TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Institut für Numerische Mathematik und Optimierung

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Oliver Ernst

Computational Methods with Applications Harrachov, CR, August 19–25, 2007

Collaborators

- Catherine Powell, David Silvester
 University of Manchester, School of Mathematics,
 Manchester, UK
- Ingolf Busch, Michael Eiermann, Elisabeth Ullmann, TU Bergakademie Freiberg, Freiberg, Germany

Support: DAAD/British Council

Outline

- Random fields and the Karhunen-Loève expansion
- Discretization of the covariance operator
- Solution of the discrete eigenvalue problem
- A numerical example

Random Fields

Formally

- stochastic process indexed by a spatial coordinate $x \in D \subset \mathbb{R}^d$, D bounded, i.e.,
- measurable function $a:D\times\Omega\to\mathbb{R}$, where (Ω,\mathscr{A},P) is a given probability space
- For $\omega \in \Omega$ fixed, $a(\cdot, \omega)$ is a realization of the random field, i.e., a function $D \to \mathbb{R}$.
- For $x \in D$ fixed, $a(x, \cdot)$ is a random variable (RV) w.r.t. (Ω, \mathscr{A}, P) .

Notation

$$\langle \xi \rangle := \int_{\Omega} \xi(\omega) \, dP(\omega)$$

$$\overline{a}(x) := \langle a(x, \cdot) \rangle$$

$$\operatorname{Cov}_a(x,y) := \langle (a(x,\cdot) - \overline{a}(x))(a(y,\cdot) - \overline{a}(y)) \rangle$$

$$\operatorname{Var}_a(x) := \operatorname{Cov}_a(x, x)$$

$$\sigma_a(x) := \sqrt{\operatorname{Var}_a(x)}$$

$$L_P^2(\Omega) := \{ \xi : \langle \xi^2 \rangle < \infty \}$$

expected value

of RV $\xi:\Omega\to\mathbb{R}$

mean of RF a at $x \in D$

covariance of RF a

at $x, y \in D$

variance of RF a

at $x \in D$

standard deviation

of RF a at $x \in D$

RV of second order

A RF is of second order, if $a(x,\cdot) \in L_P^2(\Omega)$ for all $x \in D$.

Theorem (Karhunen-Loève expansion). Given a second order RF $a = a(x, \omega)$ with continuous covariance function $c(x, y) := \text{Cov}_a(x, y)$, denote by $\{(\lambda_m, a_m(x))\}$ the eigenpairs of the (compact) integral operator

$$C: L^2(D) \to L^2(D), \qquad (Cu)(x) = \int_D u(y) c(x, y) dy,$$

there exists a sequence $\{\xi_m\}_{m\in\mathbb{N}}$ of random variables with

$$\langle \xi_m \rangle = 0 \ \forall m, \qquad \langle \xi_m \xi_n \rangle = \delta_{m,n} \ \forall m, n$$

such that the Karhunen-Loève (KL) expansion

$$a(x,\omega) = \overline{a}(x) + \sum_{m=1}^{\infty} \sqrt{\lambda_m} a_m(x) \, \xi_m(\omega)$$
 (KL)

converges uniformly on D and in L_P^2 .

Note:

- Covariance functions c(x,y) are continuous on $\overline{D} \times \overline{D}$ as well as symmetric and of positive type.
- Therefore covariance operators C are compact, hence spectra $\Lambda(C)$ consist of countably many eigenvalues accumulating at most at zero.
- Covariance operators are selfadjoint and positive semidefinite.

Analogy

Singular value expansion of integral operator

$$A: L^{2}(D) \to L^{2}_{P}, \qquad f(x) \mapsto (Af)(\omega) := \int_{D} f(x)a(x,\omega) dx,$$

$$A^{*}: L^{2}_{P} \to L^{2}(D), \qquad \xi(\omega) \mapsto (A^{*}\xi)(x) = \int_{\Omega} \xi(\omega)a(x,\omega) dP(\omega)$$

$$C = A^{*}A.$$

Common Covariance Models

$$Cov_a(x, y) = c(x, y) = c(\rho), \quad \rho = ||x - y||$$

 $\ell > 0$ is a measure of the "correlation length", here $\ell = 0.1, 1, 2$.

Variance

For normalized eigenfunctions $a_m(x)$,

$$\operatorname{Var}_{a}(x) = c(x, x) = \sum_{m=1}^{\infty} \lambda_{m} a_{m}(x)^{2},$$

$$\int_{D} \operatorname{Var}_{a}(x) dx = \sum_{m=1}^{\infty} \lambda_{m} \underbrace{(a_{m}, a_{m})_{D}}_{=1} = \operatorname{trace} C.$$

For constant variance (e.g., stationary RF),

$$\operatorname{Var}_a \equiv \sigma^2 > 0, \qquad \sum_m \lambda_m = |D| \, \sigma^2.$$

Truncated KL Expansion

For computational purposes, KL expansion truncated after M terms:

$$a^{(M)}(x,\omega) = \overline{a}(x) + \sum_{m=1}^{M} \sqrt{\lambda_m} a_m(x) \, \xi_m(\omega).$$

Truncation error

$$\langle ||a - a^{(M)}||_D^2 \rangle = \sum_{m=M+1}^{\infty} \lambda_m.$$

Choose M such that sufficient amount of total variance of RF is retained.

Eigenvalue Decay

Roughly: the smoother the kernel, the faster $\{\lambda_m\}_{m\in\mathbb{N}}\to 0$.

More precisely: if $D \subset \mathbb{R}^d$, then if the kernel function c is

piecewise H^r : $\lambda_m \leq c_1 m^{-r/d}$

piecewise smooth : $\lambda_m \leq c_2 m^{-r}$ for any r > 0

piecewise analytic : $\lambda_m \le c_3 \exp(-c_4 m^{1/d})$

for suitable constants c_1, c_2, c_3, c_4 .

Note: piecewise smoothness of kernel also leads to bounds on derivatives of eigenfunctions a_m in $L^{\infty}(D)$.

Proven e.g. in [Schwab & Todor (2006)], [Todor (2006)]

Galerkin Discretization

- \mathscr{T}_h admissible finite element triangulation of D
- finite dimensional subspace of piecewise polynomials

$$\mathscr{V}^h = \{\phi: D \to \mathbb{R} : \phi|_T \in \mathscr{P}_k \ \forall T \in \mathscr{T}\} \subset L^2(D).$$

• Discrete eigenvalue problem: find pairs (λ_m^h, a_m^h) such that

$$(Ca_m^h, \phi) = \lambda_m^h(a_m^h, \phi) \qquad \forall \phi \in \mathcal{V}^h, \qquad m = 1, 2, \dots$$

corresponds to generalized matrix eigenvalue problem

$$Cx = \lambda Mx,$$
 $[C]_{i,j} = (C\phi_j, \phi_i), [M]_{i,j} = (\phi_j, \phi_i),$ $i, j = 1, 2, \dots, N = \dim \mathscr{V}^h.$

C large and dense, M can be made diagonal using suitable basis.

Discretization Error

Discrete operator given by $C_h = P_h C P_h$, P_h the $L^2(D)$ orthogonal projection to \mathscr{V}^h .

Discrete eigenpairs $\{(\lambda_m^h, a_m^h)\}_{m=1}^N$

If covariance operator is piecewise smooth, then for any r > 0

$$0 \le \lambda_m - \lambda_m^h \le K_r \left(h^{2(k+1)} \lambda_m^{1-r} + h^{4(k+1)} \lambda_m^{-2r} \right),$$

$$||(I - P_h)a_m||_{L^2(D)} \le K_r \lambda_m^{-r} h^{k+1}.$$

[Todor (2006)]

Solution of Matrix Eigenvalue Problem

 Only fixed number of leading eigenpairs required, suggests restarted Krylov subspace technique.

We use the Thick-Restart Lanczos (TRL) method [Simon & Wu (2000)].

Idea: limit dimension of Krylov space to fixed m, save some desired approximate eigenpairs, generate new Krylov space which contains these retained approximations (restart).

• Krylov methods require inexpensive matrix-vector product. We obtain this by replacing C by a hierarchical matrix approximation \widetilde{C} , for which matrix vector products can be computed in $O(N \log N)$ operations [Hackbusch (1999)].

Thick-Restart Lanczos Cycle

(1) Given Lanczos decomposition of Krylov space $\mathscr{K}_m(A, \boldsymbol{v})$

$$AQ_m = Q_m T_m + \beta_{m+1} \mathbf{q}_{m+1} \mathbf{e}_m^{\top}, \qquad Q_m = [\mathbf{q}_1, \dots, \mathbf{q}_m], \ Q_m^{\top} Q_m = I_m,$$

- (2) compute eigenpairs $T_m y_j = \vartheta_j y_j$, j = 1, ..., m,
- (3) select k < m Ritz vectors to retain, $Y_k := [y_1, \dots, y_k]$,
- (4) set $\widehat{Q}_k := Q_m Y_k$, $\widehat{T}_k := \widehat{Q}_k^{ op} T_m \widehat{Q}_k$ to obtain

$$A\widehat{Q}_k = \widehat{Q}_k \widehat{T}_k + \beta_{m+1} \widehat{\boldsymbol{q}}_{k+1} \boldsymbol{s}^\top \qquad \text{with } \widehat{\boldsymbol{q}}_{k+1} = \boldsymbol{q}_{m+1} \text{ and } \boldsymbol{s} := Y_k^\top \boldsymbol{e}_m,$$

(5) extend $\operatorname{span}\{\widehat{q}_1,\ldots,\widehat{q}_{m+1}\}$ to Krylov space of order m with Lanczos-type decomposition

$$A\widehat{Q}_m = \widehat{Q}_m \widehat{T}_m + \widehat{\beta}_{m+1} \widehat{q}_{m+1} e_m^{\top}$$

After restart cycle, projection \widehat{T}_m of A on new Krylov space in

$$A\widehat{Q}_m = \widehat{Q}_m \widehat{T}_m + \widehat{\beta}_{m+1} \widehat{q}_{m+1} e_m^{\top}$$

has the form

$$\widehat{T}_{m} = \begin{bmatrix} \widehat{T}_{k} & \widehat{\beta}_{m} s \\ \widehat{\beta}_{m} s^{\top} & \widehat{\alpha}_{k+1} & \widehat{\beta}_{k+1} \\ & \widehat{\beta}_{k+1} & \ddots & \ddots \\ & & \ddots & \ddots & \widehat{\beta}_{m} \\ & & \widehat{\beta}_{m} & \widehat{\alpha}_{m} \end{bmatrix}.$$

Note: Leading $k \times k$ block is diagonal.

Remarks:

- Mathematically equivalent to implicitly restarted Lanczos method and other augmented Krylov techniques, but more efficient.
- Takes advantage of symmetry (ARPACK uses full recurrences).
- Projected matrix \widehat{T}_k readily available (= diag($\vartheta_1, \ldots, \vartheta_k$)).
- Eigenvector residual norms from coordinate calculations (like in standard symmetric Lanczos).
- Well-known reorthogonalization techniques can be incorporated.
- For covariance problem: no shift-invert techniques required.
- Note: Need efficient matrix-vector product.

Hierarchical Matrix Approximation

Idea: (recall survey in Monday's plenary talk of W. Hackbusch)

- Partition dense matrix into square blocks of 2 types
 - near field blocks: computed and stored as usual
 - far field blocks: approximated by matrix of low rank UV^{\top} , computed by interpolation of kernel, store factors U, V.
- blocks correspond to clusters of degrees of freedom, i.e., clusters of supports of Galerkin basis functions
- block for pair of clusters s, t in near field if admissibility condition

$$\min\{\operatorname{diam}(D_s),\operatorname{diam}(D_t)\} \leq \eta \operatorname{dist}(D_s,D_t)$$

satisfied by associated domains, η is the admissibility parameter.

Remarks:

- "Algebraic variant" of fast multipole method
- Admissibility parameter η scales with correlation length.
- Necessary smoothness requirements satisfied for all common covariance kernels.
- Resulting data-sparse representation of discretized integral operator can be applied to a vector in $O(N \log N)$ operations (for N DOF).
- Need efficient quadrature for near field.

An optimal approximation must thus balance the errors due to

- truncation of the KL series,
- Galerkin error in approximation $a_m^h \approx a_m$, $\lambda_m^h \approx \lambda_m$
- Lanczos approximation of discrete eigenpairs
- ullet hierarchical matrix approximation $oldsymbol{\widetilde{C}}pprox oldsymbol{C}$

Numerical Example

Bessel covariance kernel

$$c(x,y) = \frac{\|x-y\|}{\ell} K_1\left(\frac{\|x-y\|}{\ell}\right), \qquad x,y \in D = [-1,1]^2.$$

Discretization: piecewise constant functions w.r.t. triangular mesh on D **Hierarchical matrix parameters:**

interpolation polynomial degree : 4

admissibility constant : $\eta = 1/\ell$

minimal block size : 62

Computations: MATLAB R2007a, Intel Xeon 5160, 3 GHz, 16 GB RAM calls to HLib-1.3 library (MPI Leipzig) via MEX

Performance of TRL

	N	# evs	% variance	m	restarts
$\ell = 0.5$	402	36	94.99	44	5
	1608	36	95.66	44	6
	6432	36	95.87	44	5
	25728	36	95.88	44	5
	102912	36	95.51	44	5
$\ell = 1$	402	10	95.30	14	8
	1608	10	95.46	14	8
	6432	10	95.50	14	8
	25728	10	95.51	14	9
	102912	10	95.51	14	9
$\ell = 2$	402	4	95.30	7	8
	1608	4	96.06	7	7
	6432	4	96.10	7	7
	25728	4	96.10	7	7
	102912	4	96.11	7	7

Timings

Conclusions

- Covariance eigenvalue problem challenging due to its size
- Can exploit regularity of covariance kernels
- Lanczos combined with hierarchical matrix approximation promising
- Becomes intractable for very small correlation lengths (too many relevant modes)

Ongoing Work

- more careful tuning of hierarchical matrix approximation parameters
- multiple eigenvalues (symmetries in the domain)
- extend optimal quadrature techniques to 3D
- higher order FE approximation