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Outline of the Talk

e Introduction: Linear system, Py = [ — AZE 'Y + A\yZE7'YT, etc.
e Spectral properties
e Implementation aspects
e Numerical examples:
e SPD case: 2D Poisson equation
e Nonsymmetric case: 2D convection-diffusion equation
e Indefinite case: 2D Helmholtz equation

e Conclusion
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Introdcution

The linear system:
Au =D, AeCVN  ubeCV.

(A is in general nonsymmetric, sparse and large)

Problems:

e Diffusion problem (symmetric)
e Convection-diffusion equation (nonsymmetric)

e Helmholtz equation (symmetric, indefinite)

Preconditioned system:

M;PAM Y% = M, @ = Mo, M, M5 nonsingular.

For generality,

Aﬂ:g, A=M"1A wi=u, b:=M"'b
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Introduction

Consider “the second level preconditioner”:

Pyv=Pr+ \ZE YT,  E=YTAZ
where
Pp=1—AZE'Y",  (Deflation)
and solve the system

Py A7 = Pyb.

o \y = maxx#o(atTA\x) [(xlx)
o [: Galerkin product

o /.Y € R™" are full rank
e Py is derived from generalized Wielandt's deflation, with Pp a special case [E., Nabben, 2007]
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Introduction

Right preconditioning version:

With
Ov=Qp+ \ZEWYT,  E=YTAZ
where
Op=1-2EYTA
solve

For theory, we focus on Py A. In the implementation, AQ) y.
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Spectral properties of PNE

For Pszl\a — PN??\Z
Denote the spectrum of A:  o(A) = {\,..., v}, N < A for i < j.

Theorem 1 Columns of Z,Y € R"*" are right and left eigenvectors of A. Thus, E is the
eigenvalue matrix of A and

O'(PNA) — {)\N, .. .,)\N,)\H_l, .. .,)\N}.

® PNA is not symmetric, even if Ais symmetric.
For symmetric A k= AN/ Ari1 is not the condition number.
e But, Keff = )\N/)\r—l—l < )\N/)\l = K.
Py A is more clustered than A ——  Favorable for Krylov methods

Compare: (from Nabben's talk)

AN

Deflation: o(PpA) = {0,...,0, \i1,. .., AN}
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Spectral properties of PNE

Spectral relation between PDg and PNE.

Theorem 2 Z.Y are “arbitrary” rectangular matrices with rank r.

AN AN

J(PDA):{O,...,O,,urﬂ,...,,u]v} — O'(PNA>:{)\N,...,AN,/LT+1,...,ILLN}.

AN AN

e 0(PyA) is similar to o(PpA)
e convergence is likely very similar (if Ay ~ py, and o convergence sole criterion)

e Since Z and Y are arbitrary, we can choose, e.g.,

AN

Z=1=0unh" y'=1 — E=I1"A4,1 (Z an interpolation matrix)
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Spectral properties of PNE

Deflation:
e P? = Pp (Projection)
° PDA\ — A\QD

o If A is symmetric, then PDA\ is also symmetric

In contrast:

o Pi # Py
o PNA\ =+ A\QN However, O'(PNA\) = O'(A\QN)

e Py A is not symmetric even if A is symmetric.
Furthermore,

e Py A can not be expressed in terms of iteration matrix in the Richardson method (?)

e Consequence: Py A has to be seen only from Krylov subspace method context.
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Spectral properties of PNE

Spectral sensitivity w.r.t. inexact coarse grid solves.

Proposition 3 Z eigenvectors. In Py = I — AZE- YT + )\NZE_lYT, assume

~ 1 — 1 —e¢,
E_lzdiag( G 6)

Al Ay
where |€;|i—1,» < 1. Then,

AN

o(PyA) = {(1 —e)Av+ e, ..., (1 —&)Arv + A6, Mgty -, AN}

N

(Recall Nabben's talk) :  o(PpA) = { €1, ..., M€y N1, -, An E

— Py A is less sensitive than PpA w.r.t. inexact coarse grid solves.

e 1 can be chosen very large (large projection subspace)

e ;! can be computed only approximately (by an inner iteration)
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Implementation (1): two level

Two-grid (two-level) notations:
o Eh — M 'Ay, Py=1I,— AZE YT + \yZE'YT
—YTAZ = YIM, A, Z = Ay

Preconditioning step in a Krylov subspace method:
ry, = Apop,
wy, = Pyap,

In an expanded form:
wyp= (I — L ZEYT + AyZE'Y )z,
= T — (gh — )\NI)ZEI?YT% (E = Ap)
= ) — (A\h — ANI)ZA\;[%H, (xg =Y'ay)

ry = Y!z, a fine-to-coarse projection of z,.

Aoy =Ty = ATy = xp is solved only approximately by a (inner) Krylov method.
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Implementation (2): two level

Notes on ATy = xp7.

° A\H is inverted exactly — the fastest convergence of the outer iteration.
It means inner iterations with a severe termination criterion.

e Py is a “stable” projection method.
Inner iteration with less thight termination criterion (e.g., tol = 1072).

e Residual/error in the inner iteration can be fast reduced by applying Py at the “second”
level, i.e.,

Solve: PN’HA\HZU\H = Py pry (instead of EH@{ = Ty)
e With inner Krylov iterations, Py is in general not constant
Use flexible Krylov subspace method (FGMRES, FQMR, ...)
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Implementation (3): multilevel projection algorithm

e Initialization. With given ué”,

Set Z;it1,t=1,...,m —1 (m > 1 the maximum level) and Y, ;11 = Z; ;11
Compute Al) = YZ-ZLZ-A\(Z'_DZZ-_M, fori=2,...,m, and )\%)
o At i =1, solve p](vl)ﬁ(l)u(l) = P](VDb with a Krylov method until convergence using
21— A(),,(1) — AW (MDY~ 1y)
Restriction: (%) = Y1 (1)
At 7 = 2, solve P](V)A( )d?) = P](\?)ZC(Q) with a Krylov subspace method using
22 — A2, () = A@) (M) ~1y()
Restriction: z(3) = Yggaz(m

Ati=i+1. Ifi=m, z™ = (AM)~140)  Else, solve P](\;)g(i)d(i) = P](\?):U(”.

Interpolation: w2 = Zg’gd(3>
w2 = £2) _ (A\(?) _ )\5\2[)0@(2)
Interpolation: o) = Z172d(2)
wl) = 1) _ (A\(l) _ )\5\1[)0{0\(1)
]
e



Implementation (4): some other issues

e The choiceof Z and Y
Sparsity of Z and Y;

May be the same as interpolation and restriction matrices in multigrid (e.g., piece-wise
constant, bi-linear interpolation, etc.);

But not eigenvectors;
Y = Z;
e About Ay
Expensive too compute, but an approximate is sufficient:
— by Gerschgorin's theorem.

— by other means (in case of the Helmholtz equation)

Because of this approximation:

AN — W - Ay, 0<w<l, (w: a “correction” factor)
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Numerical example: 2D Poisson equation (1/2)

The 2D Poisson equation:

—V -Vu = g, in Qe (0,1)%
u = 0, on [' = 0X).

Discretization: finite differences.

Z: Piecewise linear interpolation, ¥ = 7

() with index set 7 = {i|u; € Q2}.

Q .
1 1 1 5 € is partitioned into non-overlapping subdomain {;, j =
1,...,[, with respective index Z; = {i € T|u; € Q);}.
Then, / = [ZZ]]
1, 1 E Ij,
Rij — .
| | 0, ¢ ¢ Ij'
Q3 ‘ ‘ Qq

InA=M"1A M=1.
I ———
[ ]
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Numerical example: 2D Poisson equation (2/2)

Convergence results: relative residual < 1079, w =1
Gerschgorin estimate for \y

N MP(22,22) MP(4,2,22) MP(6,2,2,2) MP(4,33,3) MG

322 15 14 14 14 11
642 16 14 14 14 11
1282 16 14 14 14 11
2567 16 14 14 14 11
Notation:
e MP(4,2,2,2): Multilevel Projection with 4,2,2 and 2 FGMRES iterations at level no. 1,2,3
and 4. Etc.

e MG: Multi Grid (here, V-cycle, one pre- and post RB-GS smoothing, bilinear interpolation)

Obersvation:

e Level 7+ = 2 is important!

e -indepedent convergence

e Convergence of MP is comparable with MG.
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Numerical example: 2D Convection-diffusion equation (1/2)

The 2D convection-diffusion equation with vertical winds:

ou 1 _ S
ay—Pev-vu_o, nQ=(-1,17% (
U(-l,y) ~ _17 ( Y ) ~ 1 >
U([E,—l) = @, ( 1) = 0. -~ ol

Discretization: Finite volume, upwind discretization for convective term

Z: piece-wise constant interpolation, Y = Z

In A= M4, M = diag(A)
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Numerical example: 2D Convection-diffusion equation (2/2)

Convergence results: relative residual < 107"
MP(4,2,2,2), w = 0.8, Gerschgorin estimate for \y

Pe:
Grid 20 50 100 200
128 16 16 18 24
2562 16 16 16 17
5122 15 16 16 15

e In MP, FGMRES is used

e MG (with V-cycle, one pre- and post RB-GS smoothing and bilinear interpolation) does
not converge

Observation:

e Level + = 2 is important!

e Almost h- and Pe-independent convergence
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Numerical example: 2D Helmholtz equation (1/8)

The 2D Helmholtz equation:

O’u  O*u _
Au = 0 0 Fu=f, inQ=/(0,1),

with radiation conditions on [' = 0).

Preconditioner operator: 2D shifted Laplacian [E., Oosterlee & Vuik, SISC (2006)]:
82 82

M= 022 Oy? ~

1 —0.50)k>.

In A = M~'A A and M are the discrete form of A and M.

Theorem 4 \y(M1A) — 1 (or A\n(AM™Y) — 1).

M is approximately inverted by multigrid with F-cycle, one Jacobi pre- and postsmoothing.
AM 1 is not explicitly known!
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Numerical example: 2D Helmholtz equation (2/8)

For A = AM~': Recall that E = ZTAZ = ZTM~'AZ (Y = 2).

In two-level projection:

AN

E=Z7"AM 17
(ZP A Z2) (2P My 2) ' 2P 7 = AgM By,

Q

where

Ay =72V ALZ, My =72"M,Z, By =27'127.

In multi-level projection:
At level j =1, AW .= A MY .= M, BV =], A — 14(1)(]\4(”)_1 and Qg\lf) = Q.
For j =2,....m,

AU — T )A(j—l)Z(

(—1.j J=Lj)
' T —1
MU = Z(j—l,j)M(j )Z(j—l,j)a
' T —1
BY) = Z(j.—l,j)Bj Z(j-14)»

AU) — A(J)(]\4(3'))—13(3')7
QV = 1—Zy1 ANzl (AU_D _“’)‘%)])'
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Numerical example: 2D Helmholtz equation (3/8)

Algorithm: Multilevel projection, with v") = (A1)~

At j = 1, solve AD(MI)~15(1) = b with Krylov method by computing:
U](\? = (M)~ with multigrid;
3(1) — A(l)vg\?, t(l) — 8(1) — wAg\PfU(l)l

Restriction: (v},)?) = Z(T1 2>t(1);

If 1 = m: solve exactly v%m) = (Am=1(yl,)m),
else
At j = 2, solve A(2>(M(2>)_1B(2>’Ug) — (q]}z)@) with Krylov iterations by computing:
U](\? = (M)~ BCy2) with multigrid;
5(2) — A<2)v§\?; 12 = (2 _ w)\g\%)v@)
Restriction: (v},)® = 21 ., +?)

(2,3)
If 7 = m: solve exactly v%m) = (A(m))_l(v}g)(m;
else

Interpolation: ¢! = vl/) — Z((1T;>’Ug);

w = (MW ~1g™M with multigrid;
p) = AWy,
-
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Numerical example: 2D Helmholtz equation (4/8)

Multigrid—Multilevel projection (MG-MP) cycle:

IT IT+1
o ¢ 9 P 1
O 0, ® @ S 0, O O 2
O O O O O @ o O O O O O 3
OO 0O 0O ofe 510 0O 0o 0o 4
0 O 0, 0 0, 0, 0 ® 5

Black circle: Projection step

White circle: Multigrid step (shown as V-cycle, but can also be with other cycles).
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Numerical example: 2D Helmholtz equation (5/8)

Convergence results: relative residual < 1079
Multilevel with MG-MP(4,2,1), w =1, Ay =1

k:

g/w|20 40 60 80 100 120 200
15 |11 14 15 17 20 22 39
20 (12 13 15 16 18 21 30
30 |11 12 12 13 13 15 24

e Constant wavenumber k
e “g/w" : number of gridpoints per wavelength
e In MP, FGMRES is used

e In MG, F-cycle with one Jacobi pre- and postsmoothing is used
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Numerical example: 2D Helmholtz equation (6/8)

Convergence results: relative residual < 107°
Multilevel with MG-MP(6,2,1), w =1, Ay =1

k:

g/w|20 40 60 80 100 120 200
15 |11 14 14 18 18 20 28
20 |12 13 15 15 16 17 25
30 |11 12 12 13 13 15 16
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Numerical example: 2D Helmholtz equation (7/8)

Convergence and CPU time for 15 gridpoints/wavelength

250 - - - . 10
—6— MG-MP(6,2,1)
—4&— MG-MP(4,2,1)
200F | —— MG ,
10
Iteration Time
- 1501 o
(@] (O]
2 &
@ v 10
= £ _ R
* 100} = =T
10°
50r Multigrid/Multilevel
y Setup Time
7
¥
O 1 1 1 1 10_1 g 1 1 1 1
0 50 100 150 200 0 50 100 150 200
Wavenumber, k Wavenumber, k
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Numerical example: 2D Helmholtz equation (8/8)

Convergence and CPU time for 30 gridpoints/wavelength

160 - - - . 10
—6— MG-MP(6,2,1)
140r | s MG-MP@4,2,1)
—x— MG 10 +
120+ 1
Iteration Time
100+ 2
c . 10 %
S 3
] | -
E 80 "E’
ETS = 1
60l 10
Multigrid/Multilevel
401 10° > Setup Time
&
L A 7
20 M o,
¥
O 1 1 1 1 10_1 1 1 1 1
0 50 100 150 200 0 50 100 150 200
Wavenumber, k Wavenumber, k
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Conclusion

e We discussed a multilevel projection-based iteration based on shifting small eigenvalues
to the max eigenvalue.

e Theoretical aspects of the method had been shown

e The stability of the projection operator allows the use of inner iterations to handle the
coarse grid problem with low accuracy.

e Parameter \y can be determined algebraically (using Gerschgorin’s theorem, e.g.) or
analytically (in the case of the Helmholtz equation).

e Coarse grid (preconditioned) matrices are approximated by a product of coarse grid ma-
trices

e Numerical experiments were shown for a different class of problems:
— Poisson equation: h-independent convergence (multigrid-like)
— Convection-diffusion equation: h- and nearly Pe-independent convergence
— Helmholtz equation: combination of multigrid and multilevel projection iterations
h- and nearly k-independent convergence
gain in CPU time at high wavenumbers
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