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Outline of the Talk

• Introduction: Linear system, PN = I − AZE−1Y T + λNZE−1Y T , etc.

• Spectral properties
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Erlangga, Harrachov 2007, August 20, 2007 (slide 2)



Introdcution

The linear system:

Au = b, A ∈ C
N×N , u, b ∈ C

N .

(A is in general nonsymmetric, sparse and large)

Problems:

• Diffusion problem (symmetric)

• Convection-diffusion equation (nonsymmetric)

• Helmholtz equation (symmetric, indefinite)

Preconditioned system:

M−1
1 AM−1

2 ũ = M−1
1 b, ũ = M2u, M1,M2 nonsingular.

For generality,

Âû = b̂, Â := M−1A, û := u, b̂ := M−1b.
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Introduction

Consider “the second level preconditioner”:

PN = PD + λNZE−1Y T , Ê = Y T ÂZ,

where

PD = I − ÂZÊ−1Y T , (Deflation)

and solve the system

PNÂû = PN b̂.

• λN = maxx 6=0(x
T Âx)/(xTx)

• Ê: Galerkin product

• Z, Y ∈ Rn×r are full rank

• PN is derived from generalized Wielandt’s deflation, with PD a special case [E., Nabben, 2007]
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Introduction

Right preconditioning version:

With

QN = QD + λNZE−1Y T , Ê = Y T ÂZ,

where

QD = I − ZÊ−1Y T Â,

solve

ÂQN û = b̂, u = QN û, b̂ = b.

For theory, we focus on PNÂ. In the implementation, ÂQN .
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Spectral properties of PNÂ

For PNÂû = PN b̂:

Denote the spectrum of Â: σ(Â) = {λ1, . . . , λN}, λi ≤ λj for i < j.

Theorem 1 Columns of Z, Y ∈ Rn×r are right and left eigenvectors of Â. Thus, Ê is the
eigenvalue matrix of Â and

σ(PNÂ) = {λN , . . . , λN , λr+1, . . . , λN}.

• PNÂ is not symmetric, even if Â is symmetric.
For symmetric Â, κ = λN/λr+1 is not the condition number.

• But, κeff := λN/λr+1 ≤ λN/λ1 =: κ.

PNÂ is more clustered than Â −→ Favorable for Krylov methods

Compare: (from Nabben’s talk)

Deflation: σ(PDÂ) = {0, . . . , 0, λr+1, . . . , λN}.
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Spectral properties of PNÂ

Spectral relation between PDÂ and PNÂ.

Theorem 2 Z, Y are “arbitrary” rectangular matrices with rank r.

σ(PDÂ) = {0, . . . , 0, µr+1, . . . , µN} =⇒ σ(PNÂ) = {λN , . . . , λN , µr+1, . . . , µN}.

• σ(PNÂ) is similar to σ(PDÂ)

• convergence is likely very similar (if λN ∼ µN , and σ convergence sole criterion)

• Since Z and Y are arbitrary, we can choose, e.g.,

Z = Ih
H = (IH

h )T , Y T = IH
h , Ê = IH

h ÂhI
h
H. (Z an interpolation matrix)
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Spectral properties of PNÂ

Deflation:

• P 2
D = PD (Projection)

• PDÂ = ÂQD

• If Â is symmetric, then PDÂ is also symmetric

In contrast:

• P 2
N 6= PN

• PNÂ 6= ÂQN . However, σ(PNÂ) = σ(ÂQN)

• PNÂ is not symmetric even if Â is symmetric.

Furthermore,

• PNA can not be expressed in terms of iteration matrix in the Richardson method (?)

• Consequence: PNA has to be seen only from Krylov subspace method context.
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Spectral properties of PNÂ

Spectral sensitivity w.r.t. inexact coarse grid solves.

Proposition 3 Z eigenvectors. In PN = I − ÂZẼ−1Y T + λNZẼ−1Y T , assume

Ẽ−1 = diag

(
1− ǫ1

λ1
. . .

1− ǫr

λr

)

where |ǫi|i=1,r ≪ 1. Then,

σ(PNÂ) = {(1− ǫ1)λN + λ1ǫ1, . . . , (1− ǫr)λN + λrǫr, λr+1, . . . , λN}.

(Recall Nabben’s talk) : σ(PDÂ) = {λ1ǫ1, . . . , λrǫr, λr+1, . . . , λN}.

→ PNÂ is less sensitive than PDÂ w.r.t. inexact coarse grid solves.

• r can be chosen very large (large projection subspace)

• E−1 can be computed only approximately (by an inner iteration)
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Implementation (1): two level

Two-grid (two-level) notations:

• Âh = M−1
h Ah, PN = Ih − ÂhZÊ−1Y T + λNZÊ−1Y T

• Ê = Y T ÂZ = Y TM−1
h AhZ =: ÂH .

Preconditioning step in a Krylov subspace method:

xh = Âhvh

wh = PNxh

In an expanded form:

wh = (I − ÂhZÊ−1Y T + λNZÊ−1Y T )xh

= xh − (Âh − λNI)ZÂ−1
H Y Txh (Ê ≡ ÂH)

= xh − (Âh − λNI)ZÂ−1
H xH, (xH = Y Txh)

xH := Y Txh a fine-to-coarse projection of xh.

Â−1
H xH =: x̂H ⇒ ÂHx̂H = xH is solved only approximately by a (inner) Krylov method.
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Implementation (2): two level

Notes on ÂHx̂H = xH.

• ÂH is inverted exactly → the fastest convergence of the outer iteration.

It means inner iterations with a severe termination criterion.

• PN is a “stable” projection method.

Inner iteration with less thight termination criterion (e.g., tol = 10−2).

• Residual/error in the inner iteration can be fast reduced by applying PN at the “second”
level, i.e.,

Solve: PN,HÂHx̂H = PN,HxH (instead of ÂHx̂H = xH)

•With inner Krylov iterations, PN is in general not constant

Use flexible Krylov subspace method (FGMRES, FQMR, . . . )
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Implementation (3): multilevel projection algorithm

• Initialization. With given u
(1)
0 ,

Set Zi,i+1, i = 1, . . . ,m− 1 (m > 1 the maximum level) and Yi,i+1 = Zi,i+1

Compute Â(i) = Y T
i−1,iÂ

(i−1)Zi−1,i, for i = 2, . . . , m, and λ
(i)
N

• At i = 1, solve P
(1)
N Â(1)u(1) = P

(1)
N b with a Krylov method until convergence using

x(1) = Â(1)v(1) = A(1)(M (1))−1v(1)

Restriction: x(2) = Y T
1,2x

(1)

At i = 2, solve P
(2)
N Â(2)d(2) = P

(2)
N x(2) with a Krylov subspace method using

x(2) = Â(2)v(2) = A(2)(M (2))−1v(2)

Restriction: x(3) = Y T
2,3x

(2)

· · ·

At i = i+1. If i = m, x(m) = (Â(m))−1d(i). Else, solve P
(i)
N Â(i)d(i) = P

(i)
N x(i).

· · ·

Interpolation: ŵ(2) = Z2,3d
(3)

w(2) = x(2) − (Â(2) − λ
(2)
N I)ŵ(2)

Interpolation: ŵ(1) = Z1,2d
(2)

w(1) = x(1) − (Â(1) − λ
(1)
N I)ŵ(1)
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Implementation (4): some other issues

• The choice of Z and Y

Sparsity of Z and Y ;

May be the same as interpolation and restriction matrices in multigrid (e.g., piece-wise
constant, bi-linear interpolation, etc.);

But not eigenvectors;

Y = Z;

• About λN

Expensive too compute, but an approximate is sufficient:

→ by Gerschgorin’s theorem.

→ by other means (in case of the Helmholtz equation)

Because of this approximation:

λN ← ω · λN , 0 < ω ≤ 1, (ω: a “correction” factor)
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Numerical example: 2D Poisson equation (1/2)

The 2D Poisson equation:

−∇ · ∇u = g, in Ω ∈ (0, 1)2,

u = 0, on Γ = ∂Ω.

Discretization: finite differences.

Z: Piecewise linear interpolation, Y = Z

1Ω

Ω

Ω2

Ω3 4

Ω with index set I = {i|ui ∈ Ω}.
Ω is partitioned into non-overlapping subdomain Ωj, j =
1, . . . , l, with respective index Ij = {i ∈ I|ui ∈ Ωj}.
Then, Z = [zij]:

zij =

{
1, i ∈ Ij,

0, i /∈ Ij.

In Â = M−1A, M = I .
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Numerical example: 2D Poisson equation (2/2)

Convergence results: relative residual ≤ 10−6, ω = 1
Gerschgorin estimate for λN

N MP(2,2,2,2) MP(4,2,2,2) MP(6,2,2,2) MP(4,3,3,3) MG
322 15 14 14 14 11
642 16 14 14 14 11
1282 16 14 14 14 11
2562 16 14 14 14 11

Notation:

•MP(4,2,2,2): Multilevel Projection with 4,2,2 and 2 FGMRES iterations at level no. 1,2,3
and 4. Etc.

•MG: Multi Grid (here, V-cycle, one pre- and post RB-GS smoothing, bilinear interpolation)

Obersvation:

• Level i = 2 is important!

• h-indepedent convergence

• Convergence of MP is comparable with MG.
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Numerical example: 2D Convection-diffusion equation (1/2)

The 2D convection-diffusion equation with vertical winds:

∂u

∂y
−

1

Pe
∇ · ∇u = 0, in Ω = (−1, 1)2,

u(−1, y) ≈ −1, u(1, y) ≈ 1,

u(x,−1) = x, u(x, 1) = 0.

x

y

−0.5 0 0.5

−0.5

0

0.5

Discretization: Finite volume, upwind discretization for convective term

Z: piece-wise constant interpolation, Y = Z

In Â = M−1A, M = diag(A)
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Numerical example: 2D Convection-diffusion equation (2/2)

Convergence results: relative residual ≤ 10−6

MP(4,2,2,2), ω = 0.8, Gerschgorin estimate for λN

Pe:
Grid 20 50 100 200
1282 16 16 18 24
2562 16 16 16 17
5122 15 16 16 15

• In MP, FGMRES is used

•MG (with V-cycle, one pre- and post RB-GS smoothing and bilinear interpolation) does
not converge

Observation:

• Level i = 2 is important!

• Almost h- and Pe-independent convergence
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Numerical example: 2D Helmholtz equation (1/8)

The 2D Helmholtz equation:

Au := −
∂2u

∂x2
−

∂2u

∂y2
− k2u = f, in Ω = (0, 1),

with radiation conditions on Γ = ∂Ω.

Preconditioner operator: 2D shifted Laplacian [E., Oosterlee & Vuik, SISC (2006)]:

M := −
∂2

∂x2
−

∂2

∂y2
− (1− 0.5î)k2.

In Â = M−1A, A and M are the discrete form of A andM.

Theorem 4 λN(M−1A)→ 1 (or λN(AM−1)→ 1).

M is approximately inverted by multigrid with F-cycle, one Jacobi pre- and postsmoothing.
AM−1 is not explicitly known!
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Numerical example: 2D Helmholtz equation (2/8)

For Â = AM−1: Recall that Ê = ZT ÂZ = ZTM−1AZ (Y = Z).

In two-level projection:

Ê = ZTAhM
−1
h Z

≈ (ZTAhZ)(ZTMhZ)−1ZTZ = AHM−1
H BH,

where

AH = ZTAhZ, MH = ZTMhZ, BH = ZTIZ.

In multi-level projection:

At level j = 1, A(1) := A, M (1) := M , B(1) := I , Â(1) = A(1)(M (1))−1 and Q
(1)
N = QN .

For j = 2, . . . , m,

A(j) = ZT
(j−1,j)A

(j−1)Z(j−1,j),

M (j) = ZT
(j−1,j)M

(j−1)Z(j−1,j),

B(j) = ZT
(j−1,j)B

j−1Z(j−1,j),

Â(j) = A(j)(M (j))−1B(j),

Q
(j)
N = I − Z(j−1,j)(Â

(j))−1ZT
(j−1,j)

(
Â(j−1) − ωλ

(j)
N I

)
.
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Numerical example: 2D Helmholtz equation (3/8)

Algorithm: Multilevel projection, with u(1) = (M (1))−1ũ(1)

At j = 1, solve A(1)(M (1))−1ũ(1) = b with Krylov method by computing:

v
(1)
M = (M (1))−1v(1) with multigrid;

s(1) = A(1)v
(1)
M ; t(1) = s(1) − ωλ

(1)
N v(1);

Restriction: (v′R)(2) = ZT
(1,2)t

(1);

If j = m: solve exactly v
(m)
R = (Â(m))−1(v′R)(m);

else
At j = 2, solve A(2)(M (2))−1B(2)v

(2)
R = (v′R)(2) with Krylov iterations by computing:

v
(2)
M = (M (1))−1B(2)v(2) with multigrid;

s(2) = A(2)v
(2)
M ; t(2) = s(2) − ωλ

(2)
N v(2);

Restriction: (v′R)(3) = ZT
(2,3)t

(2);

If j = m: solve exactly v
(m)
R = (Â(m))−1(v′R)(m);

else
. . .

Interpolation: q(1) = v(I) − Z
(T )
(1,2)v

(2)
R ;

w(1) = (M (1))−1q(1) with multigrid;
p(1) = A(1)w(1);
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Numerical example: 2D Helmholtz equation (4/8)

Multigrid–Multilevel projection (MG–MP) cycle:

1

2

3

4

5

IT+1IT

Black circle: Projection step

White circle: Multigrid step (shown as V-cycle, but can also be with other cycles).

Erlangga, Harrachov 2007, August 20, 2007 (slide 21)



Numerical example: 2D Helmholtz equation (5/8)

Convergence results: relative residual ≤ 10−6

Multilevel with MG–MP(4,2,1), ω = 1, λN = 1

k:
g/w 20 40 60 80 100 120 200
15 11 14 15 17 20 22 39
20 12 13 15 16 18 21 30
30 11 12 12 13 13 15 24

• Constant wavenumber k

• “g/w” : number of gridpoints per wavelength

• In MP, FGMRES is used

• In MG, F-cycle with one Jacobi pre- and postsmoothing is used
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Numerical example: 2D Helmholtz equation (6/8)

Convergence results: relative residual ≤ 10−6

Multilevel with MG–MP(6,2,1), ω = 1, λN = 1

k:
g/w 20 40 60 80 100 120 200
15 11 14 14 18 18 20 28
20 12 13 15 15 16 17 25
30 11 12 12 13 13 15 16
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Numerical example: 2D Helmholtz equation (7/8)

Convergence and CPU time for 15 gridpoints/wavelength
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Numerical example: 2D Helmholtz equation (8/8)

Convergence and CPU time for 30 gridpoints/wavelength
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Conclusion

•We discussed a multilevel projection-based iteration based on shifting small eigenvalues
to the max eigenvalue.

• Theoretical aspects of the method had been shown

• The stability of the projection operator allows the use of inner iterations to handle the
coarse grid problem with low accuracy.

• Parameter λN can be determined algebraically (using Gerschgorin’s theorem, e.g.) or
analytically (in the case of the Helmholtz equation).

• Coarse grid (preconditioned) matrices are approximated by a product of coarse grid ma-
trices

• Numerical experiments were shown for a different class of problems:

→ Poisson equation: h-independent convergence (multigrid-like)

→ Convection-diffusion equation: h- and nearly Pe-independent convergence

→ Helmholtz equation: combination of multigrid and multilevel projection iterations

h- and nearly k-independent convergence

gain in CPU time at high wavenumbers
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