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Potential Theory and Practical Aspects of the Solution of Lyapunov Equations

Introduction and Motivation

Overview

We wish to solve large Lyapunov equations via low-rank Smith/ADI methods.
The adaptation of such methods from ‘medium scale’ to ‘large scale’ problems

benefits from an understanding of the solutions (via potential theory)
and numerous algorithmic improvements that enhance performance.

I Introduction
I Applications of Lyapunov and Sylvester equations
I Balanced truncation model reduction
I Nonnormality and the state matrix

I Potential Theory and Decay of Singular Values
I ADI approximations
I Convergence bounds
I Condenser capacity and Bagby points

I Practical Aspects of Lyapunov Solvers
I Alternatives to asymptotically optimal ADI points
I Other algorithmic improvements
I Numerical results
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Introduction and Motivation

Applications of Lyapunov and Sylvester equations

I Eigenvalue perturbation theory
Sylvester operator arises naturally in perturbation theory for invariant
subspaces, block diagonalizations, etc.; [Stewart 1973], [Higham 2002]

I Total Energy computation for dynamical systems
Given x ′(t) = Ax(t), x(0) = x0, with solution x(t) = etAx0.
For some h.p.d. matrix E , the total energy of the system is

E(x0) =

Z ∞

0

x∗0 etA∗E etAx0dt = x∗0

„ Z ∞

0

etA∗E etAdt

«
x0.

Notice that X :=
R∞

0
etA∗E etA dt satisfies

A∗X + XA =

Z ∞

0

d

dt

“
etA∗E etA

”
dt = −E .

I Control theory
I Many applications . . .
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Model reduction via balanced truncation

x ′(t) = Ax(t) + Bu(t)

y(t) = C x(t) + Du(t), x(0) = x0

The infinite reachability and observability gramians

P :=

Z ∞

0

etABB∗etA∗ dt, Q :=

Z ∞

0

etA∗C∗CetA dt

are Hermitian positive semi-definite (integrals of HPsD matrices)
and can be characterized as the solutions to the Lyapunov equations

AP + PA∗ = −BB∗, A∗Q + QA = −C∗C .

If x0 = 0, the minimum energy of u required to drive x to state bx is

bx∗P−1bx .

Starting from x0 = bx with u(t) ≡ 0, the energy of output y is

bx∗Q bx .
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Internal coordinates

bx∗P−1bx : bx is hard to reach if it is rich in the lowest modes of P.bx∗Q bx : bx is hard to observe if it is rich in the lowest modes of Q.

Balanced truncation transforms the internal coordinates to align
states that require much energy to reach

with
states that produce little output energy.

(Sx)′(t) = (SAS−1)(Sx(t)) + (SB)u(t)

y(t) = (CS−1)(Sx(t)) + Du(t), (Sx)(0) = Sx0.

With this transformation, the reachability and observability gramians arebP = SPS∗, bQ = S−∗QS−1.

Balanced truncation effectively constructs an S so that bP = bQ.
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Balancing transformations

{sj} = {
√

eigs of PQ }: Σ = diag(s1, . . . , sn)

Cholesky factorization: P = UU∗

Cholesky factorization: Q = LL∗

Hermitian eigenvalue decomposition: U∗QU = KΣ2K∗

singular value decomposition: L∗U = VΣW ∗

Suitable choices for balancing S :

S1 = UKΣ−1/2 S2 = UWΣ−1/2.

Reduced system: upper left k × k part of the system in new coordinates.

Error bound: ‖H(z)− bH(z)‖H∞ ≤ 2(sk+1 + sk+2 + · · ·+ sn).

The sj are the Hankel singular values.

See [Antoulas 2005] for details and comments on numerics.
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Invariance of internal coordinates

Hankel singular values: square roots of eigenvalues of PQ

Transfer function: D + C(z − A)−1B

Markov parameters: D, CB, CAB, C A2B, . . .

All of these quantities are independent of the internal coordinates.

For example, bP bQ = (SPS∗)(S−∗Q S−1) = S P Q S−1.

Hence the Hankel singular values—and the error bound—are independent of
the state space coordinate system.

If A is stable, the reduced model is stable regardless of the internal coordinate.
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Do the internal coordinates affect balancing?

Balancing transformation requires computation of

P = UU∗, Q = LL∗.

Coordinate transformations do not change the eigenvalues of PQ, but they do
change the eigenvalues of P and Q individually:bP = SPS∗, bQ = S−∗QS−1.

These are congruence transformations (preserve symmetry, inertia),
as opposed to similarity transformations (preserve eigenvalues).

What can be said of the spectral properties of P and Q?
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State variables and moment matching model reduction

I The challenge of solving large-scale Lyapunov equations is an impediment
to balanced truncation model reduction.

I A popular alternative are Krylov-based moment-matching methods.
For example, use the Arnoldi method to compute the factorization

AVk = VkHk + hk+1,kvk+1e
∗
k , V ∗

k Vk = I .

The reduced system takes the form

Ak = V ∗
k AVk , Bk = V ∗

k B, Ck = CVk .

The moments (Markov parameters) of the original system are

CB, CAB, CA2B, . . . .

k-step Arnoldi reduction matches k moments:

CkBk = CB, CkAkBk = CAB, . . . , CkA
k−1
k Bk = CAk−1B.

k-step bi-orthogonal Lanczos reduction matches 2k moments.



Potential Theory and Practical Aspects of the Solution of Lyapunov Equations

Introduction and Motivation

Moment matching: role of internal representation

The moments are invariant to the internal representation, but the reduced
system is not.

State-space coordinates can significantly affect the Arnoldi algorithm.

If the numerical range of A contains points in the right half plane,
it is possible that the reduced model will not even be stable.

(Sx)′(t) = (SAS−1)(Sx(t)) + (SB)u(t)

y(t) = (CS−1)(Sx(t)) + Du(t), (Sx)(0) = Sx0.



Potential Theory and Practical Aspects of the Solution of Lyapunov Equations

Introduction and Motivation

Elementary example: tridiagonal Toeplitz matrix

Take Sα = diag(α, α2, . . . , αn), and

A1 =

26664
−1 −1

1 −1
. . .

. . .
. . . −1
1 −1

37775 , Aα = SαA1S
−1
α =

26664
−1 −α−1

α −1
. . .

. . .
. . . −α−1

α −1

37775 .

Then σ(Aα) ∈ [−1− 2i,−1 + 2i], but κ(Sα) = max{|α|n, |α|−n}.
Eigenvalues of reduced model A32 for n = 256:

−4 −2 0 2

−3

−2

−1

0

1

2

3

−4 −2 0 2

−3

−2

−1

0

1

2

3

−4 −2 0 2

−3

−2

−1

0

1

2

3

α = 1 α = 5 α = 10
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Decay Rate Bounds via Potential Theory

Algorithms for Lyapunov and Sylvester equations

AX − XB = C , A ∈ Cn×n, B ∈ Cm×m

I Can be formulated as an nm-by-nm linear system:“
(I ⊗ A)− (BT ⊗ I )

”
vec(X ) = vec(C)

which requires O(n3m3) flops to solve. The spectrum of this matrix,

σ
“
(I ⊗ A)− (BT ⊗ I )

”
=

n
λj − µj : λj ∈ σ(A), µj ∈ σ(B)

o
,

shows that a unique solution X exists if an only if σ(A) ∩ σ(B) = ∅.
I Dense methods need Schur factorization of A, B, O(n3 + m3) flops.

[Bartels, Stewart], [Hammarling], [Sorensen, Zhou]

I Numerous iterative approaches:
Smith/ADI methods [Smith; Wachspress; Penzl; Li & White; etc.]
Krylov, rational Krylov methods [Saad; Simoncini]
“Approximate power iteration” [Hodel, Poolla, Tenison; Sorensen]
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The ADI iteration for AX − XB = C

I The conventional ADI method [Peaceman & Rachford 1955] was designed
to solve (H + V)x = b, where H and V commute; see [Wachspress 1966].

I Set HX := AX , VX := −XB, with H(VX ) = −AXB = V(HX )
[Ellner & Wachspress 1986], [Wachspress 1988].

I Written as two stages:

(A + pk)Xk+1/2 = Xk(B + pk) + C

Xk+1(B − qk) = (A− qk)Xk+1/2 − C .

I Written as one stage:

Xk+1 = (A− qk)(A + pk)
−1Xk(B + pk)(B − qk)

−1

+ ((A− qk)(A + pk)
−1 − I )C(B − qk)

−1.

I Exact solution is a fixed point, which gives an error formula, bounds. . .
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Error bounds for ADI iteration

I Error formula:

X − Xk =

„ k−1Y
j=0

(A− qj)(A + pj)
−1

«
(X − X0)

„ k−1Y
j=0

(B + pj)(B − qj)
−1

«
.

I Define the rational function

φk(z) :=
k−1Y
j=0

z − qj

z + pj
,

so that
X − Xk = φk(A)(X − X0)φk(B)−1.

I With X0 = 0 we have

‖X − Xk‖
‖X‖ ≤ ‖φk(A)‖‖φk(B)−1‖,

see, e.g., [Wachspress 1966].
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Decay Rate Bounds via Potential Theory

ADI convergence theory

I Considerable work on ADI for Lyapunov/Sylvester equations in early 1990s:
[Starke 1989, 1991, 1993a, 1993b], [Levenberg & Reichel 1993], . . .

I X ∈ Cn×m is typically dense, even when A, B are sparse.
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Decay Rate Bounds via Potential Theory

ADI convergence theory

I Considerable work on ADI for Lyapunov/Sylvester equations in early 1990s:
[Starke 1989, 1991, 1993a, 1993b], [Levenberg & Reichel 1993], . . .

I X ∈ Cn×m is typically dense, even when A, B are sparse.

I However, with X0 = 0, the formula

Xk+1 = (A− qk)(A + pk)
−1Xk(B + pk)(B − qk)

−1

+ ((A− qk)(A + pk)
−1 − I )C(B − qk)

−1.

indicates that
rank(Xk) ≤ k rank(C).

[Penzl 2000]

I When C has low rank, as typical for balanced truncation model reduction
(e.g., SISO systems), X may be well approximated by low-rank matrices.
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Decay rate for singular values

I Let r = rank(C), and recall φk(z) :=
k−1Y
j=0

z − qj

z + pj
.

Error bound, rank of Xk give

σkr+1(X )

σ1(X )
≤ ‖φk(A)‖‖φk(B)−1‖.
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Decay Rate Bounds via Potential Theory

Decay rate for singular values

I Let r = rank(C), and recall φk(z) :=
k−1Y
j=0

z − qj

z + pj
.

Error bound, rank of Xk give

σkr+1(X )

σ1(X )
≤ ‖φk(A)‖‖φk(B)−1‖.

I Pick compact sets ΩA, ΩB ⊂ C with σ(A) ⊂ ΩA, σ(B) ⊂ ΩB ,
and let κ(Ω;Z) denote the smallest constant for which

‖f (Z)‖ ≤ κ(Ω;Z)max
z∈Ω

|f (z)|

uniformly over all f analytic on Ω [Beattie, E., Rossi 2004]
(related to k-spectral sets in operator theory [Paulsen 1986]).
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Decay rate for singular values

I Let r = rank(C), and recall φk(z) :=
k−1Y
j=0

z − qj

z + pj
.

Error bound, rank of Xk give

σkr+1(X )

σ1(X )
≤ ‖φk(A)‖‖φk(B)−1‖.

I Pick compact sets ΩA, ΩB ⊂ C with σ(A) ⊂ ΩA, σ(B) ⊂ ΩB ,
and let κ(Ω;Z) denote the smallest constant for which

‖f (Z)‖ ≤ κ(Ω;Z)max
z∈Ω

|f (z)|

uniformly over all f analytic on Ω [Beattie, E., Rossi 2004]
(related to k-spectral sets in operator theory [Paulsen 1986]).

σkr+1(X )

σ1(X )
≤ κ(ΩA;A)κ(ΩB ;B)

max{|φk(z)| : z ∈ ΩA}
min{|φk(z)| : z ∈ ΩB}

.
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Decay rate for singular values, cont’d

I Choices for ΩA, ΩB depend on nonnormality of A, B.

I If ΩA = σ(A), ΩB = σ(B), then we can take

κ(ΩA;A) = ‖V ‖‖V−1‖, κ(ΩB ;B) = ‖U‖‖U−1‖

with diagonalizations A = VΛV−1, B = UMU−1.
This bound was established by [Beckermann] in the context of
displacement rank; cf. [Levenberg & Reichel 1993].

I For A, B far from normal, better to use the numerical range, polynomial
numerical hulls, pseudospectra etc.

I Preferred choice for ΩA and ΩB may change with degree k.
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ΩA and ΩB for nonnormal A, B

I Note that ΩA and ΩB must be disjoint for the rational approximation
problem to converge.

I If A and −B are both stable (e.g., B = −A∗ for Lyapunov eqns.),
then there always exist disjoint ΩA ⊃ σ(A) and ΩB ⊃ σ(B) with finite
κ(ΩA;A), κ(ΩB ;B).

I For many problems, the numerical ranges W (A) and W (−B) have a
nontrivial intersection.

I An anomaly not captured by these bounds:

I Consider the Lyapunov equation AX + XA∗ = −bbT .
I If there is no decay, wlog X = I , then A + A∗ = −bbT .
I This implies the rightmost eigenvalue of A + A∗ is zero.
I Thus the numerical range W (A) is contained in the closed left half plane.
I Further increasing nonnormality must improve decay of singular values.
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Any decay is possible for any spectrum

Theorem. [cf. Penzl 2000]

Let A ∈ Cn×n, B ∈ Cm×m with σ(A) ∩ σ(B) = ∅,
and C = cd∗ with (A, C) reachable and (C , B) observable.

Then for any full-rank Y ∈ Cn×m, there exist invertible S ∈ Cn×n and T ∈ Cm×m

such that Y solves the Sylvester equation

(SAS−1)Y − Y (T−1BT ) = −(Sc)(d∗T ).
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Decay Rate Bounds via Potential Theory

Any decay is possible for any spectrum

Theorem. [cf. Penzl 2000]

Let A ∈ Cn×n, B ∈ Cm×m with σ(A) ∩ σ(B) = ∅,
and C = cd∗ with (A, C) reachable and (C , B) observable.

Then for any full-rank Y ∈ Cn×m, there exist invertible S ∈ Cn×n and T ∈ Cm×m

such that Y solves the Sylvester equation

(SAS−1)Y − Y (T−1BT ) = −(Sc)(d∗T ).

I Given disjoint sets of eigenvalues {λ1, . . . , λn} and {µ1, . . . , µm} and positive

singular values {s1, . . . , smin{m,n}}, there exist bA, bB, and rank-1 bC such that

σ(bA) = {λ1, . . . , λn}

σ(bB) = {µ1, . . . , µm},
singular values of Y = {s1, . . . , smin{m,n}},

and bAY − Y bB = bC .

I Specified eigenvalues can be defective but not derogatory.

I Proof is constructive.
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Distribution of optimal ADI points, A = −B = [−1,−10−3]

Optimal parameters are known in terms of elliptic functions
[Lebedev, USSR Computational Math. Math. Phys., 1977]

Abstract: “THE MAIN results obtained by foreign mathematicians in the theory of

optimal parameters in the method of alternating directions are shown to be contained

in Zolotarev’s results on best bilinear approximations (1877).. . . ”

−100 −10−1 −10−2 −10−3

 

 

 

 

 k = 4

k = 8

k = 16

k = 32

k = 64
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Rational approximation problem

Let Rj,k = set of rational functions of degree (j , k).

I The quantity

ek(ΩA, ΩB) := min
φ∈Rk,k

max{|φ(z)| : z ∈ ΩA}
min{|φ(z)| : z ∈ ΩB}

.

was introduced and computed in a special case by Zolotarev [1877];
it is known as his “Third Problem”.

I Gončar [1969] shows that for compact sets ΩA, ΩB with positive capacity,
connected complements:

lim
k→∞

ek(ΩA, ΩB)1/k = e−1/cap(ΩA,ΩB ),

where cap(ΩA, ΩB) is the capacity of the condenser (ΩA, ΩB)
[Polya & Szego 1962; Bagby 1967; Levin & Saff 1994; Saff & Totik 1997].

I Generalizations to Rj,k with j/k fixed as j , k →∞ can be useful when
ΩB 6= −ΩA [Levenberg & Reichel 1993, Levin & Saff 1994].
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Rational approximation problem

Condenser capacity can be derived from a doubly-connected conformal map
Ψ(z) that takes the annulus

{z ∈ C : 1 < |z | < exp(1/cap(ΩA, ΩB))}

to the complement of ΩA ∪ ΩB .

-Ψ(z)
ΩA ΩB

1

e1/cap

Could compute Ψ using Hu’s DSCPACK [1995];
cf. [Starke 1993]; DeLillo, Driscoll, Elcrat, Pfaltzgraff [2006].
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Optimal rational interpolation points

We wish to find parameters {pj}k−1
j=0 and {qj}k−1

j=0 for the rational function

φk(z) =
k−1Y
j=0

z − qj

z + pj
to minimize

max{|φk(z)| : z ∈ ΩA}
min{|φk(z)| : z ∈ ΩB}

.

Asymptotically optimal choices:

I Fejér–Walsh points. Given the conformal map Ψ, set

qj = Ψ(e2πij/k) ∈ ∂ΩA

−pj = Ψ(e2πij/k+1/cap(ΩA,ΩB )) ∈ ∂ΩB

[Walsh, 1965], [Starke 1993]
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Optimal rational interpolation points

We wish to find parameters {pj}k−1
j=0 and {qj}k−1

j=0 for the rational function

φk(z) =
k−1Y
j=0

z − qj

z + pj
to minimize

max{|φk(z)| : z ∈ ΩA}
min{|φk(z)| : z ∈ ΩB}

.

Asymptotically optimal choices:

I Fejér–Walsh points. Given the conformal map Ψ, set

qj = Ψ(e2πij/k) ∈ ∂ΩA

−pj = Ψ(e2πij/k+1/cap(ΩA,ΩB )) ∈ ∂ΩB

[Walsh, 1965], [Starke 1993]

I Leja–Bagby points. Given {pj}`−1
j=0 , {qj}`−1

j=0 , pick −p` ∈ ΩB , q` ∈ ΩA s.t.:

`−1Y
j=0

|p` + pj |
|p` − qj |

= max
−p∈ΩB

`−1Y
j=0

|p + pj |
|p − qj |

,

`−1Y
j=0

|q` − qj |
|q` + pj |

= max
q∈ΩA

`−1Y
j=0

|q − qj |
|q + pj |

.

[Bagby, 1967], [Starke 1991], [Levenberg & Reichel 1993]
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 1

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 2

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 3

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 4

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 5

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 6

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 7

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 8

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 9

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 10

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 11

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 12

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 13

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 14

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 15

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Approximation of Leja–Bagby points

I Leja–Bagby points can be easily approximated by discretizing the
boundaries of ΩA, ΩB , and picking arbitrary q0 ∈ ΩA, −p0 ∈ ΩB .

k = 16

• = qj • = −pj
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Decay Rate Bounds via Potential Theory

Error from Leja–Bagby points

2 4 6 8 10 12 14 16
10−10

10−8

10−6

10−4

10−2

100

degree, k

max{|φk (z)| : z ∈ ΩA}
min{|φk (z)| : z ∈ ΩB}

For this example, we estimate exp(−1/cap(ΩA, ΩB)) ≈ 0.24.
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Implementation Details

Strategies for selecting shifts

Estimate spectra of A, B (or numerical ranges [Starke 1993], or pseudospectra)
to obtain disjoint ΩA, ΩB ⊂ C.

I Asymptotically optimal shifts (Leja–Bagby or Fejér–Walsh points)

I Optimal shifts for a bounding rectangle [Istace & Thiran 1993, 1995]

I Penzl’s shifting strategy [Penzl, 2000]
I Collect Ritz values for A, A−1; choose shifts via Bagby ordering.
I Caveat: Ritz values not typically distributed like optimal points.
I |φk (z)| may be large at points in the interior of the spectrum.
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Implementation Details

Strategies for selecting shifts

Estimate spectra of A, B (or numerical ranges [Starke 1993], or pseudospectra)
to obtain disjoint ΩA, ΩB ⊂ C.

I Asymptotically optimal shifts (Leja–Bagby or Fejér–Walsh points)

I Optimal shifts for a bounding rectangle [Istace & Thiran 1993, 1995]

I Penzl’s shifting strategy [Penzl, 2000]
I Collect Ritz values for A, A−1; choose shifts via Bagby ordering.
I Caveat: Ritz values not typically distributed like optimal points.
I |φk (z)| may be large at points in the interior of the spectrum.

I Use global optimization to approximate optimal shifts for Ω [Sabino 2006]
I Nelder–Mead direct search method via MATLAB’s fminsearch

I Sometimes better parameters are determined by restricting the search to the
real line, rather than the entire complex plane.

I Scalar objective function cheap to evaluate compared to matrix operations.
I For the modest number of shifts practical in large-scale computations, these

parameters can often out-perform those that are only asymptotically
optimal.
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Implementation Details

Practical aspects of shift selection

I A modest improvement in convergence rate gives considerable speed-up:

If ρm1
1 = ρm2

2 = τ with ρ1 = 1− ε1 and ρ2 = 1− ε2, then

m1

m2
≈ ε2

ε1
.

For example, if ρ1 = 0.999 and ρ2 = 0.998, then m2 ≈ m1/2.

I Due to the equioscillation behavior of ADI rational functions, it is better
to overestimate than underestimate the spectrum.

−1 −0.5 −0.1 0
10−8

10−6

10−4

10−2

100

z

|φ(z)|

ΩA = −ΩB = [−1,−1/10]
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Implementation Details

Modified Low-Rank Smith algorithm

I An variation of ADI/cyclic Smith [Penzl 2000] that computes the
approximate solution Xk in low-rank form and progressively compresses Xk

to maintain low rank [Antoulas, Gugercin, Sorensen 2003].
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Implementation Details

Modified Low-Rank Smith algorithm

I An variation of ADI/cyclic Smith [Penzl 2000] that computes the
approximate solution Xk in low-rank form and progressively compresses Xk

to maintain low rank [Antoulas, Gugercin, Sorensen 2003].

Given: parameters {pj}k−1
j=0 , {qj}k−1

j=0 , number s of applications/pair

Set X0 = 0.
for m = 0, 1, 2, . . . until convergence

for j = 0, . . . , k − 1 (loop over parameter pairs)
Factor A− qj , B + pj , if necessary.
for i = 1, . . . , s (s ADI iterations per pair)

Perform ADI step with parameters (pj , qj) to obtain Xmks+js+i .
Check residual.

end
Compress Xmks+(j+1)s to reduce rank according to tolerance τ .

(sequential Karhunen-Loeve algorithm; see [Baker 2004]).
end

end
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Implementation Details

Practical considerations for a Modified Low-Rank Smith code

I Number of parameter to use and their values

I Order in which parameters are applied: Bagby ordering

I Number of consecutive times to apply each pair of parameters

I Use of real versus complex arithmetic

I Shift application: direct or inexact Krylov (potential for recycling, etc.)
Effect of shift choice on fill-in, convergence rate
— Heuristic for balancing number of shifts versus cost of factorization

I Accuracy of SVD compression
— New error bound on accuracy of truncated SVD approximation

I Residual computation

For details on each of these areas, see:
J. N. Sabino, Solution of Large-Scale Lyapunov Equations via the Block
Modified Smith Method, Rice University CAAM Report 06-08, 2006.

Thesis includes the following numerical examples (and many more).
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Implementation Details

Illustration of several shift designs: v domain

100

Table 3.3: (“Arrow” domain) Listed are the spectral radii resulting
from shifts selected by the methods in the text. A “+” indicates that
n + 1 Leja points, in total, were used to maintain conjugate pairs.

N.–Mead N.–Mead Leja

n Rect. (1) Interval (real) (complex) (# complex)

1 9.8e-01 9.0e-01 8.7e-01 — 9.9e-01 (0)

2 9.6e-01 6.5e-01 5.2e-01 7.5e-01 7.4e-01 (2+)

4 9.2e-01 3.9e-01 2.2e-01 2.7e-01 3.1e-01 (4+)

8 8.5e-01 1.5e-01 4.3e-02 4.1e-02 6.1e-02 (8+)

16 7.3e-01 2.2e-02 1.7e-03 1.6e-03 3.8e-03 (16+)

32 5.3e-01 5.1e-04 2.4e-06 1.1e-06 2.2e-06 (32+)

64 2.8e-01 2.6e-07 7.4e-12 2.2e-13 2.8e-13 (64+)
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Figure 3.7: Sixteen shifts, from smallest resulting spectral radius to
largest: complex Nelder–Mead (solid circles), real Nelder–Mead (hollow
circles), Leja (solid squares), optimal for rectangle (hollow square).

· spectrum of A • complex Nelder–Mead shifts Leja–Bagby shifts
◦ real Nelder–Mead shifts � optimal for rectangle
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Implementation Details

Illustration of several shift designs: v domain

Spectral radius of the ADI iteration matrix

φk(A) =
k−1Y
j=0

(A− pj)(A + pj)
−1

with k shifts for the strategies shown on the previous slide.

shifts rectangle NM (R) NM (C) Leja–Bagby
2 0.96 0.52 0.75 0.74 (3)
4 0.92 0.22 0.27 0.31 (5)
8 0.85 0.043 0.041 0.061 (9)
16 0.73 0.0017 0.0016 0.0038 (17)

Leja–Bagby approach uses an extra shift to maintain complex conjugates.
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Implementation Details

Illustration of several shift designs: t domain
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Table 3.4: (“Wings” domain) We repeat the experiment of Table 3.3
for the wing-shaped domain.

N.–Mead N.–Mead Leja

n Rect. (1) Interval (real) (complex) (# complex)

1 9.8e-01 9.8e-01 9.4e-01 — 9.4e-01 (0)

2 9.6e-01 9.2e-01 8.7e-01 8.8e-01 9.4e-01 (0)

4 9.2e-01 8.5e-01 7.1e-01 7.5e-01 7.5e-01 (2)

8 8.5e-01 7.3e-01 4.7e-01 2.5e-01 4.0e-01 (6)

16 7.3e-01 5.3e-01 2.0e-01 5.1e-02 6.2e-02 (14+)

32 5.3e-01 2.8e-01 4.2e-02 1.3e-03 1.3e-03 (26+)

64 2.8e-01 7.7e-02 1.4e-03 1.1e-06 3.5e-07 (54+)
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Figure 3.8: Sixteen shifts, from smallest resulting spectral radius to
largest: complex Nelder–Mead (solid circles), Leja (solid squares), real
Nelder–Mead (hollow circles), optimal for rectangle (hollow square).

· spectrum of A • complex Nelder–Mead shifts Leja–Bagby shifts
◦ real Nelder–Mead shifts � optimal for rectangle



Potential Theory and Practical Aspects of the Solution of Lyapunov Equations

Implementation Details

Illustration of several shift designs: t domain

Spectral radius of the ADI iteration matrix

φk(A) =
k−1Y
j=0

(A− pj)(A + pj)
−1

with k shifts for the strategies shown on the previous slide.

shifts rectangle NM (R) NM (C) Leja–Bagby
2 0.96 0.87 0.88 0.94 (3)
4 0.92 0.71 0.75 0.75 (5)
8 0.85 0.47 0.25 0.40 (9)
16 0.73 0.20 0.051 0.062 (17)

Leja–Bagby approach uses an extra shift to maintain complex conjugates.
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Implementation Details

Shift designs for SLICOT examples: CD player
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−7.9e+004

4.3e+004

Figure 3.12: Shifts - CD player

spectral radius
shifts NM (R) NM (C) Bagby

2 0.9963 0.9997 0.9999
4 0.9918 0.9991 0.9997
8 0.9799 0.9949 0.9990
16 0.9642 0.9866 0.9935

· spectrum of A • complex Nelder–Mead shifts � Leja–Bagby shifts
◦ real Nelder–Mead shifts
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Implementation Details

Shift designs for SLICOT examples: ISS
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6.1e+001

Figure 3.13: Shifts - International Space Station (ISS)

spectral radius
shifts NM (R) NM (C) Bagby

2 0.9959 0.9980 1.0000
4 0.9925 0.9997 1.0000
8 0.9834 0.9995 0.9999
16 0.9668 0.9983 0.9991

· spectrum of A • complex Nelder–Mead shifts � Leja–Bagby shifts
◦ real Nelder–Mead shifts
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Implementation Details

Shift designs for SLICOT examples: Eady
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−2.1e+001

1.2e+001

Figure 3.16: Shifts - Eady

spectral radius
shifts NM (R) NM (C) Bagby

2 0.9555 0.9555 0.9837
4 0.9130 0.9132 0.9753
8 0.8335 0.9094 0.9479
16 0.6947 0.6447 0.7693

(n.b. significant departure from normality)

· spectrum of A • complex Nelder–Mead shifts � Leja–Bagby shifts
◦ real Nelder–Mead shifts
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Implementation Details

Shift designs for SLICOT examples: random
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−3.9e+004

1.5e+004

Figure 3.20: Shifts - Random

spectral radius
shifts NM (R) NM (C) Bagby

2 1.0000 1.0000 0.9298
4 0.9999 0.8414 0.8785
8 0.9999 0.2645 0.3020
16 0.9998 0.0069 0.0152

· spectrum of A • complex Nelder–Mead shifts � Leja–Bagby shifts
◦ real Nelder–Mead shifts
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Implementation Details

Timings for Lyapunov solve, power grid model (nonsymmetric)

n matrix dimension
teigs time required to estimate the spectrum, seconds
tshifts time required to compute real Nelder–Mead shifts, seconds
tsmith time required for the modified Smith method, seconds

k number of distinct shifts selected
s number of times each shift is appliedbk number of distinct shifts actually used
r rank of computed solution

n teigs tshifts tsmith k s bk r
7396 1 1.0 3 4 33 3 37

29796 6 1.0 17 4 58 3 59
67196 13 1.0 50 4 77 3 80

119596 25 1.0 121 4 105 3 103
269396 52 1.1 345 7 80 5 143
366796 77 5.3 591 5 135 4 165

Convergence criterion: relative residual norm ≤ 10−6

Sun Ultra 20, 2.2 GHz AMD Opteron 148; 3 GB RAM
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