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Outline

e Random fields and the Karhunen-Loeve expansion
e Discretization of the covariance operator
e Solution of the discrete eigenvalue problem

e A numerical example
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Random Fields
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Formally

e stochastic process indexed by a spatial coordinate x € D c R%, D
bounded, i.e.,

e measurable function a : D x Q@ — R, where (2,7, P) is a given
probability space

e For w € () fixed, a(-,w) is a realization of the random field, i.e., a
function D — R.

e For x € D fixed, a(z,-) is a random variable (RV) w.r.t. (2, o7, P).
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Notation

(&) == / {(w) dP(w) expected value
N of RVE: QR
a(x) = (a(x,-)) meanof RFaatxz € D

Covy(x,y) := ((a(zx,-) —a(x))(a(y,-) —a(y))) covariance of RF a

atx,ye D
Var,(x) := Cov,(z, ) variance of RF a
atz e D
oq(x) := +/Var,(z) standard deviation

of RFaatxz € D

L5 () := {€: (€%) < o0} RV of second order
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A RF is of second order, if a(z,-) € L%(Q) forall z € D.

Theorem (Karhunen-Loeve expansion). Given a second order RF
a = a(x,w) with continuous covariance function c(x,y) := Cov,(x,y),
denote by {(\..,a.(x))} the eigenpairs of the (compact) integral operator

C:I(D) ~ 12(D),  (Cu)la) = [ uly)elwv)dy,
D
there exists a sequence {&,, }men Of random variables with

(&m) = 0 Vm, (Em&n) = Om.n Y, 1

such that the Karhunen-Loeve (KL) expansion

a(z,w) =a(x) + > VAm am(z) &n (W) (KL)

converges uniformly on D and in L%.
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Note:

e Covariance functions c(z,y) are continuous on D x D as well as
symmetric and of positive type.

e Therefore covariance operators C' are compact, hence spectra A(C)
consist of countably many eigenvalues accumulating at most at zero.

e Covariance operators are selfadjoint and positive semidefinite.

Analogy
Singular value expansion of integral operator

ALXD) = L3, f(2)— (Af)(w) = / f(x)a(z, w) de,

A" LA - IAD),  E(w) e (A%€)(x) = / £(w)a(z, w) dP(w)
C =A*A.
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Common Covariance Models

Cova(z,y) = c(x,y) = c(p),

p=|z—y|

1

T

e NN

c(n)
c(r)

c(r)

91 6 1 91 O 1 91 6 1
r r r
exponential Bessel
c(r) = o?e P/t

Gaussian

c(r) = g2e P /¥

c(r) = 02%1(1(%)
¢ > 0 is a measure of the “correlation length”, here / = 0.1, 1,2
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Variance

For normalized eigenfunctions a,,(x),

Var,(z) = ¢(z,x) = Z A @ (),

/ Var, (z Z A ( am,am)p = trace C.
D

=1 —1

For constant variance (e.g., stationary RF),

Var, = o2 > 0, Z)\m = |D| o?
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Truncated KL Expansion

For computational purposes, KL expansion truncated after M terms:

oM (2, w) =a(z) + Z VA @ () Em ().

Truncation error
(la —a™|3) = Z Am
m=M-+1
Choose M such that sufficient amount of total variance of RF is retained.
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Eigenvalue Decay

Roughly: the smoother the kernel, the faster {\,, }.nen — O.

More precisely: if D c R, then if the kernel function c is

piecewise H" : Am < ey~ "/4
piecewise smooth : Am < com” " forany r > 0
piecewise analytic : Am < cgexp(—cam!/?)

for suitable constants ¢y, ¢s, c3, c4.

Note: piecewise smoothness of kernel also leads to bounds on derivatives
of eigenfunctions a,, in L>(D).

Proven e.g. in [Schwab & Todor (2006)], [Todor (2006)]
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Galerkin Discretization

e .7, admissible finite element triangulation of D

¢ finite dimensional subspace of piecewise polynomials
yh={¢p:D =R : ¢|p € P VT € T} C L*(D).
e Discrete eigenvalue problem: find pairs (A" , a” ) such that
(Cal , ) = A" (a | ¢) Vo e v, m=1,2,...
corresponds to generalized matrix eigenvalue problem

Cr = \Mz, [Clij = (Cdy, i), [ M]i; = (&5, i),
i,j=1,2,...,N =dim ¥".

e ( large and dense, M can be made diagonal using suitable basis.
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Discretization Error

Discrete operator given by C;, = P,CP,,, P, the L?(D) orthogonal projec-
tion to 7.

Discrete eigenpairs {(\" , a )} N

m=1
If covariance operator is piecewise smooth, then for any » > 0

0< A\, — )\Zz <K, (hQ(kH))\}n—r X h4(k+1))\;n2r> |

I(I = Pr)amll2(py < KpX, h

[Todor (2006)]
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Solution of Matrix Eigenvalue Problem

e Only fixed number of leading eigenpairs required, suggests restarted
Krylov subspace technique.

We use the Thick-Restart Lanczos (TRL) method [Simon & Wu (2000)].

Idea: limit dimension of Krylov space to fixed m, save some desired
approximate eigenpairs, generate new Krylov space which contains
these retained approximations (restart).

e Krylov methods require inexpensive matrix-vector product.
We obtain this by replacing C by a hierarchical matrix approximation

C, for which matrix vector products can be computed in O(N log V)
operations [Hackbusch (1999)].
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Thick-Restart Lanczos Cycle

(1) Given Lanczos decomposition of Krylov space 7,,( A, v)

(2) compute eigenpairs T,,y; = 9,y;, j =1,...,m,
(3) select k < m Ritz vectors to retain, Y, := [y1, ..., yxl,

(4) set Qx = Qmn Y, Ty := Q] T;,Qy to obtain

type decomposition

AQm — Qme + 6m—|—1/(jm—|-1 e';rr)/

AQrm = QT + 6m—|—1 dm+1 er—lr_m Qm = [QIa sy C.Im]a Q;,:,Qm = I,

AQr = QrTi + 5m+1ak+18T With gx11 = ¢n41 and s := YkT €m,,

(5) extend span{qi,...,qn+1} to Krylov space of order m with Lanczos-
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After restart cycle, projection T, of A on new Krylov space in

AQm — Qme + ﬁm—l—lam—l—l er;l,;

has the form

Tk ﬁms
Bms' Qri1 Prii
T = 5k+1
Bm
B Qm_

Note: Leading k x k block is diagonal.

Harrachov 2007

Karhunen-Loéeve Approximation of Random Fields Using Hierarchical Matrix Techniques



17

Remarks:

e Mathematically equivalent to implicitly restarted Lanczos method and
other augmented Krylov techniques, but more efficient.

e Takes advantage of symmetry (ARPACK uses full recurrences).
e Projected matrix 7}, readily available (= diag(¥1, . .., 9%)).

e Eigenvector residual norms from coordinate calculations (like in stan-
dard symmetric Lanczos).

e Well-known reorthogonalization techniques can be incorporated.
e For covariance problem: no shift-invert techniques required.

e Note: Need efficient matrix-vector product.
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Hierarchical Matrix Approximation

Idea: (recall survey in Monday’s plenary talk of W. Hackbusch)

e Partition dense matrix into square blocks of 2 types
— near field blocks: computed and stored as usual

— far field blocks: approximated by matrix of low rank UV ', computed
by interpolation of kernel, store factors U, V.

e blocks correspond to clusters of degrees of freedom, i.e., clusters of
supports of Galerkin basis functions

e block for pair of clusters s, ¢ in near field if admissibility condition
min{diam (D), diam(D;)} < ndist(Ds, D¢)

satisfied by associated domains, n is the admissibility parameter.
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Remarks:
e “Algebraic variant” of fast multipole method
e Admissibility parameter n scales with correlation length.

e Necessary smoothness requirements satisfied for all common covari-
ance kernels.

e Resulting data-sparse representation of discretized integral operator
can be applied to a vector in O(N log N) operations (for N DOF).

e Need efficient quadrature for near field.

An optimal approximation must thus balance the errors due to

e truncation of the KL series,

e Galerkin error in approximation a ~ a,,, \* ~ \,,
e Lanczos approximation of discrete eigenpairs

e hierarchical matrix approximation C~C
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Numerical Example

Bessel covariance kernel

Xr — xr —
o) = w () syep =L

Discretization: piecewise constant functions w.r.t. triangular mesh on D
Hierarchical matrix parameters:
interpolation polynomial degree : 4

admissibility constant : n = 1/¢
minimal block size : 62

Computations: MATLAB R2007a, Intel Xeon 5160, 3 GHz, 16 GB RAM
calls to HLib-1.3 library (MPI Leipzig) via MEX
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Some modes (¢ = 0.5)

mode 1 mode 4
mode 7 mode 8§
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Performance of TRL

N #evs %variance m restarts
¢ =10.5 402 36 94.99 44 )
1608 36 95.66 44 6
6432 36 95.87 44 )
25728 36 95.88 44 )
102912 36 95.51 44 )
(=1 402 10 95.30 14 8
1608 10 95.46 14 8
6432 10 95.50 14 8
25728 10 95.51 14 9
102912 10 95.51 14 9
{ =2 402 4 95.30 7 8
1608 4 96.06 7 7
6432 4 96.10 7 7
25728 4 96.10 7 V4
102912 4 96.11 7 7
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Conclusions

e Covariance eigenvalue problem challenging due to its size
e Can exploit regularity of covariance kernels
e Lanczos combined with hierarchical matrix approximation promising

e Becomes intractable for very small correlation lengths (too many rele-
vant modes)

Ongoing Work

e more careful tuning of hierarchical matrix approximation parameters
e multiple eigenvalues (symmetries in the domain)
e extend optimal quadrature techniques to 3D

e higher order FE approximation
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