IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations

Harrachov 2007

Peter Sonneveld en Martin van Gijzen

August 24, 2007

1

Delft University of Technology

Outline

- Introduction
- The Induced Dimension Reduction Theorem
- The IDR(s) algorithm
- Numerical experiments
- Conclusions

Product Bi-CG methods

Bi-CG solves nonsymmetric linear systems using (short) CG recursions but needs extra matvec with A^H .

Idea of Sonneveld: use 'wasted' matvec in a more useful way. Result: transpose-free methods:

- CGS (Sonneveld, 1989)
- Bi-CGSTAB (Van der Vorst, 1992)
- BiCGSTAB2 (Gutknecht, 1993)
- TFQMR (Freund, 1993)
- BiCGstab(ℓ) (Sleijpen and Fokkema, 1994)
- Many other variants

August 24, 2007

Historical remarks

Sonneveld first developed IDR (1980).

Analysis showed that IDR was Bi-CG combined with linear minimal residual steps.

The fact that IDR is transpose free, combined with the relation with Bi-CG led to the development of a now famous algorithm: CGS.

Later Van der Vorst proposed another famous method: Bi-CGSTAB, which is mathematicaly equivalent with IDR.

As a result of these developments, the basic IDR idea was abandoned for the Bi-CG approach. IDR is now forgotten.

The IDR idea

The IDR-idea is to generate a sequence of subspaces $\mathcal{G}_0 \cdots \mathcal{G}_j$ with the following operations:

- Intersect \mathcal{G}_{j-1} with fixed subspace \mathcal{S} ,
- Compute $\mathcal{G}_j = (\mathbf{I} \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S}).$

The subspaces $\mathcal{G}_0 \cdots \mathcal{G}_j$ are nested and of shrinking dimension.

The IDR theorem

Theorem 1 (IDR) Let A be any matrix in $\mathbb{C}^{N \times N}$, let v_0 be any nonzero vector in \mathbb{C}^N , and let \mathcal{G}_0 be the complete Krylov space $\mathcal{K}^N(A, v_0)$. Let S denote any (proper) subspace of \mathbb{C}^N such that S and \mathcal{G}_0 do not share a nontrivial invariant subspace of A, and define the sequence \mathcal{G}_j , j = 1, 2, ... as

$$\mathcal{G}_j = (\boldsymbol{I} - \omega_j \boldsymbol{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

where the ω_j 's are nonzero scalars. Then (i) $\mathcal{G}_j \subset \mathcal{G}_{j-1}$ for all j > 0. (ii) $\mathcal{G}_j = \{\mathbf{0}\}$ for some $j \leq N$.

Making an IDR algorithm

The IDR theorem can be used to construct solution algorithms.

This is done by constructing residuals $r_n \in \mathcal{G}_j$.

According to the IDR theorem ultimately $r_n \in \mathcal{G}_M = \{0\}$.

In order to generate residuals and corresponding solution approximations we first look at the basic recursions.

Krylov methods: basic recursion (1)

A Krylov-type solver produces iterates x_n , for which the residuals $r_n = b - Ax_n$ are in the Krylov spaces

$$\mathcal{K}^n(\boldsymbol{A},\boldsymbol{r}_0) = \boldsymbol{r}_0 \oplus \boldsymbol{A} \boldsymbol{r}_0 \oplus \boldsymbol{A}^2 \boldsymbol{r}_0 \oplus \cdots \oplus \boldsymbol{A}^n \boldsymbol{r}_0 \;,$$

The next residual r_{n+1} can be generated by

$$oldsymbol{r}_{n+1} = -lpha oldsymbol{A} oldsymbol{r}_n + \sum_{j=0}^{\widehat{j}} eta_j oldsymbol{r}_{n-j} \; .$$

The parameters α , β_j determine the specific method and must be such that x_{n+1} can be computed.

August 24, 2007

TUDelft

Krylov methods: basic recursion (2)

By using the difference vector

$$\Delta \boldsymbol{r}_k = \boldsymbol{r}_{k+1} - \boldsymbol{r}_k = -\boldsymbol{A}(\boldsymbol{x}_{n+1} - \boldsymbol{x}_n),$$

an explicit way to satisfy this requirement is

$$\boldsymbol{r}_{n+1} = \boldsymbol{r}_n - \alpha \boldsymbol{A} \boldsymbol{r}_n - \sum_{j=1}^{\hat{j}} \gamma_j \Delta \boldsymbol{r}_{n-j} ,$$

which leads to the following update for the x estimate:

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n + \alpha \boldsymbol{r}_n - \sum_{j=1}^{\widehat{j}} \gamma_j \Delta \boldsymbol{x}_{n-j} ,$$

TUDelft

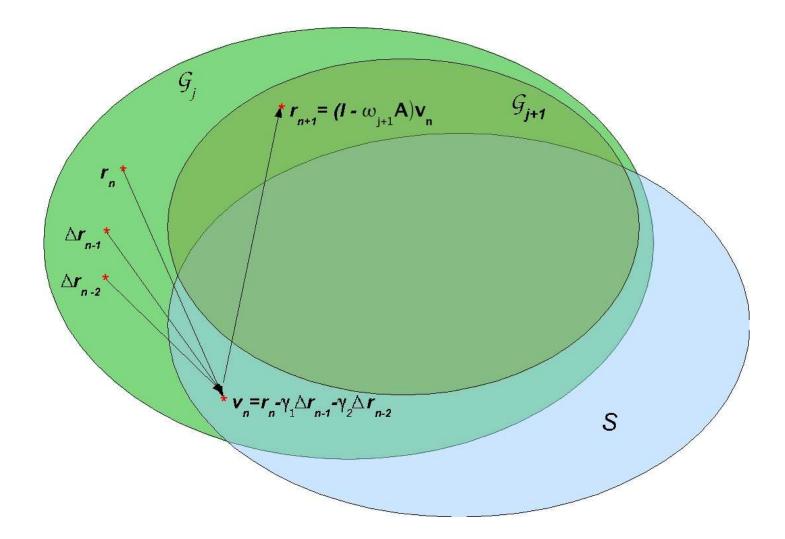
Computation of a new residual (1)

Residuals are computed that are forced to be in the subspaces G_j , by application of the IDR-theorem. The residual r_{n+1} is in G_{j+1} if

$$oldsymbol{r}_{n+1} = (oldsymbol{I} - \omega_{j+1}oldsymbol{A})oldsymbol{v} \quad ext{with } oldsymbol{v} \in \mathcal{G}_j \cap \mathcal{S} \; .$$

The main problem is to find v.

Computation of a new residual (2)



August 24, 2007

Computation of a new residual (3)

The vector v is a combination of the residuals r_l in \mathcal{G}_j .

$$oldsymbol{v} = oldsymbol{r}_n - \sum_{j=1}^{\widehat{j}} \gamma_j \Delta oldsymbol{r}_{n-j}$$
 .

Let the space S be the left null space of some $N \times s$ matrix P:

$$\boldsymbol{P} = (\boldsymbol{p}_1 \ \boldsymbol{p}_2 \ \dots \ \boldsymbol{p}_s), \quad \boldsymbol{\mathcal{S}} = \mathcal{N}(\boldsymbol{P}^H).$$

Since v is also in $\mathcal{S} = \mathcal{N}(\mathbf{P}^H)$, it must satisfy

$$oldsymbol{P}^Holdsymbol{v}=oldsymbol{0}$$
 .

Combining these two yields an $s \times \hat{j}$ linear system for the coefficients γ_j that (normally) is uniquely solvable if $\hat{j} = s$.

TUDelft

Computation of a new residual (4)

Hence with the residual r_n , and a matrix ΔR consisting of the last *s* residual differences:

$$\Delta \boldsymbol{R} = (\Delta \boldsymbol{r}_{n-1} \ \Delta \boldsymbol{r}_{n-2} \ \dots \ \Delta \boldsymbol{r}_{n-s})$$

a suitable v can be found by

Solve
$$s \times s$$
 system $(P^H \Delta R)c = P^H r_n$
Calculate $v = r_n - \Delta Rc$

Building \mathcal{G}_{j+1} (1)

Assume r_n and all columns of ΔR are in \mathcal{G}_j , and let r_{n+1} be calculated as

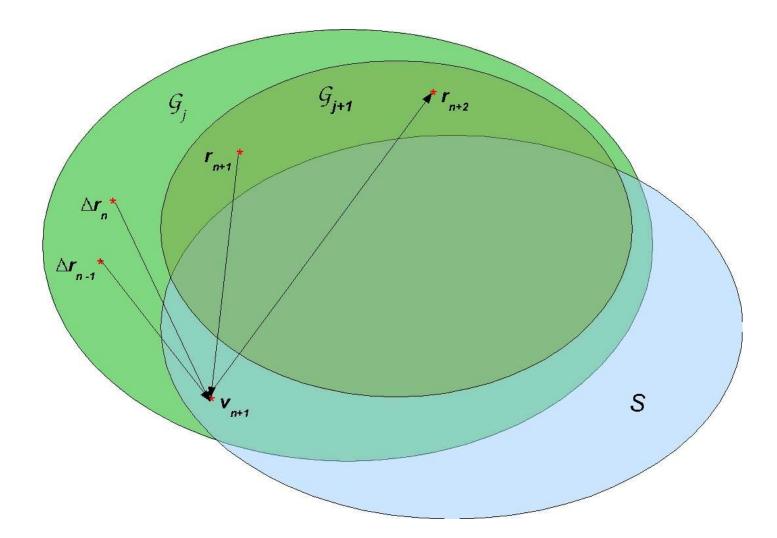
$$\boldsymbol{r}_{n+1} = \boldsymbol{v} - \omega_{j+1} \boldsymbol{A} \boldsymbol{v}$$

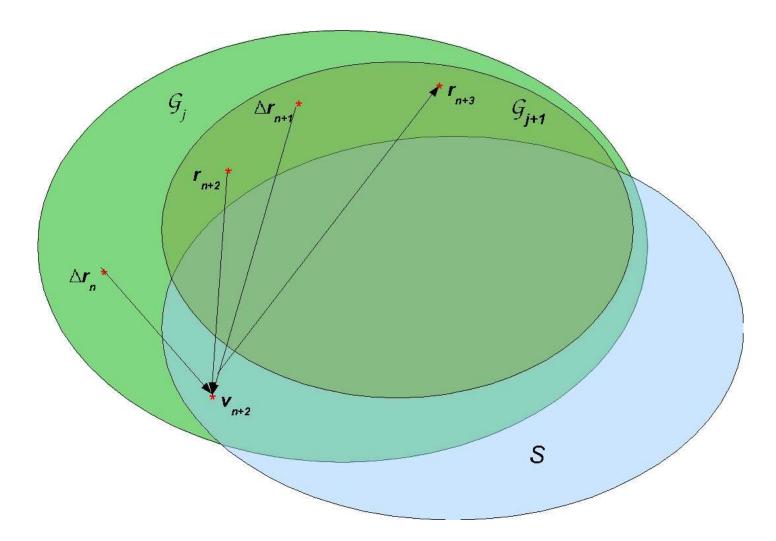
Then $r_{n+1} \in \mathcal{G}_{j+1}$. Since $\mathcal{G}_{j+1} \subset \mathcal{G}_j$ (theorem) we automatically have

 $r_{n+1}\in\mathcal{G}_j$

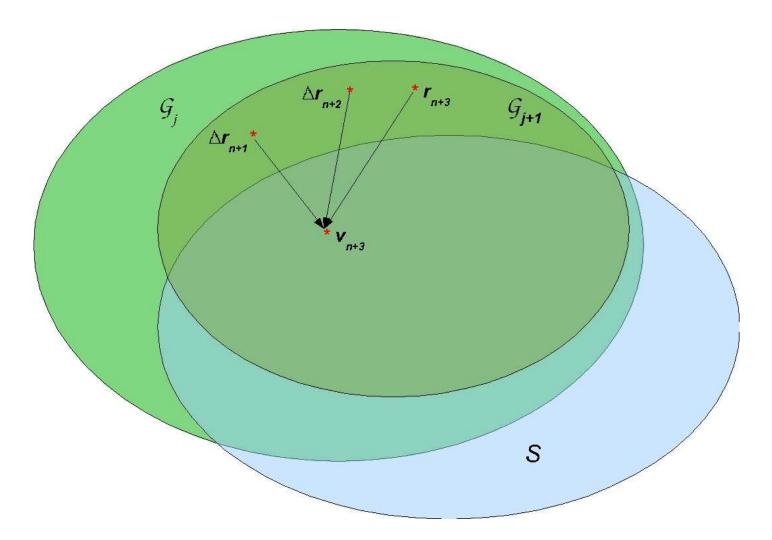
Now the next $\Delta \mathbf{R}$ is made by repeating the calculations.

In this way we find s + 1 residuals in \mathcal{G}_{j+1}





August 24, 2007



August 24, 2007

A few details

- 1. The first s + 1 residuals, starting with r_0 can be constructed by any Krylov-based iteration, such as a local minimum residual method.
- 2. In our actual implementation, all steps are identical. However, in calculating the first residual in \mathcal{G}_{j+1} , a new value ω_{j+1} may be chosen. We choose ω_{j+1} such that $\|\boldsymbol{v} - \omega_{j+1} \boldsymbol{A} \boldsymbol{v}\|$ is minimal.

Basic IDR(*s***) algorithm.**

while $\|\boldsymbol{r}_n\| > TOL$ or n < MAXIT do for k = 0 to s do Solve c from $P^H dR_n c = P^H r_n$ $\boldsymbol{v} = \boldsymbol{r}_n - d\boldsymbol{R}_n \boldsymbol{c}; \boldsymbol{t} = \boldsymbol{A} \boldsymbol{v};$ if k = 0 then $\omega = (\boldsymbol{t}^H \boldsymbol{v})/(\boldsymbol{t}^H \boldsymbol{t});$ end if $d\boldsymbol{r}_n = -d\boldsymbol{R}_n\boldsymbol{c} - \omega \boldsymbol{t}; d\boldsymbol{x}_n = -d\boldsymbol{X}_n\boldsymbol{c} + \omega \boldsymbol{v};$ $r_{n+1} = r_n + dr_n$; $x_{n+1} = x_n + dx_n$; n = n + 1; $d\mathbf{R}_n = (d\mathbf{r}_{n-1} \cdots d\mathbf{r}_{n-s}); \ d\mathbf{X}_n = (d\mathbf{x}_{n-1} \cdots d\mathbf{x}_{n-s});$ end for

end while August 24, 2007

Vector operations per MATVEC

Method	DOT	AXPY	Memory Requirements
IDR(1)	2	4	8
IDR(2)	$2\frac{2}{3}$	$5\frac{5}{6}$	11
IDR(4)	$4\frac{2}{5}$	$9\frac{7}{10}$	17
IDR(6)	$6\frac{2}{7}$	$13\frac{9}{14}$	23
Full GMRES	$\frac{n+1}{2}$	$\frac{n+1}{2}$	n+2
BiCGSTAB	2	3	7

Relation with other methods

Although the approach is different, IDR(s) is closely related to some Bi-CGSTAB methods:

- IDR(1) and Bi-CGSTAB yield the same residuals at the even steps.
- ML(k)BiCGSTAB (Yeung and Chen, 1999) seems closely related to IDR(s), BUT
 - IDR(s) is MUCH simpler (both conceptually and its implementation)
 - Other, more natural extensions are possible, e.g. to avoid breakdown.

Performance of IDR(*s***)**

The IDR theorem states that

- it is possible to generate a sequence of nested subspace \mathcal{G}_j of shrinking dimension,
- but does not say how fast the dimension shrinks

It can be proven that the dimension reduction is (normally) s, So $dim(\mathcal{G}_{j+1}) = dim(\mathcal{G}_j) - s$. IDR(s) requires at at most $N + \frac{N}{s}$ matrix-vector multiplications to compute the exact solution.

Numerical experiments

We will present two typical numerical examples

- A 2D Ocean Circulation Problem
- A 3D Helmholtz Problem

A 2D Ocean Circulation Problem

We compare IDR(*s*) with Full GMRES, restarted GMRES and Bi-CGSTAB.

This ocean example is representative for a wide class of CFD problems.

We will compare:

- Rate of convergence
- Stagnation level (of the true residual norm)

Stommel's model for ocean circulation

Balance between bottom friction, wind stress and Coriolis force.

$$-r\,\Delta\psi - \beta\,\frac{\partial\psi}{\partial x} - = (\nabla\times\mathbf{F})_z$$

plus circulation condition around islands k

$$\oint_{\Gamma_k} r \, \frac{\partial \psi}{\partial n} \, ds = - \oint_{\Gamma_k} \mathbf{F} \cdot \mathbf{s} \, ds.$$

- ψ : streamfunction
- *r*: bottom friction parameter
- β : Coriolis parameter
- **F**: Wind stress

August 24, 2007

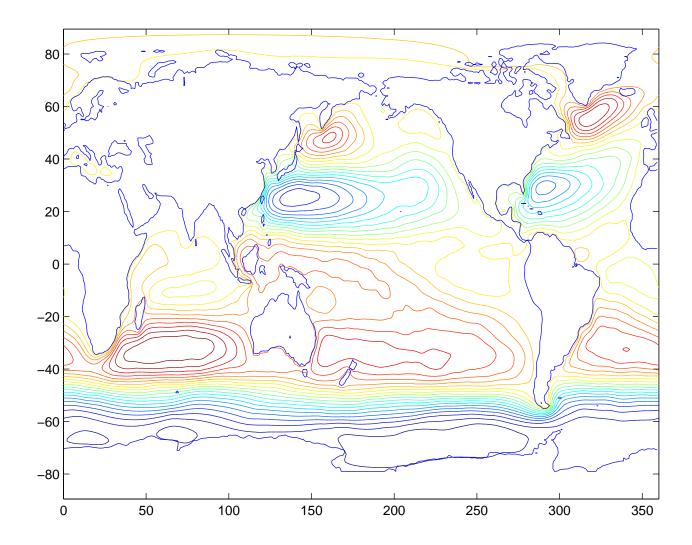
Discretization of the ocean problem

- Discretization with linear finite elements
- Results in nonsymmetric system of 42248
- Eigenvalues are (almost) real

Solution parameters:

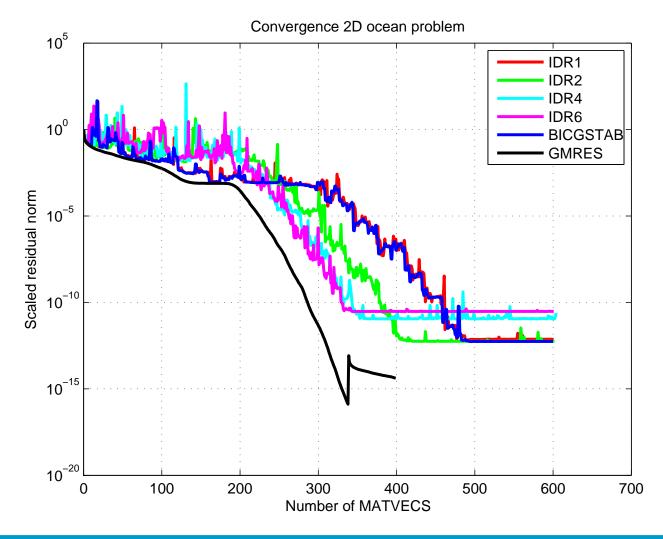
- ILU(0) preconditioning
- P: s 1 random vectors plus r_0 (for comparison with Bi-CGSTAB)

Solution of the ocean problem



August 24, 2007

Convergence for the ocean problem



August 24, 2007

Some observations

- Required number of MATVECS decreases if s is increased.
 IDR(4) and IDR(6) are close to the optimal convergence curve of full GMRES.
- Convergence curves of IDR(1) and Bi-CGSTAB coincide.
- Stagnation levels of IDR(s) comparable with Bi-CGSTAB.

Required number of MATVECS

Method	Number of MATVECS	Vectors		
Full GMRES	265	268		
GMRES(20)	> 10000	23		
GMRES(50)	4671	53		
Bi-CGSTAB	411	7		
IDR(1)	420	8		
IDR(2)	339	11		
IDR(4)	315	17		
IDR(6)	307	23		
Toloropool $\ h - h \ < 10^{-8} \ h \ $				

Tolerance: $\| \boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}_n \| < 10^{-8} \| \boldsymbol{b} \|$

A 3D Helmholtz Problem

Example models sound propagation in a room of $4 \times 4 \times 4m^3$.

A harmonic sound source gives acoustic pressure field

$$\boldsymbol{p}(\boldsymbol{x},t) = \widehat{p}(\boldsymbol{x})e^{2\pi i f t}.$$

The pressure function \widehat{p} can be determined from

$$\frac{-(2\pi f)^2}{c^2}\widehat{p} - \Delta\widehat{p} = \delta(\boldsymbol{x} - \boldsymbol{x}_s) \quad \text{in } \Omega.$$

in which

- c: the sound speed (340 m/s)
- $\delta(\boldsymbol{x} \boldsymbol{x}_s)$: the harmonic point source, in the center of the

TOOTT August 24, 2007

fuDelft

Boundary conditions

Five of the walls are reflecting, modeled by

$$\frac{\partial \widehat{p}}{\partial n} = 0 \; ,$$

and the remaining wall is sound absorbing,

$$\frac{\partial \widehat{p}}{\partial n} = -\frac{2\pi i f}{c} \widehat{p} \text{ on } \Gamma_3.$$

Discretization

Discretization with FEM yields linear system

$$[-(2\pi f)^2 M + 2\pi i f C + K]p = b$$

- Frequency f = 100Hz.
- System matrix complex, symmetric (but not Hermitian) and indefinite: difficult for iterative methods
- gridsize h = 8 cm: 132651 equations

Solution parameters:

- ILU(0) preconditioning
- **P**: Initial residual plus s 1 real random vectors
- Only comparison with BiCGstab(ℓ) August 24, 2007

Results Helmholtz Problem

Method	Number of	Elapsed time
	MATVECS	[s]
IDR(1)	1500	3322
IDR(2)	598	1329
IDR(4)	353	783
IDR(6)	310	698
BiCGstab(1)	1828	3712
BiCGstab(2)	1008	2045
BiCGstab(4)	656	1362
BiCGstab(8)	608	1337

August 24, 2007

Tolerance: $\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_n\| < 10$

 $\|\boldsymbol{b}\|$

8

Conclusions

- The IDR-theorem offers a new approach for the development of iterative solution algorithms
- The IDR(s) algorithm presented here is quite promising and seems to outperform state-of-the-art Bi-CG-type methods for important classes of problems.

More information:

http://ta.twi.tudelft.nl/nw/users/gijzen/software.html

- Report: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems, submitted
- Matlab code, (includes preconditioning and deflation)

