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Product Bi-CG methods

Bi-CG solves nonsymmetric linear systems using (short) CG

recursions but needs extra matvec with AH .

Idea of Sonneveld: use ’wasted’ matvec in a more useful way.

Result: transpose-free methods:

• CGS (Sonneveld, 1989)

• Bi-CGSTAB (Van der Vorst, 1992)

• BiCGSTAB2 (Gutknecht, 1993)

• TFQMR (Freund, 1993)

• BiCGstab(ℓ) (Sleijpen and Fokkema, 1994)

• Many other variants
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Historical remarks

Sonneveld first developed IDR (1980).

Analysis showed that IDR was Bi-CG combined with linear

minimal residual steps.

The fact that IDR is transpose free, combined with the relation

with Bi-CG led to the development of a now famous algorithm:

CGS.

Later Van der Vorst proposed another famous method:

Bi-CGSTAB, which is mathematicaly equivalent with IDR.

As a result of these developments, the basic IDR idea was

abandoned for the Bi-CG approach. IDR is now forgotten.
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The IDR idea

The IDR-idea is to generate a sequence of subspaces G0 · · · Gj

with the following operations:

- Intersect Gj−1 with fixed subspace S,

- Compute Gj = (I − ωjA)(Gj−1 ∩ S).

The subspaces G0 · · · Gj are nested and of shrinking dimension.
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The IDR theorem

Theorem 1 (IDR) Let A be any matrix in C
N×N , let v0 be any

nonzero vector in C
N , and let G0 be the complete Krylov space

KN (A,v0). Let S denote any (proper) subspace of C
N such that

S and G0 do not share a nontrivial invariant subspace of A, and

define the sequence Gj , j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S)

where the ωj ’s are nonzero scalars. Then

(i) Gj ⊂ Gj−1 for all j > 0.

(ii) Gj = {0} for some j ≤ N .
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Making an IDR algorithm

The IDR theorem can be used to construct solution algorithms.

This is done by constructing residuals rn ∈ Gj .

According to the IDR theorem ultimately rn ∈ GM = {0}.

In order to generate residuals and corresponding solution

approximations we first look at the basic recursions.
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Krylov methods: basic recursion (1)

A Krylov-type solver produces iterates xn, for which the

residuals rn = b − Axn are in the Krylov spaces

Kn(A, r0) = r0 ⊕ Ar0 ⊕ A2r0 ⊕ · · · ⊕ Anr0 ,

The next residual rn+1 can be generated by

rn+1 = −αArn +

bj∑

j=0

βjrn−j .

The parameters α, βj determine the specific method and must

be such that xn+1 can be computed.
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Krylov methods: basic recursion (2)

By using the difference vector

∆rk = rk+1 − rk = −A(xn+1 − xn),

an explicit way to satisfy this requirement is

rn+1 = rn − αArn −

bj∑

j=1

γj∆rn−j ,

which leads to the following update for the x estimate:

xn+1 = xn + αrn −

bj∑

j=1

γj∆xn−j ,
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Computation of a new residual (1)

Residuals are computed that are forced to be in the subspaces

Gj , by application of the IDR-theorem.

The residual rn+1 is in Gj+1 if

rn+1 = (I − ωj+1A)v with v ∈ Gj ∩ S .

The main problem is to find v.
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Computation of a new residual (2)
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Computation of a new residual (3)
The vector v is a combination of the residuals rl in Gj .

v = rn −

bj∑

j=1

γj∆rn−j .

Let the space S be the left null space of some N × s matrix P:

P = (p1 p2 . . . ps), S = N (PH) .

Since v is also in S = N (PH), it must satisfy

PHv = 0 .

Combining these two yields an s× ĵ linear system for the

coefficients γj that (normally) is uniquely solvable if ĵ = s.
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Computation of a new residual (4)

Hence with the residual rn, and a matrix ∆R consisting of the

last s residual differences:

∆R = (∆rn−1 ∆rn−2 . . . ∆rn−s)

a suitable v can be found by

Solve s× s system (PH∆R)c = PHrn

Calculate v = rn − ∆Rc
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Building Gj+1 (1)

Assume rn and all columns of ∆R are in Gj , and let rn+1 be

calculated as

rn+1 = v − ωj+1Av

Then rn+1 ∈ Gj+1.

Since Gj+1 ⊂ Gj (theorem) we automatically have

rn+1 ∈ Gj

Now the next ∆R is made by repeating the calculations.

In this way we find s+ 1 residuals in Gj+1
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Building Gj+1 (2)
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Building Gj+1 (3)
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Building Gj+1 (4)
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A few details

1. The first s+ 1 residuals, starting with r0 can be constructed

by any Krylov-based iteration, such as a local minimum

residual method.

2. In our actual implementation, all steps are identical.

However, in calculating the first residual in Gj+1, a new value

ωj+1 may be chosen. We choose ωj+1 such that

‖v − ωj+1Av‖ is minimal.



August 24, 2007 19

Basic IDR(s) algorithm.
while ‖rn‖ > TOL or n < MAXIT do

for k = 0 to s do
Solve c from PHdRnc = PHrn

v = rn − dRnc; t = Av;

if k = 0 then
ω = (tHv)/(tHt);

end if
drn = −dRnc − ωt; dxn = −dXnc + ωv;

rn+1 = rn + drn; xn+1 = xn + dxn;

n = n+ 1;

dRn = (drn−1 · · · drn−s); dXn = (dxn−1 · · · dxn−s);

end for
end while
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Vector operations per MATVEC

Method DOT AXPY Memory Requirements

IDR(1) 2 4 8

IDR(2) 22

3
55

6
11

IDR(4) 42

5
9 7

10
17

IDR(6) 62

7
13 9

14
23

Full GMRES n+1

2

n+1

2
n+ 2

BiCGSTAB 2 3 7
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Relation with other methods

Although the approach is different, IDR(s) is closely related to

some Bi-CGSTAB methods:

• IDR(1) and Bi-CGSTAB yield the same residuals at the even

steps.

• ML(k)BiCGSTAB (Yeung and Chen, 1999) seems closely

related to IDR(s), BUT

• IDR(s) is MUCH simpler (both conceptually and its

implementation)

• Other, more natural extensions are possible, e.g. to

avoid breakdown.
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Performance of IDR(s)

The IDR theorem states that

- it is possible to generate a sequence of nested subspace Gj

of shrinking dimension,

- but does not say how fast the dimension shrinks

It can be proven that the dimension reduction is (normally) s,

So dim(Gj+1) = dim(Gj) − s.

IDR(s) requires at at most N + N
s

matrix-vector multiplications to

compute the exact solution.
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Numerical experiments

We will present two typical numerical examples

• A 2D Ocean Circulation Problem

• A 3D Helmholtz Problem
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A 2D Ocean Circulation Problem

We compare IDR(s) with Full GMRES, restarted GMRES and

Bi-CGSTAB.

This ocean example is representative for a wide class of CFD

problems.

We will compare:

• Rate of convergence

• Stagnation level (of the true residual norm)
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Stommel’s model for ocean circulation

Balance between bottom friction, wind stress and Coriolis force.

−r∆ψ − β
∂ψ

∂x
− = (∇× F)z

plus circulation condition around islands k
∮

Γk

r
∂ψ

∂n
ds = −

∮

Γk

F · s ds.

• ψ: streamfunction

• r: bottom friction parameter

• β: Coriolis parameter

• F: Wind stress
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Discretization of the ocean problem

• Discretization with linear finite elements

• Results in nonsymmetric system of 42248

• Eigenvalues are (almost) real

Solution parameters:

• ILU(0) preconditioning

• P: s− 1 random vectors plus r0 (for comparison with

Bi-CGSTAB)
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Solution of the ocean problem
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Convergence for the ocean problem
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Some observations

• Required number of MATVECS decreases if s is increased.

IDR(4) and IDR(6) are close to the optimal convergence

curve of full GMRES.

• Convergence curves of IDR(1) and Bi-CGSTAB coincide.

• Stagnation levels of IDR(s) comparable with Bi-CGSTAB.
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Required number of MATVECS

Method Number of MATVECS Vectors

Full GMRES 265 268

GMRES(20) > 10000 23

GMRES(50) 4671 53

Bi-CGSTAB 411 7

IDR(1) 420 8

IDR(2) 339 11

IDR(4) 315 17

IDR(6) 307 23

Tolerance: ‖b − Axn‖ < 10−8‖b‖
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A 3D Helmholtz Problem
Example models sound propagation in a room of 4 × 4 × 4m3.

A harmonic sound source gives acoustic pressure field

p(x, t) = p̂(x)e2πift.

The pressure function p̂ can be determined from

−(2πf)2

c2
p̂− ∆p̂ = δ(x − xs) in Ω.

in which

- c: the sound speed (340 m/s)

- δ(x − xs): the harmonic point source, in the center of the

room.
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Boundary conditions

Five of the walls are reflecting, modeled by

∂p̂

∂n
= 0 ,

and the remaining wall is sound absorbing,

∂p̂

∂n
= −

2πif

c
p̂ on Γ3.



August 24, 2007 33

Discretization
Discretization with FEM yields linear system

[−(2πf)2M + 2πifC + K]p = b

• Frequency f = 100Hz.

• System matrix complex, symmetric (but not Hermitian) and

indefinite: difficult for iterative methods

• gridsize h = 8 cm: 132651 equations

Solution parameters:

• ILU(0) preconditioning

• P: Initial residual plus s− 1 real random vectors

• Only comparison with BiCGstab(ℓ)
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Results Helmholtz Problem

Method Number of Elapsed time

MATVECS [s]

IDR(1) 1500 3322

IDR(2) 598 1329

IDR(4) 353 783

IDR(6) 310 698

BiCGstab(1) 1828 3712

BiCGstab(2) 1008 2045

BiCGstab(4) 656 1362

BiCGstab(8) 608 1337

Tolerance: ‖b − Axn‖ < 10−8‖b‖
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Conclusions

• The IDR-theorem offers a new approach for the

development of iterative solution algorithms

• The IDR(s) algorithm presented here is quite promising and

seems to outperform state-of-the-art Bi-CG-type methods

for important classes of problems.

More information:

http://ta.twi.tudelft.nl/nw/users/gijzen/software.html

- Report: IDR(s): a family of simple and fast algorithms for

solving large nonsymmetric linear systems, submitted

- Matlab code, (includes preconditioning and deflation)
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