On A Quadratic Eigenproblem Arising In The Analysis of Delay Equations

Heike Faßbender

AG Numerik Institut *Computational Mathematics* TU Braunschweig

Joint work with E. Jarlebring, N. & D.S. Mackey

Heike Faßbender On A Quadratic Eigenproblem Arising In The Analysis of Delay E

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Outline

- Time Delay System
- Polynomial Eigenvalue Problem
- Spectral Symmetry
- Structured Linearization
- Conclusions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

-

lynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Time Delay Systems (TDS)

$$\dot{x}(t) = A_0 x(t) + \sum_{k=1}^{m} A_k x(t - h_k), \ t > 0$$

 $x(t) = \varphi(t), \ t \in [-h_m, 0]$ (Σ)

m

with $0 < h_1 < \ldots < h_m$ and $A_k \in \mathbb{R}^{n \times n}$.

(日) (同) (三) (三)

m

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Time Delay Systems (TDS)

$$\dot{x}(t) = A_0 x(t) + \sum_{k=1}^{m} A_k x(t-h_k), \ t > 0$$
 $x(t) = \varphi(t), \ t \in [-h_m, 0]$
 $(\Sigma$

with $0 < h_1 < \ldots < h_m$ and $A_k \in \mathbb{R}^{n \times n}$.

Definition

• Eigenvalue s and eigenvector $v \neq 0$:

$$\mathbb{M}(s)\mathbf{v} := \left(-sI_n + A_0 + \sum_{k=1}^m A_k e^{-h_k s}\right)\mathbf{v} = 0$$

m

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Time Delay Systems (TDS)

$$\dot{x}(t) = A_0 x(t) + \sum_{k=1}^{m} A_k x(t - h_k), \ t > 0$$
 $x(t) = \varphi(t), \ t \in [-h_m, 0]$
(Σ

with $0 < h_1 < \ldots < h_m$ and $A_k \in \mathbb{R}^{n \times n}$.

Definition

• Eigenvalue s and eigenvector $v \neq 0$:

$$\mathbb{M}(s)\mathbf{v} := \left(-s\mathbf{I}_n + A_0 + \sum_{k=1}^m A_k e^{-h_k s}\right)\mathbf{v} = 0$$

• spectrum $\sigma(\Sigma)$: set of all eigenvalues

m

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Time Delay Systems (TDS)

$$\dot{x}(t) = A_0 x(t) + \sum_{k=1}^{m} A_k x(t - h_k), \ t > 0$$
 $x(t) = \varphi(t), \ t \in [-h_m, 0]$
(Σ

with $0 < h_1 < \ldots < h_m$ and $A_k \in \mathbb{R}^{n \times n}$.

Definition

• Eigenvalue s and eigenvector $v \neq 0$:

$$\mathbb{M}(s)\mathbf{v} := \left(-s\mathbf{I}_n + A_0 + \sum_{k=1}^m A_k e^{-h_k s}\right)\mathbf{v} = 0$$

- spectrum $\sigma(\Sigma)$: set of all eigenvalues
- stable: $\sigma(\Sigma) \subset \mathbb{C}^-$

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Critical System

Problem

For what h_1, \ldots, h_m is there an ω s.t

 $\mathbb{M}(\imath\omega)\mathbf{v}=\mathbf{0}.$

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Critical System

Problem

For what h_1, \ldots, h_m is there an ω s.t

 $\mathbb{M}(\imath\omega)\mathbf{v}=\mathbf{0}.$

Definition

 Σ is called critical iff $\sigma(\Sigma) \cap i\mathbb{R} \neq \emptyset$.

イロン 不同 とくほう イロン

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Example (Jarlebring 2005)

Two delay problem: $\dot{x}(t) = -x(t - h_1) - 2x(t - h_2)$

イロン イロン イヨン イヨン

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Example (Jarlebring 2005)

Two delay problem: $\dot{x}(t) = -x(t - h_1) - 2x(t - h_2)$ Critical curves:

<ロ> <同> <同> < 同> < 同>

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Critical System

Problem

For what h_1, \ldots, h_m is there an ω s.t

 $\mathbb{M}(\imath\omega)\mathbf{v}=\mathbf{0}.$

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Critical System

Problem

For what h_1, \ldots, h_m is there an ω s.t

 $\mathbb{M}(\imath\omega)\mathbf{v}=\mathbf{0}.$

Hale & Huang 1993: Scalar two delays: Geometric classification Chen & Gu & Nett 1995: Commensurate delays Louisell 2001: Single delay, neutral, moderate size Sipahi & Olgac 2003 : Small systems, few delays: Form determinant + Routh table + Rekasius Substitution.

TDS Critical System Quadratic eigenproblem

Given free parameters φ_k , $k = 1, \ldots, m - 1$.

Theorem (Jarlebring 2005)

The point in delay space (h_1, \ldots, h_m) is critical iff

$$h_{k} = \frac{\varphi_{k} + 2p\pi}{\omega}, \ k = 1, \dots, m-1$$
$$h_{m} = \frac{\operatorname{Arg} s + 2q\pi}{\omega}$$

$$\left[s^2 I \otimes A_m + s \left(\sum_{k=0}^{m-1} I \otimes A_k e^{-i\varphi_k} + e^{i\varphi_k} A_k \otimes I\right) + A_m \otimes I\right] u = 0,$$

where $s = e^{\imath \omega}$, $u = \text{vec } vv^* = v \otimes \overline{v}$ and

$$\omega = -\imath v^* \left(A_0 + \sum_{k=1}^{m-1} A_k e^{-\imath \varphi_k} + A_m s \right) v.$$

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Quadratic eigenproblem

$$\left[s^2(I\otimes A_m)+s\left(\sum_{k=0}^{m-1}I\otimes A_ke^{-i\varphi_k}+e^{i\varphi_k}A_k\otimes I\right)+(A_m\otimes I)\right]u=0,$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Quadratic eigenproblem

・ 同 ト ・ ヨ ト ・ ヨ ト

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Quadratic eigenproblem

Quadratic Eigenvalue Problem

$$M \in \mathbb{R}^{n^2 \times n^2}$$
$$G \in \mathbb{C}^{n^2 \times n^2}$$
$$K \in \mathbb{R}^{n^2 \times n^2}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Theorem (Horn, Johnson)

There exists an involutary permutation matrix $P \in \mathbb{R}^{n^2 \times n^2}$ such that $B \otimes C = P(C \otimes B)P$ for all $B, C \in \mathbb{R}^{n \times n}$.

(日) (同) (三) (三)

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Theorem (Horn, Johnson)

There exists an involutary permutation matrix $P \in \mathbb{R}^{n^2 \times n^2}$ such that $B \otimes C = P(C \otimes B)P$ for all $B, C \in \mathbb{R}^{n \times n}$.

In particular,

$$P = \sum_{i,j=1}^{n} E_{ij} \otimes E_{ij}^{T} = [E_{ij}^{T}]_{i,j=1}^{n},$$

where $E_{ij} \in \mathbb{R}^{n \times n}$ has entry 1 in position i, j and all other entries are zero.

(日)

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Theorem (Horn, Johnson)

There exists an involutary permutation matrix $P \in \mathbb{R}^{n^2 \times n^2}$ such that $B \otimes C = P(C \otimes B)P$ for all $B, C \in \mathbb{R}^{n \times n}$.

In particular,

$$P = \sum_{i,j=1}^n E_{ij} \otimes E_{ij}^T = [E_{ij}^T]_{i,j=1}^n,$$

where $E_{ij} \in \mathbb{R}^{n \times n}$ has entry 1 in position i, j and all other entries are zero. $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Theorem (Horn, Johnson)

There exists an involutary permutation matrix $P \in \mathbb{R}^{n^2 \times n^2}$ such that $B \otimes C = P(C \otimes B)P$ for all $B, C \in \mathbb{R}^{n \times n}$.

(日) (同) (三) (三)

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

TDS Critical System Quadratic eigenproblem

Theorem (Horn, Johnson)

There exists an involutary permutation matrix $P \in \mathbb{R}^{n^2 \times n^2}$ such that $B \otimes C = P(C \otimes B)P$ for all $B, C \in \mathbb{R}^{n \times n}$.

Hence, we have

$$M = A_m \otimes I = P(I \otimes A_m)P = PKP,$$

< 日 > < 同 > < 三 > < 三 >

Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions

4

TDS Critical System Quadratic eigenproblem

Theorem (Horn, Johnson)

There exists an involutary permutation matrix $P \in \mathbb{R}^{n^2 \times n^2}$ such that $B \otimes C = P(C \otimes B)P$ for all $B, C \in \mathbb{R}^{n \times n}$.

Hence, we have

$$M = A_m \otimes I = P(I \otimes A_m)P = PKP,$$

and

$$A_k \otimes I = P(I \otimes A_k)P$$

such that

$$G = \sum_{k=0}^{m-1} e^{-i\varphi_k} (I \otimes A_k) + e^{i\varphi_k} (A_k \otimes I)$$

= $P\left(\sum_{k=0}^{m-1} (A_k \otimes I) e^{-i\varphi_k} + e^{i\varphi_k} (I \otimes A_k)\right) P = P\overline{G}P.$

Heike Faßbender On A Quadratic Eigenproblem Arising In The Analysis of Delay E

TDS Critical System Quadratic eigenproblem

As M and K are real, this implies

$Q(z) = z^2 M + zG + K = z^2 P K P + z P \overline{G} P + P M P = P(z^2 \overline{K} + z \overline{G} + \overline{M}) P,$

< 日 > < 同 > < 三 > < 三 >

TDS Critical System Quadratic eigenproblem

As M and K are real, this implies

 $Q(z) = z^2 M + zG + K = z^2 P K P + z P \overline{G} P + P M P = P(z^2 \overline{K} + z \overline{G} + \overline{M}) P,$

that is, Q(z) is a matrix polynomial which satisfies

 $Q = P \cdot \operatorname{rev}(\overline{Q}) \cdot P,$

with

$$\overline{Q}(z)=z^2\overline{M}+z\overline{G}+\overline{K},$$

and

$$\operatorname{rev}(Q(z)) := z^2 Q(\frac{1}{z}) = M + zG + z^2 K.$$

Problem Statement

Problem Statement

We will consider

$$Q(\lambda)v = 0 ext{ with } Q(\lambda) = \sum_{i=0}^k \lambda^i B_i, ext{ } B_k
eq 0, ext{ } B_i \in \mathbb{C}^{n imes n},$$

イロト イポト イヨト イヨト

Problem Statement

Problem Statement

We will consider

$$Q(\lambda)v = 0$$
 with $Q(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}, \qquad B_{k} \neq 0, \quad B_{i} \in \mathbb{C}^{n \times n},$

which satisfies

$$Q(\lambda) = P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P$$

for an involutary permutation matrix P.

イロト イポト イヨト イヨト

Problem Statement

Problem Statement

We will consider

$$Q(\lambda)v = 0$$
 with $Q(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}, \qquad B_{k} \neq 0, \quad B_{i} \in \mathbb{C}^{n \times n},$

which satisfies

$$Q(\lambda) = P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P$$

for an involutary permutation matrix P.

As
$$Q(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}$$
, this implies $B_{i} = P\overline{B}_{k-i}P$, $i = 0, \dots, k$.

イロト イポト イヨト イヨト

Problem Statement

Problem Statement

We will consider

$$Q(\lambda)v = 0$$
 with $Q(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}, \qquad B_{k} \neq 0, \quad B_{i} \in \mathbb{C}^{n \times n},$

which satisfies

$$Q(\lambda) = P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P$$

for an involutary permutation matrix P.

As
$$Q(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}$$
, this implies $B_{i} = P\overline{B}_{k-i}P$, $i = 0, \dots, k$.

Questions to be answered:

- eigenvalue pairing
- structured linearizations

A 10

- - E + - E +

Problem Statement

Structure reminds of:

- (anti-)palindromic: $\pm \operatorname{rev}(\mathcal{Q}(\lambda)) = \mathcal{Q}(\lambda)$
- *-(anti-)palindromic: $\pm \operatorname{rev}(Q^*(\lambda)) = Q(\lambda)$
- even, odd: $\pm Q(-\lambda) = Q(\lambda)$
- *-even, *-odd: $\pm Q^*(-\lambda) = Q(\lambda)$

where \star is used for transpose T in the real case and either T or conjugate transpose * in the complex case.

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem Statement

Structure reminds of:

- (anti-)palindromic: $\pm \operatorname{rev}(Q(\lambda)) = Q(\lambda)$
- *-(anti-)palindromic: $\pm \operatorname{rev}(Q^*(\lambda)) = Q(\lambda)$
- even, odd: $\pm Q(-\lambda) = Q(\lambda)$
- *-even, *-odd: $\pm Q^{\star}(-\lambda) = Q(\lambda)$

where \star is used for transpose T in the real case and either T or conjugate transpose * in the complex case.

Recall

 $Q(\lambda) = \pm P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Structure reminds of:

- (anti-)palindromic: $\pm \operatorname{rev}(Q(\lambda)) = Q(\lambda)$
- *-(anti-)palindromic: $\pm \operatorname{rev}(Q^*(\lambda)) = Q(\lambda)$
- even, odd: $\pm Q(-\lambda) = Q(\lambda)$
- *-even, *-odd: $\pm Q^*(-\lambda) = Q(\lambda)$

where \star is used for transpose T in the real case and either T or conjugate transpose * in the complex case.

Recall

 $Q(\lambda) = \pm P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P.$

Define even/odd equivalent

$$Q(\lambda) = \pm P \cdot \overline{Q}(-\lambda) \cdot P.$$

伺 ト イヨト イヨト

Problem Statement

Structure reminds of:

- (anti-)palindromic: $\pm \operatorname{rev}(Q(\lambda)) = Q(\lambda)$
- *-(anti-)palindromic: $\pm \operatorname{rev}(Q^*(\lambda)) = Q(\lambda)$
- even, odd: $\pm Q(-\lambda) = Q(\lambda)$
- *-even, *-odd: $\pm Q^*(-\lambda) = Q(\lambda)$

where \star is used for transpose T in the real case and either T or conjugate transpose * in the complex case.

Recall PCP-(anti-)palindromic (short PCP/anti-PCP)

 $Q(\lambda) = \pm P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P.$

Define even/odd equivalent PCP-even/odd

$$Q(\lambda) = \pm P \cdot \overline{Q}(-\lambda) \cdot P.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Spectral Symmetry

Let $Q(\lambda)v = 0$, and Q is PCP, then we have

$$0 = Q(\lambda)v = P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot Pv$$

< 日 > < 同 > < 三 > < 三 >

-

Spectral Symmetry

Let $Q(\lambda)v = 0$, and Q is PCP, then we have

$$0 = Q(\lambda)v = P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot Pv$$

which implies

$$\operatorname{rev}(\overline{Q}(\lambda)) \cdot (Pv) = 0$$

< 日 > < 同 > < 三 > < 三 >

-

Spectral Symmetry

Let $Q(\lambda)v = 0$, and Q is PCP, then we have

$$0 = Q(\lambda)v = P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot Pv$$

which implies

$$\operatorname{rev}(\overline{Q}(\lambda)) \cdot (Pv) = 0$$

and

$$Q(1/\overline{\lambda})\cdot(P\overline{v})=0.$$

Hence, if λ is an eigenvalue with eigenvector v, then $1/\overline{\lambda}$ is an eigenvalue with eigenvector $P\overline{v}$.

- 4 同 6 4 日 6 4 日 6

Theorem

Let $Q(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}$, $B_{k} \neq 0$ be a regular matrix polynomial, that is, det $Q(\lambda)$ is not identically zero for all $\lambda \in \mathbb{C}$.

- If $Q(\lambda) = \pm P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P$, then the spectrum of $Q(\lambda)$ has the eigenvalue pairing $(\lambda, 1/\overline{\lambda})$.
- **3** If $Q(\lambda) = \pm P \cdot \overline{Q}(-\lambda) \cdot P$, then the spectrum of $Q(\lambda)$ has the eigenvalue pairing $(\lambda, -\overline{\lambda})$

Moreover, the algebraic, geometric, and partial multiplicities of the two eigenvalues in each such pair are equal. (Here, we allow $\lambda = 0$ and interpret $1/\lambda$ as the eigenvalue ∞ .)

イロト イポト イヨト イヨト 二日

Theorem

Let $Q(\lambda) = \sum_{i=0}^{k} \lambda^{i} B_{i}$, $B_{k} \neq 0$ be a regular matrix polynomial, that is, det $Q(\lambda)$ is not identically zero for all $\lambda \in \mathbb{C}$.

- If $Q(\lambda) = \pm P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P$, then the spectrum of $Q(\lambda)$ has the eigenvalue pairing $(\lambda, 1/\overline{\lambda})$.
- **2** If $Q(\lambda) = \pm P \cdot \overline{Q}(-\lambda) \cdot P$, then the spectrum of $Q(\lambda)$ has the eigenvalue pairing $(\lambda, -\overline{\lambda})$

Moreover, the algebraic, geometric, and partial multiplicities of the two eigenvalues in each such pair are equal. (Here, we allow $\lambda = 0$ and interpret $1/\lambda$ as the eigenvalue ∞ .)

Idea of the proof of statement 1: $Q(\lambda)$ and its first companion form $C_1(\lambda) = \lambda X + Y$ have the same eigenvalues (including multiplicities). C_1 of a (anti-)PCP Q is strictly equivalent to $X^* + \lambda Y^*$.

Structure of $Q(\lambda)$	eigenvalue pairing
(anti)-palindromic, T-(anti)-palindromic	$(\lambda, 1/\lambda)$
*-palindromic, *-anti-palindromic	$(\lambda,1/\overline{\lambda})$
(anti)-PCP-palindromic	$(\lambda, 1/\overline{\lambda})$
even, odd, T-even, T-odd	$(\lambda, -\lambda)$
*-even, *-odd	$(\lambda,-\overline{\lambda})$
PCP-even, PCP-odd	$(\lambda, -\overline{\lambda})$

Spectral symmetries

イロト イポト イヨト イヨト

Cayley Transformations

The Cayley transformation for a matrix polynomial $Q(\lambda)$ of degree k with pole at +1 or -1, resp., is

$$egin{array}{rll} \mathcal{C}_{+1}(Q)(\mu) &:= & (1-\mu)^k Q(rac{1+\mu}{1-\mu}), \ \mathcal{C}_{-1}(Q)(\mu) &:= & (\mu+1)^k Q(rac{\mu-1}{\mu+1}). \end{array}$$

Cayley Transformations Structured Linearization

	$\mathcal{C}_{-1}(Q)(\mu) = (\mu+1)^k Q(rac{\mu-1}{\mu+1})$	
$Q(\lambda)$	k even	k odd
palindromic	even	odd
\star -palindromic	∗-even	*-odd
anti-palindromic	odd	even
\star -anti-palindromic	*-odd	∗-even
PCP	PCP-even	PCP-odd
anti-PCP	PCP-odd	PCP-even
even	palindromic	
∗-even	*-palindromic	
odd	anti-palindromic	
*-odd	\star -anti-palindromic	
PCP-even	РСР	
PCP-odd	anti-PCP	

Cayley transformations Heike Faßbender On A Quadratic Eigenproblem Arising In The Analysis of Delay E

€ 990

	${\mathcal C}_{+1}(Q)(\mu) = (1-\mu)^k Q(rac{1+\mu}{1-\mu})$		
$Q(\lambda)$	k even	k odd	
palindromic	even		
\star -palindromic	∗ -even		
anti-palindromic	odd		
\star -anti-palindromic	*-odd		
PCP	PCP-even		
anti-PCP	PCP-odd		
even	palindromic	anti-palindromic	
∗-even	\star -palindromic	∗-anti-palindromic	
odd	anti-palindromic	palindromic	
*-odd	\star -anti-palindromic	\star -palindromic	
PCP-even	PCP	anti-PCP	
PCP-odd	anti-PCP	PCP	

Cavley transformations

Heike Faßbender

On A Quadratic Eigenproblem Arising In The Analysis of Delay E

€ 990

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Linearization

The classical approach to solve $Q(\lambda)v = 0$ for

$$Q(\lambda) = \sum_{i=0}^k \lambda^i B_i, \qquad B_k
eq 0$$

is linearization, in which the given polynomial is transformed into a $kn \times kn$ matrix pencil $L(\lambda) = \lambda X + Y$ that satisfies

$$E(\lambda)L(\lambda)F(\lambda) = \begin{bmatrix} Q(\lambda) & 0\\ 0 & I_{(k-1)n} \end{bmatrix},$$

where $E(\lambda)$ and $F(\lambda)$ are unimodular matrix polynomials. (A matrix polynomial is unimodular if its determinant is a nonzero constant, independent of λ).

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Let
$$X_1 = X_2 = \operatorname{diag}(B_k, I_n, \ldots, I_n)$$
,

$$Y_{1} = \begin{bmatrix} B_{k-1} & B_{k-2} & \cdots & B_{0} \\ -I_{n} & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -I_{n} & 0 \end{bmatrix}, \quad Y_{2} = \begin{bmatrix} B_{k-1} & -I_{n} & 0 \\ B_{k-2} & 0 & & \\ \vdots & \vdots & \ddots & -I_{n} \\ B_{0} & 0 & \cdots & 0 \end{bmatrix}$$

Then $C_1(\lambda) = \lambda X_1 + Y_1$ and $C_2(\lambda) = \lambda X_2 + Y_2$ are the first and second companion forms for $Q(\lambda)$. These linearizations do not reflect the structure present in the matrix polynomial Q.

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Structured Linearization

Source of linearizations: [Mackey, Mackey, Mehl, Mehrmann 2006]

$$\begin{split} \mathbb{L}_{1}(Q) &= \left\{ L(\lambda) = \lambda X + Y : L(\lambda) \cdot (\Lambda \otimes I_{n}) = v \otimes Q(\lambda), v \in \mathbb{C}^{k} \right\}, \\ \mathbb{L}_{2}(Q) &= \left\{ L(\lambda) = \lambda X + Y : (\Lambda^{T} \otimes I_{n}) \cdot L(\lambda) = w^{T} \otimes Q(\lambda), w \in \mathbb{C}^{k} \right\} \\ \text{where} \qquad \Lambda = [\lambda^{k-1} \ \lambda^{k-2} \ \cdots \ \lambda \ 1]^{T}. \end{split}$$

v is called right ansatz vector, w left ansatz vector.

$$\dim \mathbb{L}_1(Q) = \dim \mathbb{L}_2(Q) = k(k-1)n^2 + k$$

< 日 > < 同 > < 三 > < 三 >

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Structured PCP-Pencil

We have Q which satisfies

$$P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P = Q(\lambda)$$

for some $n \times n$ real involution P.

イロト イポト イヨト イヨト

-

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Structured PCP-Pencil

We have Q which satisfies

$$P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P = Q(\lambda)$$

for some $n \times n$ real involution P.

We want a pencil $L(\lambda) \in \mathbb{L}_1(Q)$ such that

$$\widehat{P} \cdot \operatorname{rev}(\overline{L}(\lambda)) \cdot \widehat{P} = L(\lambda)$$

for some $kn \times kn$ real involution \widehat{P} .

(人間) ト く ヨ ト く ヨ ト

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Structured PCP-Pencil

We have Q which satisfies

$$P \cdot \operatorname{rev}(\overline{Q}(\lambda)) \cdot P = Q(\lambda)$$

for some $n \times n$ real involution P.

We want a pencil $L(\lambda) \in \mathbb{L}_1(Q)$ such that

$$\widehat{P} \cdot \operatorname{rev}(\overline{L}(\lambda)) \cdot \widehat{P} = L(\lambda)$$

for some $kn \times kn$ real involution \widehat{P} . It is not immediately obvious what to use for \widehat{P} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Back to

$$(\lambda^2 M + \lambda G + K)v = 0,$$

with

 $M = P\overline{K}P$ and $G = P\overline{G}P$.

(a)

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Back to

$$(\lambda^2 M + \lambda G + K)v = 0,$$

with

 $M = P\overline{K}P$ and $G = P\overline{G}P$.

$$\widehat{P} = \left[\begin{array}{c} P \\ P \end{array} \right]$$

does not work as there are no pencils in $\mathbb{L}_1(Q)$ satisfying

$$\widehat{P} \cdot \operatorname{rev}(\overline{L}(\lambda)) \cdot \widehat{P} = L(\lambda),$$

unless the matrix G is very specifically tied to the leading coefficient M,

< 日 > < 同 > < 三 > < 三 >

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Back to

$$(\lambda^2 M + \lambda G + K)v = 0,$$

with

 $M = P\overline{K}P$ and $G = P\overline{G}P$.

$$\widehat{P} = \left[\begin{array}{c} P \\ P \end{array} \right]$$

does not work as there are no pencils in $\mathbb{L}_1(Q)$ satisfying

$$\widehat{P} \cdot \operatorname{rev}(\overline{L}(\lambda)) \cdot \widehat{P} = L(\lambda),$$

unless the matrix G is very specifically tied to the leading coefficient M, e.g. for $v = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$

$$G=P\overline{M}P+M=K+M.$$

< 日 > < 同 > < 三 > < 三 >

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Choosing

$$\widehat{P} = \left[\begin{array}{c} P \\ P \end{array} \right]$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

Introduction Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions Structured PCP-even/odd-Linearization

Choosing

$$\widehat{P} = \left[\begin{array}{c} P \\ P \end{array} \right]$$

restricts the ansatz vector $v = [v_1 \ v_2]^T \in \mathbb{C}^2$ to

$$R_2 v = \overline{v}$$
 with $R_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,

that is $v_1 = \overline{v}_2$

イロト イポト イヨト イヨト

Choosing

$$\widehat{P} = \begin{bmatrix} & P \\ P & \end{bmatrix}$$

restricts the ansatz vector $v = [v_1 \ v_2]^T \in \mathbb{C}^2$ to

$$R_2 v = \overline{v}$$
 with $R_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,

that is $v_1 = \overline{v}_2$ and

$$\lambda X + Y = \lambda \begin{bmatrix} v_1 M & -W_1 \\ \overline{v}_1 M & \overline{v}_1 G + P \overline{W}_1 P \end{bmatrix} + \begin{bmatrix} W_1 + v_1 G & v_1 P \overline{M} P \\ -P \overline{W}_1 P & \overline{v}_1 P \overline{M} P \end{bmatrix},$$

where W_1 is arbitrary, is a structured pencil in $\mathbb{L}_1(Q)$.

Linearization Where to find? Structured PCP-Pencil **Structured Linearization** Structured PCP-even/odd-Linearization

Structured Linearization

For regular Q and $L(\lambda) \in \mathbb{L}_1(Q)$ with $v \neq 0, v \in \mathbb{C}^2$

- select any nonsingular matrix T such that $Tv = \alpha e_1$
- apply $T \otimes I_n$ to $L(\lambda)$ to produce $\widetilde{L}(\lambda) = (T \otimes I_n) \cdot L(\lambda)$

$$\widetilde{L}(\lambda) = \lambda \widetilde{X} + \widetilde{Y} = \lambda \begin{bmatrix} \widetilde{X}_{11} & \widetilde{X}_{12} \\ 0 & -Z \end{bmatrix} + \begin{bmatrix} \widetilde{Y}_{11} & \widetilde{Y}_{12} \\ Z & 0 \end{bmatrix},$$

where \widetilde{X}_{11} and \widetilde{Y}_{12} are $n \times n$.

(人間) ト く ヨ ト く ヨ ト

Linearization Where to find? Structured PCP-Pencil **Structured Linearization** Structured PCP-even/odd-Linearization

Structured Linearization

For regular Q and $L(\lambda) \in \mathbb{L}_1(Q)$ with $v \neq 0, v \in \mathbb{C}^2$

- select any nonsingular matrix T such that $Tv = \alpha e_1$
- apply $T \otimes I_n$ to $L(\lambda)$ to produce $\widetilde{L}(\lambda) = (T \otimes I_n) \cdot L(\lambda)$

$$\widetilde{L}(\lambda) = \lambda \widetilde{X} + \widetilde{Y} = \lambda \begin{bmatrix} \widetilde{X}_{11} & \widetilde{X}_{12} \\ 0 & -Z \end{bmatrix} + \begin{bmatrix} \widetilde{Y}_{11} & \widetilde{Y}_{12} \\ Z & 0 \end{bmatrix},$$

where \widetilde{X}_{11} and \widetilde{Y}_{12} are $n \times n$.

If det $Z \neq 0$, $L(\lambda)$ is a linearization of Q. [Mackey, Mackey, Mehl, Mehrmann 2006]

• • = • • = •

Linearization Where to find? Structured PCP-Pencil **Structured Linearization** Structured PCP-even/odd-Linearization

As $v = \begin{bmatrix} v_1 & \overline{v}_1 \end{bmatrix}^T$ choose T as

$$T = \left[\begin{array}{cc} \overline{v}_1 & v_1 \\ -\overline{v}_1 & v_1 \end{array} \right].$$

Introduction Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions Structured PCP-Pencil Structured Decempoint Structured PCP-even/odd-Linearization

As $v = \begin{bmatrix} v_1 & \overline{v}_1 \end{bmatrix}^T$ choose T as

$$T = \left[egin{array}{cc} \overline{v}_1 & v_1 \ -\overline{v}_1 & v_1 \end{array}
ight].$$

This yields

$$-Z = |v_1|^2 G + \overline{v}_1 W_1 + v_1 P \overline{W}_1 P.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions Structured PCP-Pencil Structured PCP-even/odd-Linearization

As $v = \begin{bmatrix} v_1 & \overline{v}_1 \end{bmatrix}^T$ choose T as

$$\mathcal{T} = \left[egin{array}{cc} \overline{\mathbf{v}}_1 & \mathbf{v}_1 \ -\overline{\mathbf{v}}_1 & \mathbf{v}_1 \end{array}
ight].$$

This yields

$$-Z = |v_1|^2 G + \overline{v}_1 W_1 + v_1 P \overline{W}_1 P.$$

As $Q(\lambda) = \lambda^2 M + \lambda G + K$ is regular, we have for $W_1 = v_1 M$

$$-Z = |v_1|^2(G + M + P\overline{M}P) = |v_1|^2(G + M + K) = |v_1|^2Q(1),$$

and det $Z \neq 0$ iff 1 is not an eigenvalue of Q.

イロン 不同 とくほう イロン

Linearization Where to find? Structured PCP-Pencil **Structured Linearization** Structured PCP-even/odd-Linearization

Other possible choice of W_1 :

- $W_1 = v_1 M$ yields det $Z \neq 0$ if 1 is not an eigenvalue of Q.
- 3 $W_1 = -v_1 M$ yields det $Z \neq 0$ if -1 is not an eigenvalue of Q.
- **3** $W_1 = \overline{v}_1 M$ yields det $Z \neq 0$ if $\frac{\overline{v}_1}{v_1}$ is not an eigenvalue of Q.
- $W_1 = -\overline{v}_1 M$ yields det $Z \neq 0$ if $-\frac{\overline{v}_1}{v_1}$ is not an eigenvalue of Q.
- $W_1 = v_1 G$ yields det $Z \neq 0$ if det $G \neq 0$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Linearization Where to find? Structured PCP-Pencil **Structured Linearization** Structured PCP-even/odd-Linearization

For $W_1 = -\overline{v}_1 M$ we have

$$\lambda \left[\begin{array}{cc} v_1 M & \overline{v}_1 M \\ \overline{v}_1 M & \overline{v}_1 G - v_1 P \overline{M} P \end{array} \right] + \left[\begin{array}{cc} v_1 G - \overline{v}_1 M & v_1 P \overline{M} P \\ v_1 P \overline{M} P & \overline{v}_1 P \overline{M} P \end{array} \right] \in \mathbb{L}_1(Q) \cap \mathbb{L}_2(Q)$$

if $\frac{\overline{v}_1}{v_1}$ is not an eigenvalue of Q.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linearization Where to find? Structured PCP-Pencil **Structured Linearization** Structured PCP-even/odd-Linearization

For $W_1 = -\overline{v}_1 M$ we have

$$\lambda \left[\begin{array}{cc} \mathsf{v}_1 M & \overline{\mathsf{v}}_1 M \\ \overline{\mathsf{v}}_1 M & \overline{\mathsf{v}}_1 G - \mathsf{v}_1 P \overline{M} P \end{array} \right] + \left[\begin{array}{cc} \mathsf{v}_1 G - \overline{\mathsf{v}}_1 M & \mathsf{v}_1 P \overline{M} P \\ \mathsf{v}_1 P \overline{M} P & \overline{\mathsf{v}}_1 P \overline{M} P \end{array} \right] \in \mathbb{L}_1(Q) \cap \mathbb{L}_2(Q)$$

if $\frac{\overline{v}_1}{v_1}$ is not an eigenvalue of Q.

Similar construction for general (anti-)PCP-polynomial possible.

(日) (同) (日) (日) (日)

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Structured PCP-even/odd-Linearization

We have Q which satisfies

$$\pm P \cdot \overline{Q}(-\lambda) \cdot P = Q(\lambda)$$

for some $n \times n$ real involution P.

(日) (同) (三) (三)

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Structured PCP-even/odd-Linearization

We have Q which satisfies

$$\pm P \cdot \overline{Q}(-\lambda) \cdot P = Q(\lambda)$$

for some $n \times n$ real involution P.

We want a pencil $L(\lambda) \in \mathbb{L}_1(Q)$ such that

$$\pm \widehat{P} \cdot \overline{L}(-\lambda) \cdot \widehat{P} = L(\lambda)$$

for some $2n \times 2n$ real involution \widehat{P} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Linearization Where to find? Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Structured PCP-even/odd-Linearization

We have Q which satisfies

$$\pm P \cdot \overline{Q}(-\lambda) \cdot P = Q(\lambda)$$

for some $n \times n$ real involution P.

We want a pencil $L(\lambda) \in \mathbb{L}_1(Q)$ such that

$$\pm \widehat{P} \cdot \overline{L}(-\lambda) \cdot \widehat{P} = L(\lambda)$$

for some $2n \times 2n$ real involution \widehat{P} . It is not immediately obvious what to use for \widehat{P} .

Introduction Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Neither

$$\widehat{P} = \begin{bmatrix} P & \\ P \end{bmatrix}$$
$$\widehat{P} = \begin{bmatrix} P & \\ P \end{bmatrix}$$

nor

work unless the coefficient matrices of Q are very specifically tied to each other.

(日) (同) (三) (三)

Introduction Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions Structured PCP-Pencil Structured Dinearization Structured PCP-even/odd-Linearization

Neither

$$\widehat{P} = \begin{bmatrix} P \\ P \end{bmatrix}$$
$$\widehat{P} = \begin{bmatrix} P \\ P \end{bmatrix}$$

nor

work unless the coefficient matrices of Q are very specifically tied to each other. But

$$\widehat{P} = \left[egin{array}{c} P & \ & -P \end{array}
ight]$$

does the job.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Polynomial Matrix Eigenproblem Spectral Symmetry Cayley Transformations Structured Linearization Conclusions Structured PCP-Pencil Structured Linearization Structured PCP-even/odd-Linearization

Neither

$$\widehat{P} = \begin{bmatrix} P & \\ P \end{bmatrix}$$
$$\widehat{P} = \begin{bmatrix} P & \\ P \end{bmatrix}$$

nor

work unless the coefficient matrices of Q are very specifically tied to each other. But

$$\widehat{P} = \left[egin{array}{c} P & \ & -P \end{array}
ight]$$

does the job.

Construction for general PCP-even/odd polynomial possible.

(a)

- New Structured Polynomial Eigenvalue Problem
- Spectral Symmetry
- Cayley Transformation
- Structured Linearization for (anti-)PCP and PCP-even/odd polynomials

- 4 同 6 4 日 6 4 日 6

- New Structured Polynomial Eigenvalue Problem
- Spectral Symmetry
- Cayley Transformation
- Structured Linearization for (anti-)PCP and PCP-even/odd polynomials

Open Problems:

- Choice of the Ansatz Vector v
- Structure-Preserving Transformation
- Structure-Preserving Eigenvalue Algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト

GAMM Activity Group Meeting:

Today, 1:20 - 2:20 pm

Members as well as non-members are invited!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶