E-08 0.21236
−42.85767 + 200.2186i 9.0E-08 9.5E-13 3.5E-07 8.3E-08 0.21713
−42.85767− 200.2186i 9.0E-08 5.5E-13 3.5E-07 8.9E-08 0.21713
−40.00075 + 225.7328i 1.2E-08 6.5E-13 8.6E-07 4.7E-08 0.26668
−40.00075− 225.7328i 1.2E-08 3.7E-13 8.6E-07 2.2E-08 0.26668
−40.00074 + 225.7714i 3.4E-09 7.4E-13 8.4E-07 2.9E-08 0.26530
−40.00074− 225.7714i 3.3E-09 1.1E-12 8.4E-07 2.8E-08 0.26530
−40.00010 + 229.5187i 1.1E-08 3.1E-13 6.2E-07 3.9E-08 0.22165
−40.00010− 229.5187i 1.1E-08 1.1E-13 6.2E-07 3.3E-08 0.22165
−40.00095 + 229.5291i 1.2E-08 5.7E-13 8.0E-07 7.7E-08 0.22236
−40.00095− 229.5291i 1.2E-08 1.5E-13 8.0E-07 2.9E-08 0.22236
−40.00045 + 259.5435i 1.2E-10 1.0E-12 4.8E-07 2.2E-07 0.41406
−40.00045− 259.5435i 1.4E-10 7.6E-13 4.8E-07 8.7E-08 0.41406
−40.00041 + 259.5534i 9.0E-11 6.9E-13 1.6E-06 1.9E-07 0.41406
−40.00041− 259.5534i 1.6E-10 4.1E-13 1.6E-06 6.2E-08 0.41406

∗ 125 Lanczos iterations ; 250 matrix-vector products
∗∗ 125 Lanczos iterations ; 270 matrix-vector products
† ARPACK parameters : k = 20, p=50, 6 restarts, 172

matrix-vector products



∗ 125 Lanczos iterations ; 250 matrix-vector products
∗∗ 125 Lanczos iterations ; 270 matrix-vector products
† ARPACK parameters : k = 20, p=50, 6 restarts, 172
matrix-vector products



Interior eigenalues - The PDE matrix

Obtained from matrix market.

It is 2961 × 2961.



Distribution of eigenvalues of the PDE-2961 matrix

The approximate eigenvectors we use are those whose
corresponding eigenvalues lie in a rectangular box of width 0.5 and
height 0.1i centered at a target value of 8.3 + 0.35i .



Interior eigenvalues of the PDE-2961 matrix

The chosen target is 8.3 + 0.35i .

Refined eigenvalue ULA∗ RULE∗∗ |x∗(L)x(R)|
7.831661 + 0.3970848i 7.4E-09 2.4E-12 3.0064E-02
7.928410 + 0.2564949i 3.3E-07 3.0E-11 2.0611E-03
8.130354 + 0.4211668i 1.0E-08 6.3E-14 5.3381E-02
8.240396 + 0.2678090i 3.8E-08 3.0E-13 3.8846E-03
8.465128 + 0.4423992i 2.7E-09 1.4E-14 8.1620E-02
8.600357 + 0.2746980i 9.4E-08 1.1E-13 6.3615E-03
∗ 450 Lanczos iterations ; 900 matrix-vector products
∗∗ 450 Lanczos iterations ; 906 matrix-vector products



Interior eigenvalues of a 184’000 × 184’000 matrix used to
compute lifetimes of metastable states of HCO

Refined eigenvalue RULE Residual |x∗(L)x(R)|
0.000000000001608 + 99.63317i 4.3E-09 2.007E-02
0.000000000423172 + 94.06122i 4.3E-09 2.126E-02
−0.000000000030880 + 89.78747i 2.0E-07 2.227E-02

0.000000000017839 + 88.24727i 7.6E-08 2.266E-02
0.000000000000180 + 86.54286i 1.3E-08 2.311E-02
0.000000000000180 + 86.54286i 1.9E-09 2.392E-02
0.000000000013164 + 82.15547i 1.9E-07 2.434E-02
−0.000000000000079 + 80.30376i 1.6E-08 2.490E-02
−0.000000000003208 + 78.87198i 2.0E-08 2.535E-02

0.000000000002248 + 77.02845i 8.2E-09 2.596E-02
−0.000000000000226 + 75.73480i 2.5E-09 2.640E-02
−0.000000000000173 + 75.02610i 9.3E-09 2.665E-02
−0.000000000046711 + 73.83727i 3.4E-08 2.708E-02
−0.000000000044467 + 73.27523i 1.8E-08 2.729E-02

0.000000000000506 + 71.77733i 3.2E-09 2.786E-02
−0.000000000001369 + 70.00861i 2.3E-09 2.856E-02
−0.001503206670272 + 69.62269i 1.2E-08 2.872E-02
−0.001616758817681 + 69.28458i 1.1E-07 2.886E-02
−0.001799287965362 + 68.97843i 7.1E-07 2.899E-02

0.000000192654410 + 68.91187i 1.1E-06 2.902E-02
−0.001958836517186 + 68.69687i 4.1E-06 2.910E-02

Number of unsymmetric Lanczos iterations : 3000



Conclusion

A simple refinement (the RULE) makes it possible to extract
accurate eigenvalues from the Krylov subspaces obtained from
the ULA.

The RULE makes it possible to use large Krylov subspaces
without storing a large number of vectors in memory and
re-biorthogonalizing Lanczos vectors.

It can therefore be used to compute many eigenvalues of very
large matrices.

The refinement is inexpensive. Eigenvalues are computed in
groups of about 20. For each group of 20 the cost of the
refinement is only 20 additional matrix-vector products.



This work has been supported by the
Natural Sciences and Engineering
Research Council of Canada


