Order Reduction of (Truly) Large-Scale

Linear Dynamical Systems

Roland W. Freund

Department of Mathematics
University of California, Davis, USA

http://www.math.ucdavis.edu/ freund/

Supported in part by NSF



Motivation

e Need for order reduction in VLSI circuit simulation

e Corollary to Moore's Law

Electric networks consisting of only resistors (' 's),
capacitors (* 's), and inductors (' 's)

e These networks are (truly) large



Moore’s law
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VLSI chip scaling
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VLSI interconnect

e \Wires are not ideal:
m Resistance
m Capacitance

m Inductance

e Consequences:
m Timing behavior
m Noise
m Energy consumption

m Power distribution




Lumped-circuit paradigm

e Replace ‘pieces’ of the interconnect by RCL networks
e Up to @(10°) circuit elements per network

e Up to O(10%) networks



Need for order reduction
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e [ he order reduction problem
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e Padé-type approximation properties of SPRIM

e Concluding remarks
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RCL networks as descriptor systems

e System of linear time-invariant DAEs of the form

d
C ax(t) + Gx(t) = Bu(t)
y(t) = B 'x(t)
where C, G € RVXN and B € RVxm

e x(t) € RY is the unknown vector of state variables
e m iNputs, m outputs

e sC + G is nonsingular except for finitely many values of s € C



Reduced-order models

e System of DAEs of the same form:

d
Cn az(t} + Grz(t) = Bru(t)

y(t) = B! z(¢)

e But now:

Cn, G, e R"™™ and B, eR"™
where n < N



Transfer functions

e Original descriptor system:

H(s)=B' (sC+G) 'B

e Reduced-order model:

H,(s) =B, (sCn+ Gn) !By,

e ‘Good’ reduced-order model
‘Good’ approximation H,, ~ H



Problem of structure preservation

e Any RCL network is stable, passive, ...

e Reduced-order model should be stable, passive, ...

e More difficult problem:

Reduced-order model of an RCL network should be
synthesizable as an RCL network



Preservation of RCL structure
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General RCL network equations

e System of linear time-invariant DAEs of the form

where

C1

0 0

C=|0 C, 0

0

e Moreover:

0 0

d
C ax(t} + G x(t) = Bu(t)

C>0

(This implies passivity!)

y(t) = BTx(t)

and G—l—GTzO

[ G; Gy Gj]
-GJ 0 0
-G] 0 0

B; 0
0 0
0 B,
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Projection-based reduction

o Let V,, € RVX" pe any matrix with full column rank n

e Use V,, to explicitly project the data matrices of

d
C ax(t) + G x(t) = Bu(t)

y(t) = BTx(¢)
onto the subspace spanned by the columns of V,



Projection-based reduction, continued

e Resulting reduced-order model

d
Cn az(t} + Gpz(t) = Bru(?t)

y(t) =B, z(¢t)
where

C.=V,)Ccv,, G,=V'!GV,, B,=V/'B

e Passivity is preserved:

C>0,G+G">0 = Cp,>=0, G,+G >0



Projection-based order reduction

assive educed nterconnect ~acromodeling lgorithm
(Odabasioglu, '96; Odabasioglu, Celik, and Pileggi, '97)

e Split-congruence transformations
(Kerns, Yang, '97)

tructure- reserving educed nterconnect acromodeling
(F., '04 and '07)



PRIMA reduced-order models

e Let V,, be any matrix whose columns span the n-th
Kn(A,R) where

A:=(sC+G) 'C and R:i=(spC+G) B

and spg € R is a suitably chosen expansion point

e Projection 4+ Krylov subspace =

Hn(s) = H(s) + O ((s —s0)?), where gq2> |n/m]



Structure is not preserved

e Structure of the data matrices:

C; 0 O  G; Gy G3
C=|0 C, 0/, G=|-GJ 0 o0
0 0 0 -GJ 0 o0

e Structure of PRIMA reduced-order matrices:

Cn:.a Gn:., Bn:I

B; 0
0 0
0 B,
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SPRIM

e As in PRIMA, let V,, be any matrix such that

Kn(A,R) = colspan V

e Key insight that is exploited in SPRIM:
In order to have a Padé-type property as in PRIMA, we can
project with any matrix V,, such that

Kn(A,R) C colspan Vy,

e ...  Odabasioglu, '96; Grimme, '97; Odabasioglu, Celik, and
Pileggi, '97; ...



SPRIM, continued

e Recall:
C; 0 O] [ G
C=|0 Cy 0/, G=|-G] o
0 0 0 -GJ 0

e Partition V,, accordingly:

Vn:

| 0 Bj




SPRIM, continued

e Set
v o 0 |
V=10 V& o

o o VP

e Then: K,(A,R) = colspanV, C colspanV,

e [ his guarantees a Padé-type property!



SPRIM models

e Recall:

C =

and

Ci1 0 0
0 C 0
0 0 0

 G; Gy Gz
G=|-GJ 0 0
-G 0 0|
v 0 0
=10 Vv® o

0o 0 VP

B; 0
0 0
0 B,




SPRIM models, continued

e [ he projection now preserves this structure:

Cfn,:

e Padé-type property:

Hy(s) = H(s) + O ((s — s0)?)
with ¢ > |n/m]|
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An RCL circuit with mostly C’s and L'’s
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A package example

= = = PRIMA model
SPRIM model
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Package example, high frequencies

Exact and models corresponding to size n = 80



A finite-element model of a shaft

= = = PRIMA model
SPRIM model
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Exact and models corresponding to n = 15



SPRIM vs. PRIMA

e Pros:
m Same computational work
m SPRIM preserves block structure and reciprocity

m Higher accuracy

e Cons:

m SPRIM models are two or three times as large as
corresponding PRIMA models
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SPRIM-SVD

e Columns of V,, span K, (A,R)

e SPRIM projection:

VD] v o o ]
V, = |v? Vo= 0 Vv&® o
v 0o o V&

e But:

# of rows of Vf,(l3) < # of rows of Vf,(ll) and fo)



The RCL circuit with mostly C’s and L'’s
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Singular values of projection subblocks
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SPRIM-SVD, continued

e Forl =1,2,3, replace Vg) by the matrix Ug) containing the
left singular vectors corresponding to the 'non-zero’ singular
values

e SPRIM-SVD projection:

v o o Ul o o
V=10 Vv® o Vo= 0 U® o
0 0o V& 0 o UP

e For the example:

3n = 360 44+72+1=147



The RCL circuit with mostly C’s and L'’s
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T heory of SPRIM-SVD?

e Number of small singular values of the subblocks Vf,(ll) and
2)
v{2)7

e Structure is understood in the case of no voltage sources,
i.e.. no thrird subblock V{3
(F. '05)

e Key is the structure of the block Krylov subspaces I£,(A,R);
but what is it?
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SPRIM vs. PRIMA
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Padeé-type property

e So far, we only know that both PRIMA and SPRIM produce
Padé-type reduced-order models with

H,(s) =H(s) + O((s—sp)9), where g¢q>|n/m]|
e Can we say more in the case of SPRIM?

e Easy in the case of no third subblock Vf,({o’)
(F. '05)

e General case: J-symmetric linear dynamical systems
(F. '07)



J-symmetry

e Recall:

where

e C and G are J-symmetric:

Jc=cC'J

C; 0 O]
0 Cr O
0 0 O

d
C ax(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

and JG=G'J,

T ©

0O O
0O O

where

J:

B; O
B=|0 0
|0 B

I 0 O
0O -1 O
0 0 I




J-symmetry, continued

e [ he input-output matrix B satisfies

Range(J B) = Range(B)



Jno-symmetry of SPRIM models

e [ he SPRIM models
d

y(t) = B, 2(t)
preserve the structure of C,, G,, By

e T herefore, C,, and G,, are J,-symmetric with

I
Jpo: =10 -1 O and Range(J,B,) = Range(B;)
0O 0 -1

e Moreover, the projection matrix V, satisfies



Padeé-type property

e Theorem (F., '05 and '07)

For J-symmetric systems and real expansion points sg, the
n-th SPRIM model is J,-symmetric and satisfies

H,(s) =H(s)+ O ((8 — So)q) , Where ¢q>2|n/m]

e [ wice as accurate as PRIMA!
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Concluding remarks

e SPRIM and SPRIM-SVD for general RCL networks

e Key property for higher accuracy of SPRIM:
Jn-symmetry reduced-order models

e T heory of the zero singular values exploited in SPRIM-SVD?

e Projection-based reduction requires the storage of V,, € RN Xn
and is thus limited to moderately large N

e Structure-preserving reduction for truly large-scale
RCL networks?



