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Motivation

• Need for order reduction in VLSI circuit simulation

• Corollary to Moore’s Law

• RCL networks:

Electric networks consisting of only resistors (R’s),

capacitors (C’s), and inductors (L’s)

• These networks are (truly) large



Moore’s law



VLSI chip scaling



VLSI interconnect

• Wires are not ideal:

Resistance

Capacitance

Inductance

• Consequences:

Timing behavior

Noise

Energy consumption

Power distribution



Lumped-circuit paradigm

• Replace ‘pieces’ of the interconnect by RCL networks

• Up to O(106) circuit elements per network

• Up to O(106) networks



Need for order reduction
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RCL networks as descriptor systems

• System of linear time-invariant DAEs of the form

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

where C, G ∈ RN×N and B ∈ RN×m

• x(t) ∈ RN is the unknown vector of state variables

• m inputs, m outputs

• sC + G is nonsingular except for finitely many values of s ∈ C



Reduced-order models

• System of DAEs of the same form:

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

ỹ(t) = BT
n z(t)

• But now:

Cn, Gn ∈ R
n×n and Bn ∈ R

n×m

where n ≪ N



Transfer functions

• Original descriptor system:

H(s) = BT (sC + G)−1 B

• Reduced-order model:

Hn(s) = BT
n (sCn + Gn)

−1 Bn

• ‘Good’ reduced-order model

⇐⇒ ‘Good’ approximation Hn ≈ H



Problem of structure preservation

• Any RCL network is stable, passive, . . .

• Reduced-order model should be stable, passive, . . .

• More difficult problem:

Reduced-order model of an RCL network should be

synthesizable as an RCL network



Preservation of RCL structure



General RCL network equations

• System of linear time-invariant DAEs of the form

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

where

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2




• Moreover:

C � 0 and G + GT � 0

(This implies passivity!)
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• SPRIM for general RCL networks

• SPRIM–SVD
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Projection-based reduction

• Let Vn ∈ RN×n be any matrix with full column rank n

• Use Vn to explicitly project the data matrices of

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

onto the subspace spanned by the columns of Vn



Projection-based reduction, continued

• Resulting reduced-order model

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

ỹ(t) = BT
n z(t)

where

Cn = VT
n CVn, Gn = VT

n GVn, Bn = VT
n B

• Passivity is preserved:

C � 0, G + GT � 0 ⇒ Cn � 0, Gn + GT
n � 0



Projection-based order reduction

• PRIMA

Passive Reduced Interconnect Macromodeling Algorithm

(Odabasioglu, ’96; Odabasioglu, Celik, and Pileggi, ’97)

• Split-congruence transformations

(Kerns, Yang, ’97)

• SPRIM

Structure-Preserving Reduced Interconnect Macromodeling

(F., ’04 and ’07)



PRIMA reduced-order models

• Let Vn be any matrix whose columns span the n-th Krylov

subspace Kn(A,R) where

A :=
(
s0 C + G

)−1
C and R :=

(
s0 C + G

)−1
B

and s0 ∈ R is a suitably chosen expansion point

• Projection + Krylov subspace = Padé-type approximant:

Hn(s) = H(s) + O ((s − s0)
q) , where q ≥ ⌊n/m⌋



Structure is not preserved

• Structure of the data matrices:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2




• Structure of PRIMA reduced-order matrices:

Cn = , Gn = , Bn =
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SPRIM

• As in PRIMA, let Vn be any matrix such that

Kn(A,R) = colspanVn

• Key insight that is exploited in SPRIM:

In order to have a Padé-type property as in PRIMA, we can

project with any matrix Ṽn such that

Kn(A,R) ⊆ colspan Ṽn

• ... ; Odabasioglu, ’96; Grimme, ’97; Odabasioglu, Celik, and

Pileggi, ’97; ...



SPRIM, continued

• Recall:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2




• Partition Vn accordingly:

Vn =




V
(1)
n

V
(2)
n

V
(3)
n






SPRIM, continued

• Set

Ṽn =




V
(1)
n 0 0

0 V
(2)
n 0

0 0 V
(3)
n




• Then: Kn(A, R) = colspanVn ⊆ colspan Ṽn

• This guarantees a Padé-type property!



SPRIM models

• Recall:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2




and

Ṽn =




V
(1)
n 0 0

0 V
(2)
n 0

0 0 V
(3)
n






SPRIM models, continued

• The projection now preserves this structure:

Cn =




C̃1 0 0

0 C̃2 0

0 0 0


 , Gn =




G̃1 G̃2 G̃3

−G̃T
2 0 0

−G̃T
3 0 0


 , Bn =




B̃1 0

0 0

0 B̃2




• Padé-type property:

Hn(s) = H(s) + O ((s − s0)
q)

with q ≥ ⌊n/m⌋



An RCL circuit with mostly C’s and L’s
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A package example
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Package example, high frequencies
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A finite-element model of a shaft
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SPRIM vs. PRIMA

• Pros:

Same computational work

SPRIM preserves block structure and reciprocity

Higher accuracy

• Cons:

SPRIM models are two or three times as large as

corresponding PRIMA models
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SPRIM–SVD

• Columns of Vn span Kn(A, R)

• SPRIM projection:

Vn =




V
(1)
n

V
(2)
n

V
(3)
n


 =⇒ Ṽn =




V
(1)
n 0 0

0 V
(2)
n 0

0 0 V
(3)
n




• But:

# of rows of V
(3)
n ≪ # of rows of V

(1)
n and V

(2)
n



The RCL circuit with mostly C’s and L’s
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Singular values of projection subblocks
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SPRIM–SVD, continued

• For l = 1,2,3, replace V
(l)
n by the matrix U

(l)
n containing the

left singular vectors corresponding to the ’non-zero’ singular

values

• SPRIM–SVD projection:

Ṽn =




V
(1)
n 0 0

0 V
(2)
n 0

0 0 V
(3)
n


 =⇒ V̂n =




U
(1)
n 0 0

0 U
(2)
n 0

0 0 U
(3)
n




• For the example:

3n = 360 =⇒ 74 + 72 + 1 = 147



The RCL circuit with mostly C’s and L’s
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Theory of SPRIM–SVD?

• Number of small singular values of the subblocks V
(1)
n and

V
(2)
n ?

• Structure is understood in the case of no voltage sources,

i.e., no thrird subblock V
(3)
n

(F. ’05)

• Key is the structure of the block Krylov subspaces Kn(A, R);

but what is it?
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SPRIM vs. PRIMA
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Padé-type property

• So far, we only know that both PRIMA and SPRIM produce

Padé-type reduced-order models with

Hn(s) = H(s) + O ((s − s0)
q) , where q ≥ ⌊n/m⌋

• Can we say more in the case of SPRIM?

• Easy in the case of no third subblock V
(3)
n

(F. ’05)

• General case: J-symmetric linear dynamical systems

(F. ’07)



J-symmetry

• Recall:

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

where

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2




• C and G are J-symmetric:

JC = CTJ and JG = GTJ, where J :=




I 0 0

0 −I 0

0 0 −I






J-symmetry, continued

• The input-output matrix B satisfies

Range(JB) = Range(B)



Jn-symmetry of SPRIM models

• The SPRIM models

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

y(t) = BT
n z(t)

preserve the structure of Cn, Gn, Bn

• Therefore, Cn and Gn are Jn-symmetric with

Jn :=




I 0 0

0 −I 0

0 0 −I


 and Range(Jn Bn) = Range(Bn)

• Moreover, the projection matrix Vn satisfies

JVn = Vn Jn



Padé-type property

• Theorem (F., ’05 and ’07)

For J-symmetric systems and real expansion points s0, the

n-th SPRIM model is Jn-symmetric and satisfies

Hn(s) = H(s) + O
(
(s − s0)

q̃
)

, where q̃ ≥ 2 ⌊n/m⌋

• Twice as accurate as PRIMA!
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Concluding remarks

• SPRIM and SPRIM–SVD for general RCL networks

• Key property for higher accuracy of SPRIM:

Jn-symmetry reduced-order models

• Theory of the zero singular values exploited in SPRIM–SVD?

• Projection-based reduction requires the storage of Vn ∈ RN×n

and is thus limited to moderately large N

• Structure-preserving reduction for truly large-scale

RCL networks?


