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Time Delay Systems (TDS)

ẋ(t) = A0x(t) +
m∑

k=1

Akx(t − hk), t > 0

x(t) = ϕ(t), t ∈ [−hm, 0]

(Σ)

with 0 < h1 < . . . < hm and Ak ∈ Rn×n.
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Time Delay Systems (TDS)

ẋ(t) = A0x(t) +
m∑

k=1

Akx(t − hk), t > 0

x(t) = ϕ(t), t ∈ [−hm, 0]

(Σ)

with 0 < h1 < . . . < hm and Ak ∈ Rn×n.

Definition

Eigenvalue s and eigenvector v 6= 0:

M(s)v :=

(
−sIn + A0 +

m∑
k=1

Ake−hk s

)
v = 0

spectrum σ(Σ): set of all eigenvalues

stable: σ(Σ) ⊂ C−
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Critical System

Problem

For what h1,. . . ,hm is there an ω s.t

M(ıω)v = 0.

Definition

Σ is called critical iff σ(Σ) ∩ ıR 6= ∅.
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Example (Jarlebring 2005)

Two delay problem: ẋ(t) = −x(t − h1)− 2x(t − h2)

Critical curves:
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Critical System

Problem

For what h1,. . . ,hm is there an ω s.t

M(ıω)v = 0.

Hale & Huang 1993: Scalar two delays: Geometric classification
Chen & Gu & Nett 1995: Commensurate delays
Louisell 2001: Single delay, neutral, moderate size
Sipahi & Olgac 2003 : Small systems, few delays:
Form determinant + Routh table + Rekasius Substitution.
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Given free parameters ϕk , k = 1, . . . ,m − 1.

Theorem (Jarlebring 2005)

The point in delay space (h1, . . . , hm) is critical iff

hk =
ϕk + 2pπ

ω
, k = 1, . . . ,m − 1

hm =
Arg s + 2qπ

ω[
s2I ⊗ Am + s

(
m−1∑
k=0

I ⊗ Ake−ıϕk + eıϕk Ak ⊗ I

)
+ Am ⊗ I

]
u = 0,

where s = eıω, u = vec vv∗ = v ⊗ v̄ and

ω = −ıv∗

(
A0 +

m−1∑
k=1

Ake−ıϕk + Ams

)
v .
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Quadratic eigenproblem

[
s2(I ⊗ Am) + s

(
m−1∑
k=0

I ⊗ Ake−ıϕk + eıϕk Ak ⊗ I

)
+ (Am ⊗ I )

]
u = 0,

M︷ ︸︸ ︷ G︷ ︸︸ ︷
K︷ ︸︸ ︷

Quadratic Eigenvalue Problem

M ∈ Rn2×n2

G ∈ Cn2×n2

K ∈ Rn2×n2
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Theorem (Horn, Johnson)

There exists an involutary permutation matrix P ∈ Rn2×n2
such

that B ⊗ C = P(C ⊗ B)P for all B,C ∈ Rn×n.

In particular,

P =
n∑

i ,j=1

Eij ⊗ ET
ij = [ET

ij ]ni ,j=1,

where Eij ∈ Rn×n has entry 1 in position i , j and all other entries
are zero.

P =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


.
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Theorem (Horn, Johnson)

There exists an involutary permutation matrix P ∈ Rn2×n2
such

that B ⊗ C = P(C ⊗ B)P for all B,C ∈ Rn×n.

Hence, we have

M = Am ⊗ I = P(I ⊗ Am)P = PKP,

and
Ak ⊗ I = P(I ⊗ Ak)P

such that

G =
m−1∑
k=0

e−ıϕk (I ⊗ Ak) + eıϕk (Ak ⊗ I )

= P

(
m−1∑
k=0

(Ak ⊗ I )e−ıϕk + eıϕk (I ⊗ Ak)

)
P = PGP.
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As M and K are real, this implies

Q(z) = z2M+zG+K = z2PKP+zPGP+PMP = P(z2K+zG+M)P,

that is, Q(z) is a matrix polynomial which satisfies

Q = P · rev(Q) · P,

with
Q(z) = z2M + zG + K ,

and

rev(Q(z)) := z2Q(
1

z
) = M + zG + z2K .
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Problem Statement

Problem Statement

We will consider

Q(λ)v = 0 with Q(λ) =
k∑

i=0

λiBi , Bk 6= 0, Bi ∈ Cn×n,

which satisfies
Q(λ) = P · rev(Q(λ)) · P

for an involutary permutation matrix P.

As Q(λ) =
∑k

i=0 λiBi , this implies Bi = PBk−iP, i = 0, . . . , k.

Questions to be answered:

eigenvalue pairing

structured linearizations
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Problem Statement

Structure reminds of:

(anti-)palindromic: ±rev(Q(λ)) = Q(λ)

?-(anti-)palindromic: ±rev(Q?(λ)) = Q(λ)

even, odd: ±Q(−λ) = Q(λ)

?-even, ?-odd: ±Q?(−λ) = Q(λ)

where ? is used for transpose T in the real case and either T or
conjugate transpose ∗ in the complex case.

Recall
Q(λ) = ±P · rev(Q(λ)) · P.

Define even/odd equivalent

Q(λ) = ±P · Q(−λ) · P.
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Problem Statement

Structure reminds of:

(anti-)palindromic: ±rev(Q(λ)) = Q(λ)

?-(anti-)palindromic: ±rev(Q?(λ)) = Q(λ)

even, odd: ±Q(−λ) = Q(λ)

?-even, ?-odd: ±Q?(−λ) = Q(λ)

where ? is used for transpose T in the real case and either T or
conjugate transpose ∗ in the complex case.

Recall PCP-(anti-)palindromic (short PCP/anti-PCP)

Q(λ) = ±P · rev(Q(λ)) · P.

Define even/odd equivalent PCP-even/odd

Q(λ) = ±P · Q(−λ) · P.

Heike Faßbender On A Quadratic Eigenproblem Arising In The Analysis of Delay Equations



Introduction
Polynomial Matrix Eigenproblem

Spectral Symmetry
Cayley Transformations
Structured Linearization

Conclusions

Spectral Symmetry

Let Q(λ)v = 0, and Q is PCP, then we have

0 = Q(λ)v = P · rev(Q(λ)) · Pv

which implies
rev(Q(λ)) · (Pv) = 0

and
Q(1/λ) · (Pv) = 0.

Hence, if λ is an eigenvalue with eigenvector v , then 1/λ is an
eigenvalue with eigenvector Pv .
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Theorem

Let Q(λ) =
∑k

i=0 λiBi , Bk 6= 0 be a regular matrix polynomial,
that is, det Q(λ) is not identically zero for all λ ∈ C.

1 If Q(λ) = ±P · rev(Q(λ)) · P, then the spectrum of Q(λ) has
the eigenvalue pairing (λ, 1/λ).

2 If Q(λ) = ±P ·Q(−λ) ·P, then the spectrum of Q(λ) has the
eigenvalue pairing (λ,−λ)

Moreover, the algebraic, geometric, and partial multiplicities of the
two eigenvalues in each such pair are equal. (Here, we allow λ = 0
and interpret 1/λ as the eigenvalue ∞.)

Idea of the proof of statement 1: Q(λ) and its first companion
form C1(λ) = λX + Y have the same eigenvalues (including
multiplicities). C1 of a (anti-)PCP Q is strictly equivalent to
X ∗ + λY ∗.
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two eigenvalues in each such pair are equal. (Here, we allow λ = 0
and interpret 1/λ as the eigenvalue ∞.)

Idea of the proof of statement 1: Q(λ) and its first companion
form C1(λ) = λX + Y have the same eigenvalues (including
multiplicities). C1 of a (anti-)PCP Q is strictly equivalent to
X ∗ + λY ∗.
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Structure of Q(λ) eigenvalue pairing

(anti)-palindromic, T-(anti)-palindromic (λ, 1/λ)

∗-palindromic, ∗-anti-palindromic (λ, 1/λ)

(anti)-PCP-palindromic (λ, 1/λ)

even, odd, T-even, T-odd (λ,−λ)

∗-even, ∗-odd (λ,−λ)

PCP-even, PCP-odd (λ,−λ)

Spectral symmetries
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Cayley Transformations

The Cayley transformation for a matrix polynomial Q(λ) of degree
k with pole at +1 or −1, resp., is

C+1(Q)(µ) := (1− µ)kQ(
1 + µ

1− µ
),

C−1(Q)(µ) := (µ + 1)kQ(
µ− 1

µ + 1
).
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C−1(Q)(µ) = (µ + 1)kQ(µ−1
µ+1)

Q(λ) k even k odd

palindromic even odd
?-palindromic ?-even ?-odd

anti-palindromic odd even
?-anti-palindromic ?-odd ?-even

PCP PCP-even PCP-odd
anti-PCP PCP-odd PCP-even

even palindromic
?-even ?-palindromic

odd anti-palindromic
?-odd ?-anti-palindromic

PCP-even PCP
PCP-odd anti-PCP

Cayley transformations
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C+1(Q)(µ) = (1− µ)kQ(1+µ
1−µ)

Q(λ) k even k odd

palindromic even
?-palindromic ?-even

anti-palindromic odd
?-anti-palindromic ?-odd

PCP PCP-even
anti-PCP PCP-odd

even palindromic anti-palindromic
?-even ?-palindromic ?-anti-palindromic

odd anti-palindromic palindromic
?-odd ?-anti-palindromic ?-palindromic

PCP-even PCP anti-PCP
PCP-odd anti-PCP PCP

Cayley transformations
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Linearization

The classical approach to solve Q(λ)v = 0 for

Q(λ) =
k∑

i=0

λiBi , Bk 6= 0

is linearization, in which the given polynomial is transformed into a
kn × kn matrix pencil L(λ) = λX + Y that satisfies

E (λ)L(λ)F (λ) =

[
Q(λ) 0

0 I(k−1)n

]
,

where E (λ) and F (λ) are unimodular matrix polynomials. (A
matrix polynomial is unimodular if its determinant is a nonzero
constant, independent of λ).
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Linearization
Where to find?
Structured PCP-Pencil
Structured Linearization
Structured PCP-even/odd-Linearization

Let X1 = X2 = diag(Bk , In, . . . , In),

Y1 =


Bk−1 Bk−2 · · · B0

−In 0 · · · 0
. . .

. . .
...

0 −In 0

 , Y2 =


Bk−1 −In 0
Bk−2 0

...
...

. . . −In
B0 0 · · · 0

 .

Then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are the first and
second companion forms for Q(λ). These linearizations do not
reflect the structure present in the matrix polynomial Q.
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Structured Linearization

Source of linearizations: [Mackey, Mackey, Mehl, Mehrmann 2006]

L1(Q) =
{

L(λ) = λX + Y : L(λ) · (Λ⊗ In) = v ⊗ Q(λ), v ∈ Ck
}

,

L2(Q) =
{

L(λ) = λX + Y : (ΛT ⊗ In) · L(λ) = wT ⊗ Q(λ),w ∈ Ck
}

where Λ = [λk−1 λk−2 · · · λ 1]T .

v is called right ansatz vector, w left ansatz vector.

dim L1(Q) = dim L2(Q) = k(k − 1)n2 + k
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Structured PCP-Pencil

We have Q which satisfies

P · rev(Q(λ)) · P = Q(λ)

for some n × n real involution P.

We want a pencil L(λ) ∈ L1(Q) such that

P̂ · rev(L(λ)) · P̂ = L(λ)

for some kn × kn real involution P̂.
It is not immediately obvious what to use for P̂.
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Where to find?
Structured PCP-Pencil
Structured Linearization
Structured PCP-even/odd-Linearization

Back to
(λ2M + λG + K )v = 0,

with
M = PKP and G = PGP.

P̂ =

[
P

P

]
does not work as there are no pencils in L1(Q) satisfying

P̂ · rev(L(λ)) · P̂ = L(λ),

unless the matrix G is very specifically tied to the leading
coefficient M, e.g. for v = [1 1]T

G = PMP + M = K + M.
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Linearization
Where to find?
Structured PCP-Pencil
Structured Linearization
Structured PCP-even/odd-Linearization

Choosing

P̂ =

[
P

P

]

restricts the ansatz vector v = [v1 v2]
T ∈ C2 to

R2v = v with R2 =

[
0 1
1 0

]
,

that is v1 = v2 and

λX +Y = λ

[
v1M −W1

v1M v1G + PW 1P

]
+

[
W1 + v1G v1PMP

−PW 1P v1PMP

]
,

where W1 is arbitrary, is a structured pencil in L1(Q).
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Structured Linearization

For regular Q and L(λ) ∈ L1(Q) with v 6= 0, v ∈ C2

select any nonsingular matrix T such that Tv = αe1

apply T ⊗ In to L(λ) to produce L̃(λ) = (T ⊗ In) · L(λ)

L̃(λ) = λX̃ + Ỹ = λ

[
X̃11 X̃12

0 −Z

]
+

[
Ỹ11 Ỹ12

Z 0

]
,

where X̃11 and Ỹ12 are n × n.

If det Z 6= 0, L(λ) is a linearization of Q.
[Mackey, Mackey, Mehl, Mehrmann 2006]
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X̃11 X̃12
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Linearization
Where to find?
Structured PCP-Pencil
Structured Linearization
Structured PCP-even/odd-Linearization

As v = [v1 v1]
T choose T as

T =

[
v1 v1

−v1 v1

]
.

This yields
−Z = |v1|2G + v1W1 + v1PW 1P.

As Q(λ) = λ2M + λG + K is regular, we have for W1 = v1M

−Z = |v1|2(G + M + PMP) = |v1|2(G + M + K ) = |v1|2Q(1),

and det Z 6= 0 iff 1 is not an eigenvalue of Q.
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Other possible choice of W1:

1 W1 = v1M yields det Z 6= 0 if 1 is not an eigenvalue of Q.

2 W1 = −v1M yields det Z 6= 0 if −1 is not an eigenvalue of Q.

3 W1 = v1M yields det Z 6= 0 if v1
v1

is not an eigenvalue of Q.

4 W1 = −v1M yields det Z 6= 0 if − v1
v1

is not an eigenvalue of
Q.

5 W1 = v1G yields det Z 6= 0 if det G 6= 0.

6 . . .
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For W1 = −v1M we have

λ

[
v1M v1M

v1M v1G − v1PMP

]
+

[
v1G − v1M v1PMP

v1PMP v1PMP

]
∈ L1(Q)∩L2(Q)

if v1
v1

is not an eigenvalue of Q.

Similar construction for general (anti-)PCP-polynomial possible.
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Structured PCP-even/odd-Linearization

We have Q which satisfies

±P · Q(−λ) · P = Q(λ)

for some n × n real involution P.

We want a pencil L(λ) ∈ L1(Q) such that

±P̂ · L(−λ) · P̂ = L(λ)

for some 2n × 2n real involution P̂.
It is not immediately obvious what to use for P̂.
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Neither

P̂ =

[
P

P

]
nor

P̂ =

[
P

P

]
work unless the coefficient matrices of Q are very specifically tied
to each other.

But

P̂ =

[
P

−P

]
does the job.
Construction for general PCP-even/odd polynomial possible.
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New Structured Polynomial Eigenvalue Problem

Spectral Symmetry

Cayley Transformation

Structured Linearization for (anti-)PCP and PCP-even/odd
polynomials

Open Problems:

Choice of the Ansatz Vector v

Structure-Preserving Transformation

Structure-Preserving Eigenvalue Algorithm
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GAMM Activity Group Meeting:

Today, 1:20 - 2:20 pm

Members as well as non-members are invited!
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