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Product BiI-CG methods

Bi-CG solves nonsymmetric linear systems using (short) CG
recursions but needs extra matvec with A

ldea of Sonneveld: use 'wasted’ matvec in a more useful way.
Result: transpose-free methods:

* CGS (Sonneveld, 1989)

* Bi-CGSTAB (Van der Vorst, 1992)

e BICGSTABZ2 (Gutknecht, 1993)

* TFOMR (Freund, 1993)

* BICGstab(¥) (Sleijpen and Fokkema, 1994)

* Many other variants
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Historical remarks

Sonneveld first developed IDR (1980).

Analysis showed that IDR was Bi-CG combined with linear
minimal residual steps.

The fact that IDR is transpose free, combined with the relation
with Bi-CG led to the development of a now famous algorithm:
CGS.

Later Van der Vorst proposed another famous method:
Bi-CGSTAB, which is mathematicaly equivalent with IDR.

As a result of these developments, the basic IDR idea was
abandoned for the Bi-CG approach. IDR is now forgotten.
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The IDR idea

The IDR-idea Is to generate a sequence of subspaces Gy - - - G;
with the following operations:

- Intersect G,_; with fixed subspace S,
- Compute G; = (I —w;A)(Gi—-1NS).

The subspaces Gy - - - G; are nested and of shrinking dimension.
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The IDR theorem

Theorem 1 (IDR) Let A be any matrix in CV*¥ | let vy be any
nonzero vector in CV, and let G, be the complete Krylov space
KN (A, vp). Let S denote any (proper) subspace of CV such that
S and Gy do not share a nontrivial invariant subspace of A, and
define the sequence G;, j =1,2,... as

Gi=I—-wjA)(Gi—1NS)

where the w;’s are nonzero scalars. Then
(1) G; C Gj—,forall j > 0.
(i) G; = {0} for some j < N.
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Making an IDR algorithm

The IDR theorem can be used to construct solution algorithms.
This is done by constructing residuals r,, € G;.
According to the IDR theorem ultimately r,, € Gy = {0}.

In order to generate residuals and corresponding solution
approximations we first look at the basic recursions.

T Awgust24, 2007w
“]
TUDelft



Krylov methods: basic recursion (1)

A Krylov-type solver produces iterates x,,, for which the
residuals r,, = b — Ax,, are in the Krylov spaces

ICn<A, ’I“()) =719 D A’I“() B A2T0 G---P An’l“o :

The next residual r,,. 1 can be generated by

~

J
j=0

The parameters «, 3; determine the specific method and must
be such that «,, . ; can be computed.
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Krylov methods: basic recursion (2)

By using the difference vector
Ary =111 — T = —A(Tpt1 — xy),

an explicit way to satisfy this requirement is

N

J
J=1

which leads to the following update for the o estimate:

AN

J
Tnt1 = Tpn + ATy — E ’YjAwn—j ’
J=1
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Computation of a new residual (1)

Residuals are computed that are forced to be in the subspaces
G;, by application of the IDR-theorem.
The residual 7,41 1SN G 11 if

Thnil = (I — wj_|_1A)’U with v € Qj nsS.

The main problem is to find v.
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Computation of a new residual (2)
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Computation of a new residual (3)

The vector v is a combination of the residuals r; in G;.

j
V=", — E VAT .
J=1

Let the space S be the left null space of some N x s matrix P:
P=(p;p; ... py), S=N(P").
Since v is also in S = M/ (PH), it must satisfy

Ply=0.

Combining these two yields an s x 3 linear system for the
coefficients v; that (normally) is uniquely solvable if} = s.
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Computation of a new residual (4)

Hence with the residual r,,, and a matrix A R consisting of the
last s residual differences:

AR = (Ar,_1 Ar,y_o ... Ar,_ )
a suitable v can be found by

Solve s x s system  (P?AR)c = P'r,

Calculate v=r, — ARc
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Building G,.. (1)

Assume r,, and all columns of AR are in G;, and let r,,; be
calculated as

'n+1 = U — Wj_|_1AU

Then Tnt+1 € gj_|_1.
Since G,4+1 C G; (theorem) we automatically have

Tnt+1 € gj

Now the next AR is made by repeating the calculations.

In this way we find s + 1 residuals in G;41
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Building G4 (2)
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BUIIdlng gj_|_1 (3)
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Building G;;; (4)
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A few detalls

1. The first s + 1 residuals, starting with ro can be constructed

by any Krylov-based iteration, such as a local minimum
residual method.

2. In our actual implementation, all steps are identical.
However, in calculating the first residual in G;1, a new value
wj+1 May be chosen. We choose w;1 such that
|v — wjy1Av|| is minimal.
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Basic IDR(s) algorithm.

while ||r,|| > TOL orn < MAXIT do

for k=0to sdo
Solve ¢ from P?dR,,c = P"r,
v=7r, —dR,c,t = Av;
If £k =0 then

w = (thv)/(t7t);

end if
dr,, = —dR,c — wt, dx,, = —dX,,c + wv;

n+1 = Tn + drn; Ln+1 = Lnp + dwru

n=mn-++1;
dR, = (dr,_1---dr,_s); dX, = (de,_1---dx,_5);
end for
end while
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Vector operations per MATVEC

Method DOT AXPY | Memory Requirements
IDR(1) 2 4 8
IDR(2) 22 52 11
IDR(4) 42 9L 17
IDR(6) 62 132 23
Full GMRES | = ntd n+ 2
BiCGSTAB | 2 3 7
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Relation with other methods

Although the approach is different, IDR(s) is closely related to
some BI-CGSTAB methods:

* |IDR(1) and BI-CGSTAB yield the same residuals at the even
steps.

* ML(k)BICGSTAB (Yeung and Chen, 1999) seems closely
related to IDR(s), BUT

* IDR(s) is MUCH simpler (both conceptually and its
Implementation)

* Other, more natural extensions are possible, e.g. to
avoid breakdown.
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Performance of IDR(s)

The IDR theorem states that

- It Is possible to generate a sequence of nested subspace G;
of shrinking dimension,

- but does not say how fast the dimension shrinks

It can be proven that the dimension reduction is (normally) s,

So dim(Gjy1) = dim(G;) — s.

IDR(s) requires at at most N + % matrix-vector multiplications to
compute the exact solution.
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Numerical experiments

We will present two typical numerical examples
* A 2D Ocean Circulation Problem

e A 3D Helmholtz Problem
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A 2D Ocean Circulation Problem

We compare IDR(s) with Full GMRES, restarted GMRES and
Bi-CGSTAB.

This ocean example is representative for a wide class of CFD
problems.

We will compare:
¢ Rate of convergence

¢ Stagnation level (of the true residual norm)
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Stommel’s model for ocean circulation

Balance between bottom friction, wind stress and Coriolis force.

o _
ox

plus circulation condition around islands &

]{ra—wds:—j{ F -s ds.
' on I

® ). streamfunction

—r Ay — (3 = (VxF),

* r: bottom friction parameter
® (3: Coriolis parameter

e F': Wind stress
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Discretization of the ocean problem

e Discretization with linear finite elements
® Results in nonsymmetric system of 42248

* Eigenvalues are (almost) real

Solution parameters:
* |LU(O) preconditioning

e P. s — 1 random vectors plus r( (for comparison with
Bi-CGSTAB)
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Solution of the ocean problem
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Convergence for the ocean problem

Convergence 2D ocean problem
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Some observations

* Required number of MATVECS decreases if s Is increased.
IDR(4) and IDR(6) are close to the optimal convergence
curve of full GMRES.

® Convergence curves of IDR(1) and Bi-CGSTAB coincide.
¢ Stagnation levels of IDR(s) comparable with Bi-CGSTAB.
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Required number of MATVECS
Method Number of MATVECS | Vectors
Full GMRES 265 268
GMRES(20) > 10000 23
GMRES(50) 4671 53
Bi-CGSTAB 411 7
IDR(1) 420 8
IDR(2) 339 11
IDR(4) 315 17
IDR(6) 307 23

Tolerance: ||b — Az, | < 1078||b|
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A 3D Helmholtz Problem

Example models sound propagation in a room of 4 x 4 x 4m?3.
A harmonic sound source gives acoustic pressure field

p(x, 1) = pla)e?™I"

The pressure function p can be determined from

— (27 f)? .
( Zf) p—Ap=6(x—=x5) InQ.
C

In which
- c¢: the sound speed (340 m/s)

- 0(x — x): the harmonic point source, in the center of the
room.
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Boundary conditions

Five of the walls are reflecting, modeled by
W _
on

and the remaining wall is sound absorbing,

0,

op 2mif .
o = — 7Tlfp onI's.
on C
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Discretization

Discretization with FEM yields linear system
[— (27 f)°M +27mifC+ Klp = b

* Frequency f = 100H z.

¢ System matrix complex, symmetric (but not Hermitian) and
iIndefinite: difficult for iterative methods

® gridsize h = 8 em: 132651 equations
Solution parameters:
* |LU(O) preconditioning

e P: Initial residual plus s — 1 real random vectors

o Onl¥ comﬁarison with BiCGstab‘é‘
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Results Helmholtz Problem

Method Number of | Elapsed time
MATVECS [S]
IDR(1) 1500 3322
IDR(2) 598 1329
IDR(4) 353 783
IDR(6) 310 698
BiCGstab(1) 1828 3712
BiCGstab(2) 1008 2045
BiCGstab(4) 656 1362
BiCGstab(8) 608 1337
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Conclusions

* The IDR-theorem offers a new approach for the
development of iterative solution algorithms

* The IDR(s) algorithm presented here is quite promising and
seems to outperform state-of-the-art Bi-CG-type methods
for important classes of problems.

More information:
http://ta.twi.tudelft.nl/nw/users/gijzen/software.htmi

- Report: IDR(s): a family of simple and fast algorithms for
solving large nonsymmetric linear systems, submitted

- Matlab code, (includes preconditioning and deflation)
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