Preconditioning for Bound Constrained Quadratic Programming Problems Arising from Discretization of Variational Inequalities

Marta Domorádová and Zdeněk Dostál

Department of Applied Mathematics VŠB-Technical University of Ostrava

Supported by GA CR 201/07/0294, AS CR 1ET400300415 and MSM6198910027.

Computational Methods with Applications August 19-25, 2007, HARRACHOV

Outline

- 1. Introduction and Motivation
- 2. Quadratic Programming
- 3. Conjugate Projector
- 4. Preconditioning by Conjugate Projector
- 5. Numerical Experiments
- 6. Summary and Conclusions

Motivation

FETI-DP Domain Decomposition

To improve rate of convergence for variational inequalities (FETI-DP, BETI-DP, ...).

Partially Bound Constrained QP Problem

Find

$$\min_{\mathbf{x}\in\Omega} f(\mathbf{x}), \quad \Omega = {\mathbf{x}\in\mathbb{R}^n: \ \mathbf{x}_{\mathcal{I}} \geq \ell_{\mathcal{I}}}, \quad \mathcal{I} = {1,\ldots,m},$$

where

- $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} \mathbf{x}^T \mathbf{b},$
- ▶ ℓ and b are given column n-vectors,
- ▶ $1 \le m \ll n$,
- ▶ and **A** is an $n \times n$ spd matrix.

MPRGP - Proportioning

 \mathbf{x}^k strictly proportional $||\beta(\mathbf{x}^k)||^2 \leq \Gamma^2 \widetilde{\varphi}(\mathbf{x}^k)^T \varphi(\mathbf{x}^k)$

MPRGP - Proportional Iterations

Feasible CG step

Projection step: expansion of the active set

 Ω $\beta(x^{k}) - g(x^{k})$ $x^{k} \qquad 1 \qquad x^{k+1}$ $-\varphi(x^{k}) \qquad \Gamma$

Modified Proportioning with Reduced Gradient Projections - MPRGP

```
if \mathbf{x}^k is strictly proportional
    {trial conjugate gradient step}
    if \mathbf{x}^{k+1} is feasible
       accept \mathbf{x}^{k+1}
    else
        {expansion step}
       \mathbf{x}^{k+1} = P_{\Omega}(\mathbf{x}^k - \overline{\alpha}\varphi(\mathbf{x}^k))
    end
else
    {proportioning step}
     minimization in direction -\beta(x^k)
end
```

MPRGP Algorithm

Rate of Convergence

THEOREM

 $\lambda_{min} = min \text{ eigenvalue of } \mathbf{A}, \, \Gamma > 0, \, \hat{\Gamma} = max\{\Gamma, \Gamma^{-1}\}$

R-linear rate of convergence in energy norm

$$\|\mathbf{x}^k - \widehat{\mathbf{x}}\|_{\mathbf{A}}^2 \leq 2\eta \left(f(\mathbf{x}^0) - f(\widehat{\mathbf{x}})\right),$$

where

$$\eta = 1 - rac{\overline{lpha}\lambda_{\mathsf{min}}}{2 + 2\widehat{\Gamma}^2}.$$

Dostál and Schöberl, Computational Optimization and Applications, 2005

Conjugate Projectors

P is an A-conjugate projector

$$\text{if Im} \mathbf{P} \perp_{\mathbf{A}} \mathsf{Ker} \mathbf{P} \Longleftrightarrow \mathbf{P}^T \mathbf{A} (\mathbf{I} - \mathbf{P}) = \mathbf{P}^T \mathbf{A} - \mathbf{P}^T \mathbf{A} \mathbf{P} = \mathbf{O}$$

- ▶ Q = I P is also a conjugate projector
- $ightharpoonup \mathbf{P}^T \mathbf{A} = \mathbf{A} \mathbf{P} = \mathbf{P}^T \mathbf{A} \mathbf{P}$ and $\mathbf{Q}^T \mathbf{A} = \mathbf{A} \mathbf{Q} = \mathbf{Q}^T \mathbf{A} \mathbf{Q}$.

Conjugate Projectors

 $\mathcal{U} = \mathsf{subspace} \; \mathsf{spanned} \; \mathsf{by} \; \mathsf{columns} \; \mathsf{of} \; \mathsf{full} \; \mathsf{rank} \; \mathsf{matrix} \; \mathbf{U} \in \mathbb{R}^{n imes p}$

$$\mathbf{U} = \left[egin{array}{c} \mathbf{O} \\ \mathbf{U}_2 \end{array}
ight], \quad \mathbf{U}_2 \in \mathbb{R}^{n-m imes p}$$

- $ightharpoonup \mathbf{P} = \mathbf{U}(\mathbf{U}^T \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^T \mathbf{A}$ onto \mathcal{U}
- $ightharpoonup \mathbf{Q} = \mathbf{I} \mathbf{P}$ onto \mathcal{V}

Invariant Subspace

$$\mathcal{V} = \operatorname{Im} \mathbf{Q}$$
. For all $\mathbf{x} \in \mathbf{A}\mathcal{V}$
$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{x} = \mathbf{A} \mathbf{Q} \mathbf{x}$$

$$\downarrow \downarrow$$

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} (\mathbf{A} \mathcal{V}) \subseteq \mathbf{A} \mathcal{V}.$$
 $\Rightarrow \quad \mathbf{A} \mathcal{V} = \textit{invariant subspace of } \mathbf{Q}^T \mathbf{A} \mathbf{Q}.$

Invariant Subspace

Q= conjugate projector on $\mathcal{V}.$ Then for any $\textbf{x}\in \textbf{A}\mathcal{V}$

$$\|\mathbf{Q}\mathbf{x}\| \ge \|\mathbf{x}\|$$
 and $\mathcal{V} = \mathbf{Q}(\mathbf{A}\mathcal{V})$.

Domorádová and Dostál, Numerical linear Algebra with Applications, 2007

Proof

▶ Let $\mathbf{x} \in \mathbf{A}\mathcal{V}$, so that $\exists \ \mathbf{y} \in \mathbb{R}^n : \mathbf{x} = \mathbf{AQy}$

$$\Rightarrow \mathbf{Q}^T \mathbf{x} = \mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{y} = \mathbf{A} \mathbf{Q} \mathbf{y} = \mathbf{x}$$

▶ and $\mathbf{x}^T \mathbf{Q} \mathbf{x} = \mathbf{x}^T \mathbf{Q}^T \mathbf{x} = ||\mathbf{x}||^2$, so that

$$\begin{aligned} \|\mathbf{Q}\mathbf{x}\|^2 &= \mathbf{x}^T \mathbf{Q}^T \mathbf{Q}\mathbf{x} = \mathbf{x}^T \left((\mathbf{Q}^T - \mathbf{I}) + \mathbf{I} \right) \left((\mathbf{Q}^T - \mathbf{I}) + \mathbf{I} \right) \mathbf{x} \\ &= \|(\mathbf{Q} - \mathbf{I})\mathbf{x}\|^2 + \|\mathbf{x}\|^2 \ge \|\mathbf{x}\|^2. \end{aligned}$$

- \triangleright $\mathcal{V} = \operatorname{Im} \mathbf{Q}$, so that $\mathcal{V} = \mathbf{Q}(\mathbb{R}^n) \supseteq \mathbf{Q}(\mathbf{A}\mathcal{V})$
 - ▶ A is nonsingular and mapping $AV \ni x \rightarrow Qx$ is injective
 - ▶ dimension argument $\Rightarrow \mathbf{Q}(\mathbb{R}^n) = \mathbf{Q}(\mathbf{A}\mathcal{V})$

Proof

▶ Let $\mathbf{x} \in \mathbf{A}\mathcal{V}$, so that $\exists \ \mathbf{y} \in \mathbb{R}^n : \mathbf{x} = \mathbf{AQy}$

$$\Rightarrow \mathbf{Q}^T \mathbf{x} = \mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{y} = \mathbf{A} \mathbf{Q} \mathbf{y} = \mathbf{x}$$

• and $\mathbf{x}^T \mathbf{Q} \mathbf{x} = \mathbf{x}^T \mathbf{Q}^T \mathbf{x} = \|\mathbf{x}\|^2$, so that

$$\begin{aligned} \|\mathbf{Q}\mathbf{x}\|^2 &= \mathbf{x}^T \mathbf{Q}^T \mathbf{Q}\mathbf{x} = \mathbf{x}^T \left((\mathbf{Q}^T - \mathbf{I}) + \mathbf{I} \right) \left((\mathbf{Q}^T - \mathbf{I}) + \mathbf{I} \right) \mathbf{x} \\ &= \|(\mathbf{Q} - \mathbf{I})\mathbf{x}\|^2 + \|\mathbf{x}\|^2 \ge \|\mathbf{x}\|^2. \end{aligned}$$

- $ightharpoonup \mathcal{V} = \operatorname{Im} \mathbf{Q}$, so that $\mathcal{V} = \mathbf{Q}(\mathbb{R}^n) \supseteq \mathbf{Q}(\mathbf{A}\mathcal{V})$
 - ▶ A is nonsingular and mapping $AV \ni x \rightarrow Qx$ is injective
 - ▶ dimension argument \Rightarrow $\mathbf{Q}(\mathbb{R}^n) = \mathbf{Q}(\mathbf{A}\mathcal{V})$

Projector defined by traces of linear functions on coarse grid

Projector defined by aggregations

Projector for FETI-DP

Preconditioning by Conjugate Projector

Decomposition by means of projectors

- $ightharpoonup \mathbf{P} = \mathbf{U}(\mathbf{U}^T \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^T \mathbf{A}$ onto \mathcal{U}
- ▶ $\mathbf{Q} = \mathbf{I} \mathbf{P}$ onto $\mathcal{V} = \text{Im}\mathbf{Q}$

$$\begin{aligned} \min_{\mathbf{x} \in \Omega} f(\mathbf{x}) &= \min_{\substack{\mathbf{y} \in \mathcal{U}, \mathbf{z} \in \mathcal{V} \\ \mathbf{y} + \mathbf{z} \in \Omega}} f(\mathbf{y} + \mathbf{z}) = \min_{\mathbf{y} \in \mathcal{U}} f(\mathbf{y}) + \min_{\mathbf{z} \in \mathcal{V} \cap \Omega} f(\mathbf{z}) \\ &= f(\mathbf{x}^0) + \min_{\substack{\mathbf{z} \in \mathcal{V} \cap \Omega \\ \mathbf{z}_T \ge \ell_T}} f(\mathbf{z}) \\ &= f(\mathbf{x}^0) + \min_{\substack{\mathbf{z} \in \mathcal{A} \mathcal{V} \\ \mathbf{z}_T \ge \ell_T}} \frac{1}{2} \mathbf{z}^T \mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{z} - \mathbf{b}^T \mathbf{Q} \mathbf{z} \end{aligned}$$

Domorádová and Dostál, Numerical linear Algebra with Applications, 2007

Minimization over \mathcal{U}

$$\mathbf{U} \in \mathbb{R}^{n \times p}, \, \mathbf{P} = \mathbf{U}(\mathbf{U}^T \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^T \mathbf{A}$$

$$\min_{\mathbf{x} \in \mathcal{U}} f(\mathbf{x}) = \min_{\mathbf{y} \in \mathbb{R}^p} f(\mathbf{U}\mathbf{y}) = \min_{\mathbf{y} \in \mathbb{R}^p} \frac{1}{2} \mathbf{y}^T \mathbf{U}^T \mathbf{A} \mathbf{U} \mathbf{y} - \mathbf{b}^T \mathbf{U} \mathbf{y}$$

by the gradient argument

$$\mathbf{U}^T \mathbf{A} \mathbf{U} \mathbf{y} = \mathbf{U}^T \mathbf{b}.$$

Then minimizer $\mathbf{x}^0 = \mathbf{U}\mathbf{y}^0$ of f over \mathcal{U} is defined by

$$\mathbf{x}^0 = \underbrace{\mathbf{U}(\mathbf{U}^T\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^T}_{\mathbf{P}\mathbf{A}^{-1}}\mathbf{b} = \mathbf{P}\mathbf{A}^{-1}\mathbf{b}.$$

Observation

$$\mathbf{P}^{\mathsf{T}}\mathbf{A} = \mathbf{A}\mathbf{P} \Rightarrow \mathbf{P}^{\mathsf{T}} = \mathbf{A}\mathbf{P}\mathbf{A}^{-1}$$

$$\mathbf{g}^0 = \mathbf{A}\mathbf{x}^0 - \mathbf{b} = \mathbf{A}\underbrace{\mathbf{P}\mathbf{A}^{-1}\mathbf{b}}_{x^0} - \mathbf{b} = (\mathbf{A}\mathbf{P}\mathbf{A}^{-1} - \mathbf{I})\mathbf{b}$$

$$= (\mathbf{P}^T - \mathbf{I})\mathbf{b} = -\mathbf{Q}^T\mathbf{b} \Rightarrow \mathbf{g}^0 \in \mathrm{Im}\mathbf{Q}^T$$

Lemma

Let $\mathbf{z}^1, \mathbf{z}^2, \dots$ be generated by the MPRGP algorithm for the problem

$$\min_{\boldsymbol{z}_{\mathcal{I}} \geq \ell_{\mathcal{I}}} \frac{1}{2} \boldsymbol{z}^{T} \boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q} \boldsymbol{z} + \left(\boldsymbol{g}^{0}\right)^{T} \boldsymbol{z}$$

starting from $\mathbf{z}^{0}=P_{\Omega}\left(\mathbf{g}^{0}\right)$.

Then
$$\mathbf{z}^{k} \in \mathbf{A}\mathcal{V}, \ k = 0, 1, 2,$$

 \Rightarrow **A** $\mathcal V$ is invariant subspace of P_{Ω}

Preconditioning Effect

- ▶ $\lambda_{max} \ge \cdots \ge \lambda_{min}$ the eigenvalues of **A**
- $\mathcal{E} = p$ -dimensional subspace spanned by the eigenvectors corresponding to the p smallest eigenvalues of \mathbf{A}
- $ar{\gamma} = \|\mathbf{R}_{\mathbf{A}\mathcal{U}} \mathbf{R}_{\mathcal{E}}\| \dots$ gap between $\mathbf{A}\mathcal{U}$ and \mathcal{E}

$$\overline{\lambda}_{\textit{min}} \geq \sqrt{(1-\overline{\gamma}^2)\lambda_{\textit{min}-\textit{m}}^2 + \overline{\gamma}^2\lambda_{\textit{min}}^2}$$

 $\overline{\lambda}_{min}$ = min eigenvalue of $(\mathbf{Q}^T \mathbf{A} \mathbf{Q} | \mathbf{A} \mathcal{V})$

Dostál, International Journal of Computer Mathematics, 1988

Rate of Convergence of Reduced Problem

$$\begin{split} \hat{\mathbf{z}} &= \text{unique solution, } \mathbf{g}^0 = -\mathbf{Q}^T \mathbf{b} \\ &\underset{\mathbf{z}_T \geq \ell_T}{\min} \ \underbrace{\frac{1}{2} \mathbf{z}^T \mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{z} + \left(\mathbf{g}^0\right)^T \mathbf{z}}_{f_{0,\mathbf{Q}}} \end{split}$$

$$f_{0,\mathbf{Q}}(\mathbf{z}^{k+1}) - f_{0,\mathbf{Q}}(\widehat{\mathbf{z}}) \leq \overline{\eta} \left(f_{0,\mathbf{Q}}(\mathbf{z}^k) - f_{0,\mathbf{Q}}(\widehat{\mathbf{z}}) \right),$$
 where
$$\overline{\eta} = 1 - \frac{\overline{\alpha} \overline{\lambda}_{\min}}{2 + 2\widehat{\Gamma}^2}$$

Improved Estimate

MPRGP

$$\|\mathbf{x}^k - \widehat{\mathbf{x}}\|_{\mathbf{A}}^2 \le 2\eta \left(f(\mathbf{x}^0) - f(\widehat{\mathbf{x}})\right)$$

MPRGP-CP

$$f_{0,\mathbf{Q}}(\mathbf{z}^{k+1}) - f_{0,\mathbf{Q}}(\widehat{\mathbf{z}}) \leq \overline{\eta} \left(f_{0,\mathbf{Q}}(\mathbf{z}^k) - f_{0,\mathbf{Q}}(\widehat{\mathbf{z}}) \right)$$
 $\overline{\eta} < \eta$

because for nonsingular $\mathbf{U}^T \mathbf{E}$ and $\lambda_{min} < \lambda_{min-m}$

$$\overline{\eta} = 1 - rac{\overline{lpha}\overline{\lambda}_{\mathsf{min}}}{2 + 2\widehat{\Gamma}^2} < \boxed{1 - rac{\overline{lpha}\lambda_{\mathsf{min}}}{2 + 2\widehat{\Gamma}^2} = \eta}$$

Domorádová and Dostál, Numerical linear Algebra with Applications, 2007 🔻 🔻 🖹 📜

Numerical Experiments

Deflection of the membrane

Find

$$\min f(u) = \frac{1}{2} \int_{\Omega} \|\nabla u(x)\|^2 d\Omega + \int_{\Omega} u d\Omega$$
 subject to $u \in \mathcal{K}$,

where

$$\mathcal{K} = \{ u \in H^1(\Omega) : u = 0 \text{ on } \Gamma_u \text{ and } c \leq u \text{ on } \Gamma_c \}.$$

Numerical Experiments

Projector deffined by traces of linear functions on coarse grid

Projector defined by traces of linear functions on coarse grid

Numerical Experiments

Projector defined by aggregations

Projector defined by aggregations

Numerical Experiments FETI-DP

	number of nodes								
		2		4		8		16	
number of subdomains	2	6	8	9	13	16	18	21	29
	4	9	11	13	17	19	30	25	53
	8	12	18	19	29	25	56	36	80
	16	17	24	26	55	39	85	-	-

MPRGP-CP

MPRGP

Summary

- The preconditioning effects all steps of the algorithm.
- Better rate of convergence is proved.
- It is confirmed by numerical experiments.

Our Outlook

- to examine implementation by averaging.
- to implement the algorithm into our research FETI and BETI software OOSOL.
- to consider iterative implementation of inversion in the projector.