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Best rank—k approximation of a matrix
Assume X;sz = I and YkTYk =1

: A— XS Y = ‘ A— (Xg, Yi) -
X]wr%@;’lSkH #SeYy, || F X,f%},f,lsk” (Xk, Yi) - Skl 7

(Almost) equivalent problem:

max | XL AY;||r = max |4 - (Xy, Vi)l r
X, Y Xk, Y

Solution by SVD: XkSkYkT = UkaVkT = (Uk, Vk) »3

Eckart-Young property
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Sketch of “proof”:
Determine u; and vy (k= 1)

AN AN

Put u; and vy in orthogonal matrices (u; U) and (v1 V)

0740 = (3 p)

Optimality — Zeros — deflation: continue with B

Orthogonality of vectors comes automatically

Number of degrees of freedom in Uy and V}, is equal to the number of zeros
produced.
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Best rank—(k, k, k) approximation of a tensor
Assume XX =YY =217 =1,

min ||[A—(X,Y,Z2)-S|r — max |[|A-(X,Y,Z)|r
X,Y,Z,S X,Y,Z
Why is this problem much more complicated?

Not enough degrees of freedom in X,Y, Z to zero many (O(k?) + O(kn?))
elements in A

4

Deflation is impossible in general

4

Orthogonality constraints must be enforced
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Talk outline

Some basic tensor concepts (For simplicity: only tensors of order 3)

Best rank-(r1, 72, 73) approximation problem

Optimization on the Grassmann manifold

Newton-Grassmann for solving the best rank-(ry,r2,73) approximation

problem
Numerical examples

Ongoing work
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“Old and New” Research Area

e Tensor methods have been used since the 1960’s in psychometrics and
chemometrics! Only recently in numerical community.

e Available mathematical theory deals very little with computational
aspects. Many fundamental mathematical problems are open!

e Applications in signal processing and various areas of data mining.
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Two aspects of SVD

Singular Value Decomposition: R™*"X = UX V7T

X| = U 0

m Xn mXmmXn

Singular value expansion: sum of rank-1 matrices:

=1
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Two approaches to tensor decomposition

Tucker Model

e Tucker 1966, numerous papers in psychometrics and chemometrics

e De Lathauwer, De Moor, Vandewalle, SIMAX 2000: notation, theory.
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Expansion in rank-1 terms

e Parafac/Candecomp/Kruskal: Harshman, Caroll, Chang 1970
e Numerous papers in psychometrics and chemometrics

e Kolda, SIMAX 2001, Zhang, Golub, SIMAX 2001, De Silva and Lim
2006
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Parafac/... model: low rank approximation

Q

The core tensor is zero except along the superdiagonal.
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Parafac/... model: low rank approximation

Q

The core tensor is zero except along the superdiagonal.
Why is it difficult to obtain this?

Because we do not have enough degrees of freedom to zero the tensor
elements: O(k?) and O(k?)
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The Parafac approximation problem may be ill-posed!!

Theorem 1. There are tensors A for which the problem
Mg, g2l |A — 1 QY1 ® 21 — T2 ® Y2 @ 22| F

does not have a solution. The set of tensors for which the approximation
problem does not have a solution has positive volume.

The problem is illposed! (in exact arithmetic)

A well-posed problem (in floating point) near to an ill-posed one is ill-
conditioned: ==  unstable computations.

Still: There are applications (e.g. in chemistry) where the Parafac model
corresponds closely to the process that generates the tensor data.

1See De Silva and Lim (2006), Bini (1986)
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Mode—I multiplication of a tensor by a matrix?

Contravariant multiplication
R™MM s B=(W)ny- A, B(i,j,k) =) wiay;
v=1

All column vectors in the 3-tensor are multiplied by the matrix W.
Covariant multiplication
n

R"*"*" 5 B=A- (W){1}7 B(%]? k) — Za’/jkw’/i'

r=1

2l im’s notation
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Matrix-tensor multiplication performed in all modes in the same expression:

(X,Y,2)- A=A- (X', YY", 72"

Standard matrix multiplication of three matrices:

XAYT =(X,Y) A

— Harrachov 2007 —



14

Inner product, orthogonality and norm

Inner product (contraction: R™*™"*™ — R )

<v47 B> — Z az’jkbijk

@,k

The Frobenius norm of a tensor is

Al = (A4, 4)2

Matrix case

(A, B) = tr(A* B)
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Tensor SVD (HOSVD)3: A= (UM, U®) UB).S

[7(3)

A {7 (1) S [ (2)

The “mass” of S is concentrated around the (1,1,1) corner.

Not optimal: does not solve min,,nk(B)=(ry,ry,rs) |4 — Bl

3De Lathauwer et al (2000)
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~ S yr
A X
Best rank— (71,72, 73) approximation:
min ||A— (X,Y,2) -S|, X'X=1 Y'y=1 Z'Z=1I

X,Y.Z,S

‘ The problem is over-parameterized! I
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Best approximation: min,a,x(8)=(ry ry.rs) |4 — B|

Equivalent to

1 2
X’Y,}éq)(X,Y,Z) :§||A (X,Y, 2)|” = ;Agkla
9,

Ajri = E D\ NG Wl
A,V

subject to

xX'x=r1, Y'Yvy=1I, 7Z'Z=1I,
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Grassmann Optimization

The Frobenius norm is invariant under orthogonal transformations:
1
®(X,Y,Z)=d(XUYV,ZW) = §||A- (XU, YV, ZW)|*

for orthogonal U € R™*"™1 V' € R™*"™2 and W &€ R"™*"3,

Maximize ® over equivalence classes

| X] ={XU | U orthogonal }.

Product of Grassmann manifolds: Gr® = Gr(J, 1) x Gr(K,rs) x Gr(L, r3)

1
max P(X,Y,Z)= max -(A-(X,Y,2),A-(X,Y,Z2))
(X,Y,Z)eGr3 (X,Y,Z)eGr> 2
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Newton’s Method on one Grassmann Manifold

Taylor expansion + linear algebra on tangent space* at X
1
G(X (1) = G(X(0)) + (A, VG) + (A, H(A)),

Grassmann gradient:

oG

: Oy =71—-XX7T
8£Ejk

The Newton equation for determining A:

0*G
(9Xjk (9le.

HX<g:c:U7 A>1:2 — A<X7 G:U>1 — _VGa (g:c:c)jklm —

4Tangent space at X: all matrices Z satisfying zT'x =o.
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Newton-Grassmann Algorithm on Gr’°

Here: local coordinates

Given tensor A and starting points (X, Yo, Zg) € Gr?

repeat

compute the Grassmann gradient VCT)

compute the Grassmann Hessian H

matricize H and vectorize V®

solve D = (D, D, D) from the Newton equation

take a geodesic step along the direction D, giving new iterates (X,Y,Z)

until |[V®||/® < TOL

Implementation using TensorToolbox and object-oriented Grassmann classes
in Matlab
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Newton’s method on Gr*

Differentiate ®(X,Y, Z) along a geodesic curve (X (t),Y (¢), Z(t)) in the
direction (Az, Ay, A):

axst

875 — (Aa:)sta

dX(t) dY(t) dZ(t)
( dt ~ dt 7 dt

and

):(AQC,A@,,AZ),

Since A- (X,Y,Z) is linear in XY, Z separately:

d(A-(X,Y, 7))

- =A- (ALY, Z2)+ A- (X,A,,Z)+A- (X, Y,A,).
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First Derivative

> _1d
dt  2dt
F (A (X,0,,2), A (X,Y,2)) + (A (X,Y,A,), A (X,Y, Z)).

(A- (XY, Z2),A- (X,Y,Z)) =(A-(A,,Y,Z2),A- (X,Y, 2))

We want to write (A - (A,,Y,Z),A- (X,Y,Z)) in the form (A,, ®,)
Define the tensor 7 = A - (X,Y, Z) and write

(A-(Az,Y, Z), F) = (Ke(Az), F) = (Ag, KL F),

Linear operator:

Ay — Ko(Ay) = A- (A, Y, 2)
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Adjoint Operator

Linear operator:

A — Kp(Ay) =A- (ALY, 2)
with adjoint

(Kp(Ag), F) = (A, COF) = (A, (A- (1Y, Z), F)_1)

where the partial contraction is defined

<B C Zla 7/2 Z bzl,LWCZQ,uV
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Grassmann Gradient
X-part: multiply by I, =1 — X X7

Ix®, =x(A-(I,Y,Z),F)_1
= (A-(I,Y,2),A- (X,Y,Z2))_1 — XX (A-(1,Y,2), F)_,
= (A-(1,Y,2),A- (1,Y, 2)) 1 X — X(F,F)_1,

Complete gradient (recall F = A - (X,Y, 2)):

Iy, (A (X,1,2), A (X,1,2))_Y —Y(F,F)_s

My®, (A- (1LY, 2),A-(I1,Y, Z)) -1 X — X(F,F)_1
(HYCPz) : A (XY, ), A (X,Y,]))_3Z — Z(F,F)_s
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Second Derivative

2
L2 (A (A0 Y, 2), A (B, Y, 2)) + (A (B, Ay, Z), A+ (X, Y, 2))

t2
+ (A - (A, Y, Z2),A- (X,A,,2))+(A- (A, Y,A,), A (X,Y,Z))
+<A(A:B7Y72>7A(X7Y7Az)>+ )
plus 10 analogous terms.

First term:

(A- (ALY, Z), A- (ALY, Z)) = (A, (A- (1Y, Z), A- (A,,Y, Z))_1)
<Axa <~A (IaYa Z)vA' (IaYv Z)>—1Ax>-
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“rx” Part of Grassmann Hessian

Sylvester operator:

HCECE(A:U) — HX<A (I,Y, Z)aA (I,Y, Z)>—1A:c — ACE<'F7 f>—17
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“xy” Part of Grassmann Hessian

Second term:

<~A (vaAva)vA° (Xva Z)> <Afc7 <~A (Ia Ava)wA° (Xva Z)>—1>

<A:c7 <fa%y7 Ay>2,4;1:2 >

where F is the 4—tensor

Foy={(A-(I,LI,Z),A-(X,Y,Z))_12)=(A-(I,1,Z),A-(X,Y, 2))s,
and
(<Ba A>2,4;1:2)il€ — Z bi/,Lkil/5,ul/

j%
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Grassmann Hessian

“Diagonal part”:

Hmaj(Am) — H£B<B£U7 B:B>—1A£U — A:B<F7 f>—17 B:U =A
Hyy(Ay) — Hy<Bvay>—2Ay — Ay<~7:v ~7:>—27 By =A- (X, I,7),
sz(Az) — Hz<6z7 Bz>—3Az — Az<fa f>—37 B A
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Grassmann Hessian, “upper triangular part”,

H:cy(Ay) — H:c (<<C:cya f>—(1,2) 7Ay>2,4;1:2 + <<Bxa By>—(1,2)7 Ay>4,2;1:2) ’
H:BZ(AZ) — H:B (<<C:L‘Z7 f>—(1,3)7 Az>2,4;1:2 + <<B:L‘7 Bz>—(1,3)7 Az>4,2;1:2) )
Hyz(Az) — Hy <<Cy27 f>—(2,3) ) Az>2,4;1:2 + <<By7 Bz>—(2,3)7 Az>4,2;1:2) )

where we have also introduced Cyyy = A-(1,1,2), C, = A-(I,Y,I) and
Cp. = A-(X,1,1).

Linear operator: Fourth order tensor (C.,, F)_(1,2) acting on matrix giving
matrix:

<<C:Uy7 F>—(1,2)7 Ay>2,4;1:2
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Local Coordinates

Hessian is singular in Euclidean space, but non-singular on the tangent
space

(Az, Ay, A,) to be determined, live on the tangent space:

ALX =0, AJY=0 AIX=0

X determined so that (X, X ) is a (square) orthogonal matrix

AZB — XJ_-DCEJ D:I; S R(J_rl)xrla
Ay, =Y, D,, D, € RUE—2)xr2
Az — ZJ_Dza D:I; € R(L_T?’)XTBB
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Grassmann Hessian in local coordinates

) Hoo(Ds) + Haoy(Dy) + Haz(D.)
H(D) = | Hyz(Dz) + Hyy(Dy) + Hy (D)
Hza:(Da:) + sz(Dy) T HZZ(DZ)
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Grassmann Hessian, “upper triangular’ operators

| |
/_\

Cay, F)—(1,2) s Dy)2,451:2 + <<B\x7 B\y>—(1,2), Dy>4,2;1:2) ,

:ﬁ>
||

Cozr F)—(1,3)s Dz)2,4;1:2 + <<[3\ 7l§> (1, 3)7Dz>4,2;1:2) ;

( yor F)—2,3) > Dz)2.451:2 + <<[§ ,g> (2, 3)7Dz>4,2;1:2) ;

where CA:,;y = A - (X,.,Y,,7) , Cor = A - (X1,Y,Z,) and é\yz = A-
(XayJ_aZJ_)-
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lllustration of Hessian

| (XJ.,PLJ z,)
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Numerical Examples. Test 1

Simulate a “signal tensor” with low rank and normally distributed noise.

Two 20 x 20 x 20 tensors:

A1 =By + péi, rank(B;) = (10, 10, 10)
Ao = By + p&a, rank(cBs) = (15,15, 15)
&; are noise tensors, and p = 0.1
A rank—(5,5,5) approximation was computed
Initial approximation: random tensor
10 HOOI iterations were performed before the Newton method was started.

HOOI: “Alternating least squares” approach (De Lathauwer)
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Convergence history for Test 1
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Test 2: Random 20 x 20 x 20 Tensor

(=}

[N
o

[ [
% —— NEWTON
<
G
-5
w 10 15
I
|_
L
0
:
0 10'10_ ,,,,,,,,,,,,,,,,,,,,,,,,
Z
1
>
l_
<
d -15
10 B
| | | | | | | | |
0 5 10 15 2 B N 3B 40 45 5
ITERATION #

Initialization: HOSVD and 20 HOOI iterations
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Ongoing work

Matrix case:
min ||A— B|lp=|A- U121V1T||F
rank(B)=Fk
Put N N
Uz(Ul UL), V:(V1 VL)
Then

~7r .5 (21 0
UAV—(O C)

How much can be generalized to tensors?

37
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Tensor “SVD”?

All slices orthogonal: (A - (X,Y, Z), A- (X ,Y,Z)) 1 =0.
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Conclusions

To exhibit structure: matricize as late as possible
Tensor framework without extensive index wrestling
Partial contractions play the role of adjoints

Newton-Grassmann == unconstrained optimization. Quadratic
convergence

Generalization to higher order tensors is straightforward

Present work: investigation of theoretical properties and implementation

of other methods (Quasi-Newton: Savas & Lim, trust-region: Ishteva
(Louvain) )
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