Multilevel Projection-based Krylov Methods for solving a class of PDE's

Yogi A. Erlangga

Institut für Mathematik – TU Berlin

Reinhard Nabben – TU Berlin

with support from Deutsche Forschungsgemeinschaft (DFG)

Erlangga, Harrachov 2007, August 20, 2007 (slide 1)

- Introduction: Linear system, $P_N = I AZE^{-1}Y^T + \lambda_N ZE^{-1}Y^T$, etc.
- Spectral properties
- Implementation aspects
- Numerical examples:
 - SPD case: 2D Poisson equation
 - Nonsymmetric case: 2D convection-diffusion equation
 - Indefinite case: 2D Helmholtz equation
- Conclusion

The linear system:

$$Au = b, \qquad A \in \mathbb{C}^{N \times N}, \quad u, b \in \mathbb{C}^{N}.$$

(A is in general nonsymmetric, sparse and large)

Problems:

- Diffusion problem (symmetric)
- Convection-diffusion equation (nonsymmetric)
- Helmholtz equation (symmetric, indefinite)

Preconditioned system:

 $M_1^{-1}AM_2^{-1}\widetilde{u} = M_1^{-1}b, \quad \widetilde{u} = M_2u, \qquad M_1, M_2 \text{ nonsingular.}$

For generality,

$$\widehat{A}\widehat{u}=\widehat{b},\qquad \widehat{A}:=M^{-1}A,\quad \widehat{u}:=u,\quad \widehat{b}:=M^{-1}b.$$

Introduction

Consider "the second level preconditioner":

$$P_N = P_D + \lambda_N Z E^{-1} Y^T, \qquad \widehat{E} = Y^T \widehat{A} Z,$$

where

$$P_D = I - \hat{A}Z\hat{E}^{-1}Y^T,$$
 (Deflation)

and solve the system

 $P_N\widehat{A}\widehat{u} = P_N\widehat{b}.$

- $\lambda_N = \max_{x \neq 0} (x^T \widehat{A} x) / (x^T x)$
- \widehat{E} : Galerkin product
- $\bullet \ Z,Y \in \mathbb{R}^{n \times r}$ are full rank
- P_N is derived from generalized Wielandt's deflation, with P_D a special case [E., Nabben, 2007]

Introduction

Right preconditioning version:

With

$$Q_N = Q_D + \lambda_N Z E^{-1} Y^T, \qquad \widehat{E} = Y^T \widehat{A} Z,$$

where

$$Q_D = I - Z\widehat{E}^{-1}Y^T\widehat{A},$$

solve

$$\widehat{A}Q_N\widehat{u} = \widehat{b}, \qquad u = Q_N\widehat{u}, \quad \widehat{b} = b.$$

For theory, we focus on $P_N\widehat{A}$. In the implementation, $\widehat{A}Q_N$.

Erlangga, Harrachov 2007, August 20, 2007 (slide 5)

For $P_N \widehat{A} \widehat{u} = P_N \widehat{b}$:

Denote the spectrum of \hat{A} : $\sigma(\hat{A}) = \{\lambda_1, \dots, \lambda_N\}$, $\lambda_i \leq \lambda_j$ for i < j.

Theorem 1 Columns of $Z, Y \in \mathbb{R}^{n \times r}$ are right and left eigenvectors of \hat{A} . Thus, \hat{E} is the eigenvalue matrix of \hat{A} and

$$\sigma(P_N \hat{A}) = \{\lambda_N, \ldots, \lambda_N, \lambda_{r+1}, \ldots, \lambda_N\}.$$

- $P_N \hat{A}$ is not symmetric, even if \hat{A} is symmetric. For symmetric \hat{A} , $\kappa = \lambda_N / \lambda_{r+1}$ is not the condition number.
- But, $\kappa_{eff} := \lambda_N / \lambda_{r+1} \le \lambda_N / \lambda_1 =: \kappa$. $P_N \hat{A}$ is more clustered than $\hat{A} \longrightarrow$ Favorable for Krylov methods

Compare: (from Nabben's talk)

Deflation:
$$\sigma(P_D \hat{A}) = \{0, \ldots, 0, \lambda_{r+1}, \ldots, \lambda_N\}.$$

Spectral relation between $P_D \widehat{A}$ and $P_N \widehat{A}$.

Theorem 2 Z, Y are "arbitrary" rectangular matrices with rank r. $\sigma(P_D \widehat{A}) = \{0, \dots, 0, \mu_{r+1}, \dots, \mu_N\} \implies \sigma(P_N \widehat{A}) = \{\lambda_N, \dots, \lambda_N, \mu_{r+1}, \dots, \mu_N\}.$

• $\sigma(P_N\widehat{A})$ is similar to $\sigma(P_D\widehat{A})$

- convergence is likely very similar (if $\lambda_N \sim \mu_N$, and σ convergence sole criterion)
- \bullet Since Z and Y are arbitrary, we can choose, e.g.,

$$Z = I_H^h = (I_h^H)^T, \quad Y^T = I_h^H, \qquad \widehat{E} = I_h^H \widehat{A}_h I_H^h. \qquad (Z \text{ an interpolation matrix})$$

Deflation:

- $P_D^2 = P_D$ (Projection)
- $P_D \widehat{A} = \widehat{A} Q_D$
- If \widehat{A} is symmetric, then $P_D\widehat{A}$ is also symmetric

In contrast:

- $P_N^2 \neq P_N$
- $P_N \widehat{A} \neq \widehat{A} Q_N$. However, $\sigma(P_N \widehat{A}) = \sigma(\widehat{A} Q_N)$
- $P_N \widehat{A}$ is not symmetric even if \widehat{A} is symmetric.

Furthermore,

- P_NA can not be expressed in terms of iteration matrix in the Richardson method (?)
- Consequence: P_NA has to be seen only from Krylov subspace method context.

Spectral sensitivity w.r.t. inexact coarse grid solves.

Proposition 3 Z eigenvectors. In $P_N = I - \widehat{A}Z\widetilde{E}^{-1}Y^T + \lambda_N Z\widetilde{E}^{-1}Y^T$, assume

$$\widetilde{E}^{-1} = diag\left(\frac{1-\epsilon_1}{\lambda_1}\dots\frac{1-\epsilon_r}{\lambda_r}\right)$$

where
$$|\epsilon_i|_{i=1,r} \ll 1$$
. Then,
 $\sigma(P_N \widehat{A}) = \{(1 - \epsilon_1)\lambda_N + \lambda_1 \epsilon_1, \dots, (1 - \epsilon_r)\lambda_N + \lambda_r \epsilon_r, \lambda_{r+1}, \dots, \lambda_N\}.$

(Recall Nabben's talk): $\sigma(P_D \widehat{A}) = \{\lambda_1 \epsilon_1, \dots, \lambda_r \epsilon_r, \lambda_{r+1}, \dots, \lambda_N\}.$

 $\rightarrow P_N \widehat{A}$ is less sensitive than $P_D \widehat{A}$ w.r.t. inexact coarse grid solves.

- r can be chosen very large (large projection subspace)
- E^{-1} can be computed only approximately (by an inner iteration)

Two-grid (two-level) notations:

•
$$\widehat{A}_h = M_h^{-1} A_h$$
, $P_N = I_h - \widehat{A}_h Z \widehat{E}^{-1} Y^T + \lambda_N Z \widehat{E}^{-1} Y^T$

• $\widehat{E} = Y^T \widehat{A} Z = Y^T M_h^{-1} A_h Z =: \widehat{A}_H.$

Preconditioning step in a Krylov subspace method:

$$x_h = \widehat{A}_h v_h$$
$$w_h = P_N x_h$$

In an expanded form:

$$w_{h} = (I - \widehat{A}_{h}Z\widehat{E}^{-1}Y^{T} + \lambda_{N}Z\widehat{E}^{-1}Y^{T})x_{h}$$

= $x_{h} - (\widehat{A}_{h} - \lambda_{N}I)Z\widehat{A}_{H}^{-1}Y^{T}x_{h}$ $(\widehat{E} \equiv \widehat{A}_{H})$
= $x_{h} - (\widehat{A}_{h} - \lambda_{N}I)Z\widehat{A}_{H}^{-1}x_{H},$ $(x_{H} = Y^{T}x_{h})$

 $x_H := Y^T x_h$ a fine-to-coarse projection of x_h .

 $\widehat{A}_{H}^{-1}x_{H} =: \widehat{x}_{H} \Rightarrow \widehat{A}_{H}\widehat{x}_{H} = x_{H}$ is solved only approximately by a (*inner*) Krylov method.

Notes on $\widehat{A}_H \widehat{x}_H = x_H$.

- \widehat{A}_H is inverted exactly \rightarrow the fastest convergence of the *outer* iteration. It means inner iterations with a severe termination criterion.
- P_N is a "stable" projection method.

Inner iteration with less thight termination criterion (e.g., $tol = 10^{-2}$).

• Residual/error in the inner iteration can be fast reduced by applying P_N at the "second" level, i.e.,

Solve: $P_{N,H}\widehat{A}_H\widehat{x}_H = P_{N,H}x_H$ (instead of $\widehat{A}_H\widehat{x}_H = x_H$)

• With inner Krylov iterations, P_N is in general not constant Use flexible Krylov subspace method (FGMRES, FQMR, ...) Implementation (3): multilevel projection algorithm

• Initialization. With given $u_0^{(1)}$, Set $Z_{i,i+1}$, $i = 1, \ldots, m-1$ (m > 1 the maximum level) and $Y_{i,i+1} = Z_{i,i+1}$ Compute $\widehat{A}^{(i)} = Y_{i-1,i}^T \widehat{A}^{(i-1)} Z_{i-1,i}$, for $i = 2, \ldots, m$, and $\lambda_N^{(i)}$ • At i = 1, solve $P_N^{(1)} \widehat{A}^{(1)} u^{(1)} = P_N^{(1)} b$ with a Krylov method until convergence using $x^{(1)} = \widehat{A}^{(1)}v^{(1)} = A^{(1)}(M^{(1)})^{-1}v^{(1)}$ Restriction: $x^{(2)} = Y_{1,2}^T x^{(1)}$ At i = 2, solve $P_{N}^{(2)} \widehat{A}^{(2)} d^{(2)} = P_{N}^{(2)} x^{(2)}$ with a Krylov subspace method using $x^{(2)} = \widehat{A}^{(2)}v^{(2)} = A^{(2)}(M^{(2)})^{-1}v^{(2)}$ Restriction: $x^{(3)} = Y_{2,3}^T x^{(2)}$. . . At i = i+1. If i = m, $x^{(m)} = (\widehat{A}^{(m)})^{-1} d^{(i)}$. Else, solve $P_N^{(i)} \widehat{A}^{(i)} d^{(i)} = P_N^{(i)} x^{(i)}$ Interpolation: $\widehat{w}^{(2)} = Z_{2,3}d^{(3)}$ $w^{(2)} = x^{(2)} - (\widehat{A}^{(2)} - \lambda_N^{(2)}I)\widehat{w}^{(2)}$ Interpolation: $\widehat{w}^{(1)} = Z_{1,2}d^{(2)}$ $w^{(1)} = x^{(1)} - (\widehat{A}^{(1)} - \lambda_{\scriptscriptstyle N}^{(1)}I)\widehat{w}^{(1)}$

\bullet The choice of Z and Y

Sparsity of Z and Y;

May be the same as interpolation and restriction matrices in multigrid (e.g., piece-wise constant, bi-linear interpolation, etc.);

But not eigenvectors;

Y = Z;

• About λ_N

Expensive too compute, but an approximate is sufficient:

- \rightarrow by Gerschgorin's theorem.
- \rightarrow by other means (in case of the Helmholtz equation)

Because of this approximation:

 $\lambda_N \leftarrow \omega \cdot \lambda_N$, $0 < \omega \leq 1$, (ω : a "correction" factor)

The 2D Poisson equation:

$$\begin{aligned} -\nabla \cdot \nabla u \ = \ g, & \text{in } \Omega \in (0,1)^2, \\ u \ = \ 0, & \text{on } \Gamma = \partial \Omega. \end{aligned}$$

Discretization: finite differences.

Z: Piecewise linear interpolation, Y = Z

$$\ln \, \widehat{A} = M^{-1}A, \, M = I.$$

 Ω with index set $\mathcal{I} = \{i | u_i \in \Omega\}$. Ω is partitioned into non-overlapping subdomain Ω_j , $j = 1, \ldots, l$, with respective index $\mathcal{I}_j = \{i \in \mathcal{I} | u_i \in \Omega_j\}$. Then, $Z = [z_{ij}]$:

$$z_{ij} = \begin{cases} 1, & i \in \mathcal{I}_j, \\ 0, & i \notin \mathcal{I}_j. \end{cases}$$

Convergence results: relative residual $\leq 10^{-6}$, $\omega = 1$										
Gerschgorin estimate for λ_N										
N	MP(2,2,2,2) MP(4,2,2,2) MP(6,2,2,2) MP(4,3,3,3) MG									
32^{2}	15	14	14	14	11					
64^{2}	16	14	14	14	11					
128^{2}	16	14	14	14	11					
256^{2}	16	14	14	14	11					

Notation:

- MP(4,2,2,2): Multilevel Projection with 4,2,2 and 2 FGMRES iterations at level no. 1,2,3 and 4. Etc.
- MG: Multi Grid (here, V-cycle, one pre- and post RB-GS smoothing, bilinear interpolation)

Obersvation:

- Level i = 2 is important!
- \bullet h-indepedent convergence
- Convergence of MP is comparable with MG.

The 2D convection-diffusion equation with vertical winds:

$$\frac{\partial u}{\partial y} - \frac{1}{Pe} \nabla \cdot \nabla u = 0, \quad \text{in } \Omega = (-1, 1)^2,$$

$$u(-1, y) \approx -1, \quad u(1, y) \approx 1,$$

$$u(x, -1) = x, \quad u(x, 1) = 0.$$

$$\begin{array}{c} \text{o.5} \\ \text{o.6} \\ \text{o.6}$$

х

Discretization: Finite volume, upwind discretization for convective term

Z: piece-wise constant interpolation, Y = Z

In
$$\widehat{A} = M^{-1}A$$
, $M = diag(A)$

Convergence results: relative residual $\leq 10^{-6}$								
MP(4,2,2,2	2), $\omega=$	= 0.8,	Gerso	hgorin	estim	ate for λ_N		
			P	<i>e</i> :				
	Grid	20	50	100	200			
	128^{2}	16	16	18	24			
	256^{2}	16	16	16	17			

 512^{2}

15

•	In	MP,	FGMRES	is	used
---	----	-----	--------	----	------

• MG (with V-cycle, one pre- and post RB-GS smoothing and bilinear interpolation) does not converge

16

16

15

Observation:

- Level i = 2 is important!
- Almost h- and Pe-independent convergence

The 2D Helmholtz equation:

$$\mathcal{A} u := -\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - k^2 u = f, \quad \text{in } \Omega = (0,1),$$

with radiation conditions on $\Gamma = \partial \Omega$.

Preconditioner operator: 2D shifted Laplacian [E., Oosterlee & Vuik, SISC (2006)]:

$$\mathcal{M} := -\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - (1 - 0.5\hat{i})k^2.$$

In $\widehat{A} = M^{-1}A$, A and M are the discrete form of \mathcal{A} and \mathcal{M} .

Theorem 4 $\lambda_N(M^{-1}A) \rightarrow 1$ (or $\lambda_N(AM^{-1}) \rightarrow 1$).

M is approximately inverted by multigrid with F-cycle, one Jacobi pre- and postsmoothing. AM^{-1} is not explicitly known!

Numerical example: 2D Helmholtz equation (2/8)

For
$$\widehat{A} = AM^{-1}$$
: Recall that $\widehat{E} = Z^T \widehat{A} Z = Z^T M^{-1} A Z$ $(Y = Z)$.
In two-level projection:

$$\hat{E} = Z^{T} A_{h} M_{h}^{-1} Z \approx (Z^{T} A_{h} Z) (Z^{T} M_{h} Z)^{-1} Z^{T} Z = A_{H} M_{H}^{-1} B_{H},$$

where

$$A_H = Z^T A_h Z, \qquad M_H = Z^T M_h Z, \qquad B_H = Z^T I Z.$$

In multi-level projection:

At level j = 1, $A^{(1)} := A$, $M^{(1)} := M$, $B^{(1)} := I$, $\hat{A}^{(1)} = A^{(1)}(M^{(1)})^{-1}$ and $Q_N^{(1)} = Q_N$. For $j = 2, \ldots, m$,

$$\begin{aligned} A^{(j)} &= Z^{T}_{(j-1,j)} A^{(j-1)} Z_{(j-1,j)}, \\ M^{(j)} &= Z^{T}_{(j-1,j)} M^{(j-1)} Z_{(j-1,j)}, \\ B^{(j)} &= Z^{T}_{(j-1,j)} B^{j-1} Z_{(j-1,j)}, \\ \hat{A}^{(j)} &= A^{(j)} (M^{(j)})^{-1} B^{(j)}, \\ Q^{(j)}_{N} &= I - Z_{(j-1,j)} (\hat{A}^{(j)})^{-1} Z^{T}_{(j-1,j)} \left(\hat{A}^{(j-1)} - \omega \lambda^{(j)}_{N} I \right). \end{aligned}$$

Numerical example: 2D Helmholtz equation (3/8)

Algorithm: Multilevel projection, with $u^{(1)} = (M^{(1)})^{-1} \widetilde{u}^{(1)}$

At
$$j = 1$$
, solve $A^{(1)}(M^{(1)})^{-1}\widetilde{u}^{(1)} = b$ with Krylov method by computing:
 $v_M^{(1)} = (M^{(1)})^{-1}v^{(1)}$ with multigrid;
 $s^{(1)} = A^{(1)}v_M^{(1)}$; $t^{(1)} = s^{(1)} - \omega \lambda_N^{(1)}v^{(1)}$;
Restriction: $(v_R')^{(2)} = Z_{(1,2)}^T t^{(1)}$;
If $j = m$: solve exactly $v_R^{(m)} = (\hat{A}^{(m)})^{-1}(v_R')^{(m)}$;
else
At $j = 2$, solve $A^{(2)}(M^{(2)})^{-1}B^{(2)}v_R^{(2)} = (v_R')^{(2)}$ with Krylov iterations by computing:
 $v_M^{(2)} = (M^{(1)})^{-1}B^{(2)}v^{(2)}$ with multigrid;
 $s^{(2)} = A^{(2)}v_M^{(2)}$; $t^{(2)} = s^{(2)} - \omega \lambda_N^{(2)}v^{(2)}$;
Restriction: $(v_R')^{(3)} = Z_{(2,3)}^T t^{(2)}$;
If $j = m$: solve exactly $v_R^{(m)} = (\hat{A}^{(m)})^{-1}(v_R')^{(m)}$;
else

 $\begin{array}{l} \mbox{Interpolation:} \ q^{(1)} = v^{(I)} - Z^{(T)}_{(1,2)} v^{(2)}_R \mbox{;} \\ w^{(1)} = (M^{(1)})^{-1} q^{(1)} \mbox{ with multigrid} \mbox{;} \\ p^{(1)} = A^{(1)} w^{(1)} \mbox{;} \end{array}$

Multigrid–Multilevel projection (MG–MP) cycle:

Black circle: Projection step

White circle: Multigrid step (shown as V-cycle, but can also be with other cycles).

Convergence results: relative residual $\leq 10^{-6}$ Multilevel with MG-MP(4,2,1), $\omega = 1$, $\lambda_N = 1$

	k:						
g/w	20	40	60	80	100	120	200
15	11	14	15	17	20	22	39
20	12	13	15	16	18	21	30
30	11	12	12	13	13	15	24

- Constant wavenumber k
- \bullet ''g/w'' : number of gridpoints per wavelength
- In MP, FGMRES is used
- In MG, F-cycle with one Jacobi pre- and postsmoothing is used

Convergence results: relative residual $\leq 10^{-6}$ Multilevel with MG-MP(6,2,1), $\omega = 1$, $\lambda_N = 1$

	<i>k</i> :						
g/w	20	40	60	80	100	120	200
15	11	14	14	18	18	20	28
20	12	13	15	15	16	17	25
30	11	12	12	13	13	15	16

Conclusion

- We discussed a multilevel projection-based iteration based on shifting small eigenvalues to the max eigenvalue.
- Theoretical aspects of the method had been shown
- The stability of the projection operator allows the use of inner iterations to handle the coarse grid problem with low accuracy.
- Parameter λ_N can be determined algebraically (using Gerschgorin's theorem, e.g.) or analytically (in the case of the Helmholtz equation).
- Coarse grid (preconditioned) matrices are approximated by a product of coarse grid matrices
- Numerical experiments were shown for a different class of problems:
 - \rightarrow Poisson equation: *h*-independent convergence (multigrid-like)
 - \rightarrow Convection-diffusion equation: h- and nearly Pe-independent convergence
 - \rightarrow Helmholtz equation: combination of multigrid and multilevel projection iterations *h*- and nearly *k*-independent convergence gain in CPU time at high wavenumbers

- Y.A. Erlangga, R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems, (2007) submitted
- Y.A. Erlangga, R. Nabben, On the projection method for the preconditioned Helmholtz linear system, (2007) submitted

 $\tt http://www.math.tu-berlin.de/{\sim}erlangga$