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What is the secular equation?

“The term secular (‘continuing through long ages’ OED2) recalls
that one of the origins of spectral theory was in the problem of the
long-run behavior of the solar system investigated by Laplace and
Lagrange. [...] The 1829 paper in which Cauchy established that the
roots of a symmetric determinant are real has the title, ‘Sur
l’équation à l’aide de laquelle on détermine les inégalités séculaires
des mouvements des planétes’; this signified only that Cauchy
recognized that his problem, of choosing x to maximize xTAx
subject to xTx = 1 (to use modern notation), led to an equation
like that studied in celestial mechanics. Sylvester’s title ‘On the
Equation to the Secular Inequalities in the Planetary Theory’ [...]
was even more misleading as to content. In this tradition the
‘Säkulärgleichung’ of Courant and Hilbert’s Methoden der
Mathematischen Physik (1924) and the ‘secular equation’ of E. T.
Browne’s ‘On the Separation Property of the Roots of the Secular
Equation’ American Journal of Mathematics, 52, (1930), 843-850
refer to the characteristic equation of a symmetric matrix.”
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Applications
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Constrained Eigenvalue Problem

A = AT

max
x6=0

xTAx

s.t. xTx = 1
cTx = 0

φ(x;λ, µ) = xTAx− λ(xTx− 1) + 2µxTc

grad φ = 0 =⇒ Ax− λx + µc = 0

x = −µ(A− λI)−1c

cTx = 0 =⇒ cT (A− λI)−1c = 0

Constrained Eigenvalue Secular Equation

A = QΛQT ,d = QTc
n∑
i=1

d2
i

(λi − λ)
= 0
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Rank One Change

Ax = λx

(A+ ccT )y = µy

Rank One Change Secular Equation

1 + cT (A− µI)−1c = 0

Rank k-change

(A+ CCT )y = µy

det
(
I + CT (A− µI)−1C

)
= 0
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Another secular equation

Consider (
A b
bT c

) (
x
y

)
= λ

(
x
y

)
.

Then
(A− λI)x = −yb

and hence,
(c− λ− b(AT − λI)−1b)y = 0.

Hence we must solve another secular equation when the matrix is
expanded.
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Quadratic Constraint

A = AT , positive definite

min
x

xTAx− 2cTx

s.t. xTx = α2

φ(x;λ) = xTAx− 2cTx− λ(xTx− α2)

grad φ = 0 =⇒
(A− λI)x− c = 0

Quadratic Constraint Secular Equation

cT (A− λI)−2c = α2

Least Squares with a Quadratic Constraint

bTA(ATA− λI)−2ATb = α2
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Total Least Squares (TLS)

(A+ E)x = b + r, A : m× n(
A b

) (
x
−1

)
+

(
E r

) (
x
−1

)
= 0

(C + F )z = 0;C : m× n+ 1

Determine F and z so that

rank (C + F ) ≤ n and ||F ||F = min.

Equivalently, find
min

z

||Cz||2
||z||2 ≡ σmin(C)
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Total Least Squares (cont.)

CTCz = σ̂2z

Total Least Squares Secular Equation

bTA(ATA− σ̂2I)−1ATb− bTb− σ̂2 = 0

σ̂ < σmin(A)

xTLS = (ATA− σ̂2I)−1ATb

Data Least Squares (DLS)

(A+ E)x = b

bTA(ATA− τ̂2I)−1ATb− bTb = 0

τ̂ < σmin(A)
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Regularized total least squares (Fischer/G.)
Note, that the TLS solution is equivalent to

min
‖b−Ax‖2

2

1 + ‖x‖2
2

= min
‖Cz‖2

2

‖z‖2
2

= σmin(C),

where
C = (A,b) and zn+1 = −1.

For the regularized TLS we consider

min
‖b−Ax‖2

2

1 + xTV x
, subject to xTV x = α2,

where V is a given symmetric positive definite matrix. Now, let

W =
(
V 0
0 1

)
= F TF

and observe that

min
‖b−Ax‖2

2

1 + xTV x
= min

‖Cz‖2
2

zTWz
with ‖z‖2

2 = 1 + α2, zn+1 = −1.
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Least squares with linear and quadratic constraints

With
y = Fz, B = F−TCTCF−1, c = eTn+1F

−1,

γ2 = 1 + α2, and β = −1

we may rewrite our regularized TLS problem in terms of a least
squares problem with linear and quadratic constraints

min
yTBy
yTy

, s. t. ‖y‖2
2 = γ2, cTy = β.

where γ and β are non-zero.
Lagrange multipliers

ψ(y;λ, µ) = yTBy − λ(yTy − γ2)− 2µ(cTy − β).

grad ψ = 0 when
By − λy − µc = 0.
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Introducing the projection matrix

P = I − ccT

cTc
and d =

βc
cTc

we arrive at

(PB − λI)y = −λd
yTy = γ2,

which leads to the secular equation

λ2dT (PB − λI)−T (PB − λI)−1d = γ2.

Instead, consider(
(PB − λI)(PB − λI)T λd

λdT γ2

) (
u
ξ

)
= 0.

Note, (
(PB − λI)(PB − λI)T − λ2

γ2
ddT

)
u = 0.

Thus, λ can be found as an eigenvalue of a quadratic eigenvalue
problem with ŷ = u/ξ.
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Approximating the secular equation
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How do we approximate the secular equation for large
n?

The problems we have described are closely associated with estimating
a quadratic form

uTF (A)u

where u is a given vector and A is a symmetric matrix.
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Matrix Function to Integral

A = QΛQT

uTF (A)u = uTF (QΛQT )u = uTQF (Λ)QTu = wTF (Λ)w

w = QTu

uTF (A)u =
n∑
i=1

F (λi)w2
i =

∫ b

a
F (λ)dw(λ)
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Gauss-Radau Quadrature Rules

L ≤
∫ b

a
F (λ)dw(λ) ≤ U

µr =
∫
λrdw(λ) (r = 0, 1, . . . , 2k +m− 1)∫ b

a
F (λ)dw(λ) = I[F ] +R[F ]

I[F ] =
k∑
i=1

AiF (ti) +
m∑
j=1

BjF (zj)

{Ai, ti}ki=1 unknown weights and nodes
{zj}mj=1 prescribed nodes

{Bj}mj=1 calculated weights
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Gauss-Radau Quadrature Rules (cont.)

I(λr) = µr

µr =
k∑
i=1

Ait
r
i +

m∑
j=1

Bjz
r
j

System of non-linear equations.

R[F ] =
F (2k+m)(η)
(2k +m)!

∫ b

a

m∏
j=1

(λ− zj)

[
k∏
i=1

(λ− ti)

]2

dw(λ)

a < η < b

m = 1

F (2k+1)(η) ≤ 0 and z1 = a R[F ] ≤ 0 I[F ] = U

F (2k+1)(η) ≤ 0 and z1 = b R[F ] ≥ 0 I[F ] = L
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Gauss Quadrature∫
pr(λ)ps(λ)dα(λ) = 0, r 6= s, (r, s = 0, 1, . . . , k)

pj+1(λ) = (λ− ξj+1)pj(λ)− η2
j pj−1(λ)

pk(ti) = 0, i = 1, 2, . . . , k

Jk =


ξ1 η1

η1 ξ2 η2

η2
. . . . . .
. . . . . . ηk−1

ηk−1 ξk


µ0 = 1

Jkvj = tjvj , j = 1, 2, . . . , k

Aj = v2
1j , j = 1, 2, . . . , k
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Gauss-Radau (Inverse Eigenvalue Problem)

J̄k+1 =


0

Jk
...
ηk

0 · · · ηk ξ̄k+1


0 = pk+1(t0) = (t0 − ξ̄k+1)pk(t0)− η2

kpk−1(t0)

ξ̄k+1 = t0 − η2
k

pk−1(t0)
pk(t0)

or

(Jk − t0I)δ = η2
kek

ξ̄k+1 = t0 + δk
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Evaluate I[F ]

I[F ] =
k∑
i=0

v2
1iF (ti)

J̄k+1 = V TV T

V Te1 = 〈 first component of V 〉

I[F ] = eT1 V F (T )V Te1

= eT1 F (V TV T )e1

= eT1 F (J̄k+1)e1
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Orthonormal polynomials w.r.t the measure w(λ)
How do we build these polynomials?

pj+1(λ) = (λ− ξj+1)pj(λ)− η2
j pj−1(λ)

pj+1(A) = (A− ξj+1I)pj(A)− η2
j pj−1(A)

pj+1(A)u = (A− ξj+1I)pj(A)u− η2
j pj−1(A)u

Set wj = pj(A)u.
We define ξj+1 and η2

j so that

wT
j+1wj = 0

wT
j+1wj−1 = 0,

and then
wT
j+1wr = 0 for r < j − 1

ξj+1 =
(wj , Awj)
(wj ,wj)

and η2
j =

(wj ,wj)
(wj−1,wj−1)
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Orthonormal polynomials w.r.t the measure w(λ)

wT
j+1wr = 0 for r < j − 1

ξj+1 =
(wj , Awj)
(wj ,wj)

and η2
j =

(wj ,wj)
(wj−1,wj−1)

The Lanczos Process! To construct Jk, begin the Lanczos process with
u, then

(wj ,wk) = 0
= (pj(A)u, pk(A)u)

= uTQpj(Λ)QTQpk(Λ)QTu

= wT pj(Λ)pk(Λ)w

=
∫
pj(λ)pk(λ)dw(λ)
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Examples
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An example

We need to solve

bT (A+ µI)−2b = α2

Algorithm
1 Begin Lanczos process with u = b
2 Construct J̄k+1

3 Solve eT1 (J̄k+1 + µI)−2e1 = α2.
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Numerical Comparison
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Numerical Comparison with Total Least Squares

min
E,r

||
(
E r

)
||F

s.t. (A+ E)x = b + r

ψ(σ̂2) = bTA(ATA− σ̂2I)−1AT b− bT b− σ̂2 = 0

Algorithms

Approximate bTA(ATA− σ̂2I)−1AT b using moment theory and
Lanczos on ATA
Approximate bTA(ATA− σ̂2I)−1AT b using moment theory and
Lanczos bidiagonalization on A
Solve a set of non-linear equations derived from the normal
equations. (Björck’s algorithm)
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Solving secular equations with moments

Given a current approximation to the value σ̂2
k, we consider updates of

the form

σ̂2
k+1 = σ̂2

k −
ψ(σ̂2

k)
ψ′(σ̂2

k)
Ck.

Method Ck Interp. func.
Newton’s 1 c0 + σ̂c1

SRA1 ||b||2 − ψ(σ̂2
k)

||b||2
||b|| − c1

c2 − σ̂2

Halley’s 1
/(

1−
ψ(σ̂2

k)ψ
′′(σ̂2

k)
2(ψ′(σ̂2

k)
2)

)
c0 −

c1
c2 − σ̂2

The derivatives in this equation are secular equations themselves. We
can use the same procedure to compute estimates of the derivatives by
changing the function f applied to the matrix J̄ .

1Simple Rational Approximation
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Solving secular equations with moments
Recall that we need an estimate of λmin and λmax of ATA to use for
the upper and lower bounds in the quadrature rules. We set

b = ||A||1||A||∞ > λmax and a = 10−9 ?
< λmin.

In the TLS problem, we need σ̂ < σmin(A) and employ bisection to
guarantee this condition.

Algorithm

1 σ̂2
min = min |aij |2

2 While not converged...
3 Compute an approximation to the secular function
φ(σ̂2

k), φ
′(σ̂2

k), φ
′′(σ̂2

k)
4 If the approximation failed because the bounds on the secular

function are not monotone, set σ̂2
min = σ̂2

k and σ̂2
k+1 = (1/2)σ̂2

k

5 Otherwise, set σ̂2
k+1 = σ̂2

k −
ψ(σ̂2

k)

ψ′(σ̂2
k)
Ck, repeat.
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Björck’s algorithm

Solve the system of nonlinear equations(
ATA AT b
bTA bT b

) (
x
−1

)
= λ

(
x
−1

)
,

or equivalently, the system(
f(x, λ)
g(x, λ)

)
=

(
−AT r − λx
−bT r + λ

)
=

(
0
0

)
with r = b−Ax using a Rayleigh-quotient iteration (RQI). (Note, λ is
used in place of σ̂2 in this derivation.)
This algorithm will always converge to a singular value/vector pair,
but we might not get λ = σ̂2. Björck suggested one initial inverse
iteration (i.e. λ = 0) to move closer to the desired λ, and then apply
the RQI procedure.
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Details of the matrix moments based algorithm

Algorithm 2 uses the Golub-Kahan bidiagonalization of A and
applies the moment algorithm to T = BTB instead of computing
T directly from the Lanczos process on ATA.
Algorithm 1 restarts the Lanczos process at each iteration.
Algorithm 2 never restarts the bidiagonalization process and
simply continues the process at each iteration.

Numerical Comparison 30 / 35



Problems

Jo’s problems, 15× 8 and 750× 400
Björck’s problem 1: 30× 15 matrix
Large scale problems with 10000× 5000 and 100000× 60000
matrices.

The large scale problems were generated using random Householder
matrices to build the SVD of

[
A b

]
in product form. Each large-scale

matrix was available solely as an operator to all of the algorithms. The
singular values of [

A b
]

are
σi = log(i) + |N(0, 1)|,

where N(0, 1) is a standard normal random variable.
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Parameter choices
Algorithm 1 (Tridiag...) Algorithm 2 (Bidiag...)

λ(0) = 0 λ(0) = 1 λ(0) = ρ λ(0) = 0 λ(0) = 1 λ(0) = ρ

1
newton 6 4 5 6 4 5

sra 5 5 5 5 5 5
halley 5 5 6 5 5 6

2
newton ++ ++ – *8 *8 *7

sra ++ – ++ *12 *24 *7
halley ++ ++ ++ *14 *23 *6

3
newton – – – *20 *7 *10

sra – – – *20 25 *64
halley – – – *55 55 *12

4
newton – – – *15 *11 *11

sra ++ – – *15 *25 *14
halley – – – *20 *57 *11

5
newton 100 – – ++ ++ ++

sra 100 -5 – ++ ++ –
halley 100 – – ++ ++ –

* wrong root; ++ correct w/o convergence; – no convergence

ρ = ||A ∗ xls||2/(||xls||2 + 1)

Problem 1 2 3 4 5
Size (15,8) (750,400) (10000,5000) (100000,60000) (30,15)
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Convergence

Test Alg Iters Error Time Lanz.

jo björck 6 1.0× 10−14 0
(15, 8) Alg 1 5 4.4× 10−16 0

σ2 = 5.6× 10−1 Alg 2 5 3.3× 10−14 0 12
jo björck 7 8.5× 100 0.2

(750, 400) Alg 1 >100 8.5× 10−14 52.5
σ2 = 1.8× 101 Alg 2 23 5.0× 10−1 0.7 163
large-scale björck 8 1.1× 10−16 0.5
(10000, 5000) Alg 1 >100 1.0× 10−3 36.1
σ2 = 1.9× 10−1 Alg 2 55 8.3× 10−16 1.5 152
large-scale björck 5 3.9× 10−17 5.1

(100000, 60000) Alg 1 >100 5.5× 10−7 324.9
σ2 = 3.5× 10−3 Alg 2 57 5.3× 10−8 14.6 155

björck björck 7 2.6× 10−19 0
(30, 15) Alg 1 >100 σ2 0.3

σ2 = 9.9× 10−12 Alg 2 18 2.9× 104 0 33
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Conclusions

The secular equation unifies many problems in matrix theory.
We can approximate the secular equation using Gaussian
quadrature and derive upper and lower bounds.
When combined with robust root-finding procedures, we can use
these bounds in algorithms to solve large scale problems.
Finding zeros is difficult!
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