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Inexact shift-and-invert Arnoldi’s

Introducti

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

Az =Xz, AeC,zeC"

@ A is large, sparse, nonsymmetric
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Inexact shift-and-invert Arnoldi’s method

Introduction

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

Az =Xz, AeC,zeC"

@ A is large, sparse, nonsymmetric
9 Iterative solves

2+ Power method

¢ Simultaneous iteration
2 Arnoldi method

9 Jacobi-Davidson method

@ The first three of these involve repeated application of the matrix A to
a vector

@ Generally convergence to largest/outlying eigenvector
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>t ift l-invert Arnol method

Introduction

Shift-invert strategy

@ Wish to find a few eigenvalues close to a shift o
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Inexact shift-and-invert Arnoldi’s method

Introduction

Shift-invert strategy

@ Wish to find a few eigenvalues close to a shift o
o
| | — |
A3 )\1 )\2 )\4 )\n
@ Problem becomes 1
(A—ol) 'z = a3
A—o

@ each step of the iterative method involves repeated application of
(A—oI)"! to a vector

Inner iterative solve:

€

(A-oly=x

using Krylov method for linear systems.

©

leading to inner-outer iterative method.
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Inexact Shift-invert Arnoldi method

The algorithm

Arnoldi’s method

@ Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Ki(A,¢") = span{g?, Aq", A%q) ... AF 1M,

et |

AQr = QruHyr + Qk+1hk+1,k€g = Qr+1 { h H
k+1,k€k

QlQr=1.
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Inexact Shift-invert Arnoldi method

The algorithm

Arnoldi’s method

@ Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Ki(A,¢") = span{g?, Aq", A%q) ... AF 1M,

Hy
AQr = QrHi + qk+1hk+1,kef = Qk+1 { L ¥ H }
k+1,k€k
QlQr=1.

@ Eigenvalues of Hj, are eigenvalue approximations of (outlying)
eigenvalues of A

Irell = Az — 6zl = [I(AQk — QuHr)ull = |his1kllex ul,
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Inexact Shift-invert Arnoldi method

The algorithm

Arnoldi’s method

@ Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Ki(A,¢") = span{g?, Aq", A%q) ... AF 1M,

et |

AQr = QrHi + qk+1hk+1,kef = Qk+1 { L H
k+1,k€k

QlQr=1.

@ Eigenvalues of Hj, are eigenvalue approximations of (outlying)
eigenvalues of A

Irell = Az — 6zl = [I(AQk — QuHr)ull = |his1kllex ul,

@ at each step, application of A to qx: Agqr = Gk+1
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Inexact Shift-invert Arnoldi method

The algorithm: take 0 = 0 then A := A~!

Shift-Invert Arnoldi’s method A := A~?!

@ Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Ki(A™',q™) = span{g™, A71¢™M, (A7")2¢W, ... (A7 1M,

_ Hy,
AT'Qr = QuHy + qrr1hiriker = Qry { " }

H
Py, ke

QiQr=1.

@ Eigenvalues of Hj, are eigenvalue approximations of (outlying)
eigenvalues of A~1

Irell = A7z — 0|l = (A7 Qr — Qe Hr)ul| = |hi+,kllex ul,

@ at each step, application of A™" to qx: A" qr = Grrr

V.
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Arnoldi’s method

noldi method

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

@ Wish to solve B
llgx — Ader1ll = lldill < 7k

V.
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Inexact Shift-invert Arnoldi method

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
@ Wish to solve B
llar — A+l = [|dell < 7
9 leads to inexact Arnoldi relation
Hy

Hy,
hk+1,kekH } + D, = Qr+1 { hk+1,kekH ] + [da] |d]

AT'Qr = Qi [
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Inexact Shift-invert Arnoldi method

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

@ Wish to solve B
llgx — Ader1ll = lldill < 7k

@ leads to inexact Arnoldi relation
Hy,

Hy,
hk+1,kekH } + Dy = Qr+1 { hk+1,kekH ] + [da] |d]

AT'Qr = Qi [
QU eigenvector of Hy:

7kl = (A~ Qr — QuHi)ull = |his1,x]ler u| + Dy,
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Inexact Shift-invert Arnoldi method

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
@ Wish to solve B
llar — A+l = [|dell < 7
9 leads to inexact Arnoldi relation

Hy,
D, =]
hk+1,k6kH }-i— k= Qk+1 { h

Aile:Qk-&-l [ erH ] + [da] ... |dk]

k-+1,k€%
@ wu eigenvector of Hy:
7kl = (A~ Qr — QuHi)ull = |his1,x]ler u| + Dy,

@ Linear combination of the columns of Dy

k
Dyu = Zdlul, if w; small, then d; allowed to be large!
=St

V.
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Inexact Shift-invert Arnoldi method

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
Linear combination of the columns of Dy
k

Diu = Z diuy, if w; small, then d; allowed to be large!
=1

1
[diwll < ze = [[Diull <e

and
lu| < CQ K |Ire—all *
leads to B
llgx — Adr+1ll = [|dxl]
1

el = C-—— o
Tl
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Inexact Shift-invert Arnoldi method

The inner iteration for AP~ §p11 = qi
Preconditioning
@ Introduce preconditioner P and solve
AP 'Giy1 =gk, Pl Gki1 = o

using GMRES
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Inexact Shift-invert Arnoldi method

The inner iteration for AP~ §p11 = qi

Preconditioning
@ Introduce preconditioner P and solve
—1l 1.
AP qrv1 = qr; P Gkt1 = Grtr

using GMRES
o GMRES convergence bound

depending on
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Inexact Shift-invert Arnoldi method

The inner iteration for AP~ §p11 = qi

Preconditioning

@ Introduce preconditioner P and solve
AP Gor =k, PTGkt = qrra

using GMRES
o GMRES convergence bound

depending on
s the eigenvalue clustering of AP—1

% the condition number

s the right hand side (initial guess)
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Inexact Shift-invert Arnoldi method

The inner iteration for AP~ §p11 = qi

Preconditioning

@ Introduce preconditioner P and solve
AP Gor =k, PTGkt = qrra

using GMRES
o GMRES convergence bound

depending on
s the eigenvalue clustering of AP—1
+ the condition number
s the right hand side (initial guess)
@ using a tuned preconditioner for Arnoldi’s method
PyQr = AQy; given by Pr =P + (A — P)QrQ¥
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Inexact Shift-invert Arnoldi method

Preconditioning for the inner iteration

The inner iteration for AG = ¢

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of
Arnoldi’s method have been carried out; then k eigenvalues of AIP’;l are
equal to one:

[AP, '1AQK = AQy

and n — k eigenvalues are close to the corresponding eigenvalues of AP~".
They are eigenvalues of L € C*~**"=F with

IL = 1|l < C|IE].
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Inexact Shift-invert Arnoldi method

The inner iteration for AG = ¢

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of
Arnoldi’s method have been carried out; then k eigenvalues of AP, are

equal to one:
[AP}, ' AQk = AQx

and n — k eigenvalues are close to the corresponding eigenvalues of AP~".

They are eigenvalues of L € C*~**"=F with

1L - 1] < C|B]. )
Implementation
@ Sherman-Morrison-Woodbury.
@ Only minor extra costs (one back substitution per outer iteration)
o




d-invert Arnoldi’s method

Inexact Shift-invert Arnoldi method

Preconditioning for the inner iteration

Numerical Example

sherman5.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

o smallest eigenvalue: A\; ~ 4.69 x 1072,

@ Preconditioned GMRES as inner solver (both fixed tolerance and
relaxation strategy),

o standard and tuned preconditioner (incomplete LU).
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Inexact Shift-invert Arnoldi method

Preconditioning for the inner iteration

No tuning and standard preconditioner

R ek *
Kok — ok ke — T T 10° o
25 T x
Sx

20 = 10° T NS
2 = *
8 9 AN
s E *
s 15 s N
5 g0 .
£ 3 *
£ Z .

107 N \k\
5 b X
N
"
2 4 6 8 10 12 50 100 150 200 250 300
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Inexact Shift-invert Arnoldi method

Preconditioning for the inner iteration

Tuning the preconditioner

- Arnoldi tolerance 10e-14/m
- 10° —#— Armoldi tolerance 10e-14 tuned|
" 20 = 10°
2 =
8 o
2 E
E 15 2
5 = 107
£ 3
=10 @
107 N \k\
51T="% = Amoldi tolerance 10e-14/m AN .
—*— Arnoldi tolerance 10e-14 tuned| \*
2 4 6 8 10 12 50 100 150 200 250 300
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Inexact Shift-invert Arnoldi method

Preconditioning for the inner iteration

Relaxation

—  — Amoldi tolerance 10e-14/m
10 —&— Arnoldi relaxed tolerance
—+— Amoldi tolerance 10e-14 tuned|

inner itertaions
)

residual norms ||
5,

10
— % — Armoldi tolerance 10e-14/m 107 ~
s AN
—&— Arnoldi relaxed tolerance N
—*— Armnoldi tolerance 10e-14 tuned| \*
2 4 6 8 10 12 50 100 150 200 250 300
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Inexact Shift-invert Arnoldi method

Preconditioning for the inner iteration

Tuning and relaxation strategy

k= =k k= k- % — % — Amoldi tolerance 10e-14/m
—k - R 10° —&— Amoldi relaxed tolerance
25 —#— Amoldi tolerance 10e-14/m tuned
—#— Amoldi relaxed tolerance tuned
20 s

inner itertaions
)

residual norms ||
5,

10
— * — Arnoldi tolerance 10e-14/m s
—&— Amoldi relaxed tolerance 10 N
511 —+— Amoldi tolerance 10e-14/m tuned AN .
—&— Arnoldi relaxed tolerance tuned \*
2 4 6 8 10 12 50 100 150 200 250 300
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Inexact Shift-invert Arnoldi method

Ritz values of exact and inexact Arnoldi

Exact eigenvalues | Ritz values (exact Arnoldi) | Ritz values (inexact Arnoldi, tuning)

+4.69249563e-02
+1.25445378e-01
+4.02658363e-01
+5.79574381e-01
+6.18836405e-01

F4.602495636-02
+1.25445378e-01
+4.02658347¢-01
+5.79625498¢-01
+6.18798666e-01

F4.692495636-02
+1.25445378e-01
+4.02658244e-01
+5.79817301e-01
+6.18650849¢-01

Table: Ritz values of exact Arnoldi’s method and inexact Arnoldi’s method with
the tuning strategy compared to exact eigenvalues closest to zero after 14
shift-invert Arnoldi steps.




Inexact shift-and-invert Arnoldi’s method

Inexact Shift-invert Arnoldi method with implicit restarts

Outline

© Inexact Shift-invert Arnoldi method with implicit restarts
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Inexact Shift-invert Arnoldi method with implicit restarts

Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

@ take an k + p step Arnoldi factorisation

H
AQrk+p = QrtpHi+p + Qhtpt+1Pk4p+1,k+p€tp
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Inexact Shift-invert Arnoldi method with implicit restarts

Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

@ take an k + p step Arnoldi factorisation

H
AQrk+p = QrtpHi+p + Qhtpt+1Pk4p+1,k+p€tp

@ Compute A(Hgp) and select p shifts for an implicit QR iteration
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Inexact Shift-invert Arnoldi method with implicit restarts

Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

@ take an k + p step Arnoldi factorisation

H
AQrk+p = QrtpHi+p + Qhtpt+1Pk4p+1,k+p€tp

@ Compute A(Hgp) and select p shifts for an implicit QR iteration

(1)
@ implicit restart with new starting vector (j(l) _ P(A)g

(A
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Inexact Shift-invert Arnoldi method with implicit restarts

Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

o take an k + p step Arnoldi factorisation
H
AQrk+p = QrtpHi+p + Qhtpt+1Pk4p+1,k+p€tp
@ Compute A(Hgp) and select p shifts for an implicit QR iteration

o . . . A)gW
@ implicit restart with new starting vector q(l) = p(A)g

(A

Aim of IRA

AQk = QuHy + qrt1 hivyrk e
—

— 0




method

hift-invert Arnoldi method with implicit rest

Inexact solves

Relaxation strategy

@ m = k + p steps of the Arnoldi factorisation

H
AQk+p = QrktpHi+p + Gt p+1Pktpt+1,k+pChtp
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Inexact Shift-invert Arnoldi method with implicit restarts

Relaxation strategy

@ m = k + p steps of the Arnoldi factorisation

H
AQk+p = QrtpHrtp + Ghtp+1Phtpt1,k+pCk1p

o let Hy be decomposed as Oy, = U, H,Uy

@ let Ry = qpy1he i1 reil Uy be the residual after k Arnoldi steps.

/p UNIVERSITY OF
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Inexact Shift-invert Arnoldi method with implicit restarts

Relaxation strategy

@ m = k + p steps of the Arnoldi factorisation

H
AQk+p = QrtpHrtp + Ghtp+1Phtpt1,k+pCk1p

o let Hy be decomposed as Oy, = U, H,Uy
@ let Ry = qpy1he i1 reil Uy be the residual after k Arnoldi steps.
Ux

Uz
k-dimensional invariant subspace of H,,, such that

@ Then U = } with U2 U = I, whose columns span a

10| < C(E)| R | *

UNIVERSITY OF
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Inexact Shift-invert Arnoldi method with implicit restarts

Inexact solves

Relaxation strategy for IRA

Theorem

For any given € € R with € > 0 assume that

(@]
— af >k,
jal < { TRl Y .

€ otherwise.

Then

4QumU — QU6 — Rul| < e.
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Inexact Shift-invert Arnoldi method with implicit restarts

Inexact solves

Relaxation strategy for IRA

Theorem

For any given € € R with € > 0 assume that

(!
e—— af 1>k,
lldi]l < S IRl o
€ otherwise.
Then
[AQmU — QmU®O — Rp|| < e.
@ In practice: perform m = k + p initial steps and then relax the
tolerance from the first restart. )
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invert Arnolc method
hift-invert Arnoldi method with implicit rest

Preconditioning for the inner iteration

Tuning for implicitly restarted Arnoldi’s method

@ Introduce preconditioner P and solve
AP Grr =k, Py lGke1 = Qo
using GMRES and a tuned preconditioner

PrQr = AQy; givenby P =P+ (A— P)QrQ¥
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od with implicit restarts

Why does tuning help?

@ Assume we have found an approximate invariant subspace, that is

A7 Qr = QrHy + Qk+1hk+1,k61€{
S

~0
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Inexact Shift-invert Arnoldi method with implicit restarts

Tuning

Why does tuning help?

@ Assume we have found an approximate invariant subspace, that is
A'Qr = QrHy + Qk+1hk+1,k6;€[
—_——
~0
@ let A~! have the upper Hessenberg form

1L 1H 41 1 Hy, AP
A = ,
[Qr Qet |"A [ Qr Qu" ] hesrreren Tom
where [ Qr Qi* ] is unitary and Hy € C** and Thy € C*%"F are
upper Hessenberg.
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Inexact Shift-invert Arnoldi method with implicit restarts

Tuning

Why does tuning help?

@ Assume we have found an approximate invariant subspace, that is
A'Qr = QrHi + Qk+1hk+1,k6£[
—_——
~0
@ let A~! have the upper Hessenberg form

= Hy, Th2
= H
hiy1,ke1ek T |’

[ Q QkL ]HA—l[ QO QkJ_

where [ Qr Qrt ] is unitary and Hy € C** and Thy € C*%"F are
upper Hessenberg.

If hk+17k 7& 0 then

I+x QY AP ' Qi

[ Qr Qu" ] AP [ Qe @kt ] = . TE( lePle)_l-ﬁ-*

IRSITY OF
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Inexact Shift-invert Arnoldi method with implicit restarts

Tuning

Why does tuning help?

@ Assume we have found an approximate invariant subspace, that is
A'Qr = QrHi + Qk+1hk+1,k6£[
—_——
~0
@ let A~! have the upper Hessenberg form

] = Hy, Th2
= H
hk+1,x€1€K T |’

[ Q QkL ]HA—l[ QO QkJ_

where [ Qr Qrt ] is unitary and Hy € C** and Thy € C*%"F are
upper Hessenberg.

If hk+17k = 0 then

[Qr Qt 1"AP [ Qv Qi* ] =

IRSITY OF

ATH

I QF AP ' Qi
_ H _
0 Ty'(Qk PQy)




Arnoldi’s method

noldi method with implicit restarts

Another advantage of tuning

@ System to be solved at each step of Arnoldi’s method is

AP G = iy Pyttt = e
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Inexact Shift-invert Arnoldi method with implicit restarts

Tuning

Another advantage of tuning

@ System to be solved at each step of Arnoldi’s method is

AP G = iy Pyttt = e

@ Assuming invariant subspace found then (A™'Qk = QrHy):

AP gk = qi
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act Shift-invert Arnoldi method with implicit rest

Preconditioning for the inner iteration

Another advantage of tuning

@ System to be solved at each step of Arnoldi’s method is
AP G = ary Pyl Gkrr = G
o Assuming invariant subspace found then (A™*Qx = Qx Hy):
AP, g = g

@ the right hand side of the system matrix is an eigenvector of the
system!
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Inexact Shift-invert Arnoldi method with implicit restarts

Tuning

Another advantage of tuning

@ System to be solved at each step of Arnoldi’s method is
AP G = ary Pyl Gkrr = G
@ Assuming invariant subspace found then (A™'Qk = QrHy):
APy g = g

@ the right hand side of the system matrix is an eigenvector of the
system!

@ Krylov methods converge in one iteration

UNIVERSITY OF



Another advantage of tuning

9 In practice:

A7'Qr = QrHx + qri1hit rer

and
| AP; "k — arll = O(Jhas1,x])
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Another advantage of tuning

9 In practice:
AT'Qr = QuHi + gt 1hiiirer

and
| AP; "k — arll = O(Jhas1,x])

@ number of iterations decreases as the outer iteration proceeds
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Another advantage of tuning

9 In practice:
AT'Qr = QuHi + gt 1hiiirer

and
| AP; "k — arll = O(Jhas1,x])

@ number of iterations decreases as the outer iteration proceeds

@ Rigorous analysis quite technical.
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Inexact Shift-invert Arnoldi method with implicit restarts
Preconditioning for the inner iteration

Numerical Example

sherman5.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

@ k = 8 eigenvalues closest to zero
@ IRA with exact shifts p =4

@ Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

¢ standard and tuned preconditioner (incomplete LU).
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Inexact Shift-invert Arnoldi method with implicit restarts

Preconditioning for the inner iteration

No tuning and standard preconditioner

60 eps oy bbb o b } Ny
10 N
* N
50 =10 N *
1) = AN
= .
© £ N
= S 10° *,
Ly 2 .
= = N
8 g 107° *
= e . N
2 10 *\\
10 10 Sk
N
0 5 10 15 20 25 30 35 40 45 50 500 1000 1500 2000 2500
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Inexact Shift-invert Arnoldi method with implicit restarts

Preconditioning for the inner iteration

-k Arnoldi 10e-12|
S —— - R
50 ’:: 104
1) =
Sw PR
2
g £
= S 10°
,8 30 c
o =
5 S 0"
g 2 .
E 10
10 107“
— * — Arnoldi tolerance 10e-12|
0 10 *
0 5 10 15 20 25 30 35 40 45 50 500 1000 1500 2000 2500
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Inexact Shift-invert Arnoldi method with implicit restarts
Preconditioning for the inner iteration

Relaxation

= — % — Amoldi tolerance 10e-12|
~ —&— Amold relaxed tolerance
10 —*— Amoldi 10e-12 tuned
—
1%} =
g 2
=
] £
= 10°
2 2
F < -10
8 g 10
c S
£ g v
10 — * — Amoldi tolerance 10e-12| 10
—&— Amold relaxed tolerance
—— Armnoldi 10e-12 tuned 10715
0 5 10 15 20 25 30 35 40 45 50 500 1000 1500 2000 2500
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
g g
iterations total number of inner iterations
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Inexact Shift-invert Arnoldi method with implicit restarts

Preconditioning for the inner iteration

Tuning and relaxation strategy

— %* — Amoldi tolerance 10e-12
60 ., —6&— Amold relaxed tolerance
10 —#— Amoldi 10e-12 tuned
—&— Amold relaxed tolerance tuned|
50 —
1%} =
£ i
2
] £
= S 10°
L c
— T 10
8 g 10
c 20 o
= D 10
— % — Amoldi tolerance 10e-12 2
10 —©&— Arnold relaxed tolerance 10 *
—#— Arnoldi 10e-12 tuned N N
—8— Arnold relaxed tolerance tuned| 107 \*
0 5 10 15 20 25 30 35 40 45 50 500 1000 1500 2000 2500
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Preconditioning for the inner iteration

Numerical Example

qc2534.mtx matrix from the Matrix Market library.
@ k = 6 eigenvalues closest to zero
o IRA with exact shifts p =4

@ Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

¢ standard and tuned preconditioner (incomplete LU).
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Inexact Shift-invert Arnoldi method with implicit restarts

Preconditioning for the inner iteration

Tuning and relaxation strategy

100 | e s *: o N — % — Amoldi tolerance 10e-12
—&— Armnold relaxed tolerance
90 S —*— Amoldi 10e-12 tuned
—&— Amold relaxed tolerance tuned|
80 z
0 =
c 70 -
il 2}
2
E 60 g 5
Q o 10
2 5 <
= =
5 ]
>
€ 40 k=]
£, 2
— % — Amoldi tolerance 10e-12 Qe
20H —©&— Arnold relaxed tolerance S
—%— Amoldi 10e-12 tuned *
10f] —g— Amold relaxed tolerance tuned| Sy
5 10 15 20 25 30 35 40 45 50 55 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Conclusions

@ For eigencomputations it is advantageous to consider small rank
changes to the standard preconditioners (works for any preconditioner)

@ Extension of the relaxation strategy to IRA
@ Best results are obtained when relaxation and tuning are combined

@ Current work: Link to Jacobi-Davidson
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