Upper and Lower Bounds on Norms of Functions of Matrices

Given an n by n matrix A, find a set $S \subset \mathbf{C}$ that can be associated with A to give more information than the spectrum alone can provide about the 2-norm of functions of A.

• Field of values:

$$W(A) = \{ \langle Aq, q \rangle : \langle q, q \rangle = 1 \}.$$

• *e*-pseudospectrum:

 $\sigma_{\epsilon}(A) = \{z \in \mathbf{C} : z \text{ is an eigenvalue of } A + E\}$

for some E with $||E|| < \epsilon$ }.

• Polynomial numerical hull of degree k: $\mathcal{H}_k(A) = \{z \in \mathbb{C} : \|p(A)\| \ge |p(z)| \ \forall p \in \mathcal{P}_k\}.$ Find a set S and scalars m and M with M/m of moderate size such that for all polynomials (or analytic functions) p:

 $m \cdot \sup_{z \in S} |p(z)| \le ||p(A)|| \le M \cdot \sup_{z \in S} |p(z)|.$

•
$$S = \sigma(A), m = 1, M = \kappa(V).$$

If A is normal then m = M = 1, but if A is nonnormal then $\kappa(V)$ may be huge. Moreover, if columns of V have norm 1, then $\kappa(V)$ is close to smallest value that can be used for M.

• If A is nonnormal, might want S to contain more than the spectrum. BUT...

If S contains more than $\sigma(A)$, must take m = 0since if p is minimal polynomial of A then p(A) = 0 but p(z) = 0 only if $z \in \sigma(A)$.

How to modify the problem?

$m \cdot \sup_{z \in S} |p_{r-1}(z)| \le ||p(A)|| \le M \cdot \sup_{z \in S} |p(z)|$

- If degree of minimal polynomial is r, then any p(A) = p_{r-1}(A) for a certain (r − 1)st degree polynomial – the one that matches p at the eigenvalues, and whose derivatives of order up through t − 1 match those of p at an eigenvalue corresponding to a t by t Jordan block.
- The largest set S where above holds with m = 1 is called the polynomial numerical hull of degree r 1. In general, however, we do not know good values for M (<< κ(V)).

Given a set S, for each p consider $\inf\{\|f\|_{\mathcal{L}^{\infty}(S)}: f(A) = p(A)\}.$ (*) Find scalars m and M such that for all p: $m \cdot (*) \leq \|p(A)\| \leq M \cdot (*).$

- f(A) = p(A) if $f(z) = p_{r-1}(z) + \chi(z)h(z)$ for some $h \in H^{\infty}(S)$. Here χ is the minimal polynomial (of degree r) and p_{r-1} is the polynomial of degree r-1satisfying $p_{r-1}(A) = p(A)$.
- (*) is a **Pick-Nevanlinna interpolation** problem.

Given $S \subset \mathbb{C}$, $\lambda_1, \ldots, \lambda_n \in S$, and w_1, \ldots, w_n , find $\inf\{\|f\|_{\mathcal{L}^{\infty}(S)} : f(\lambda_j) = w_j, j = 1, \ldots, n\}.$

 If S is the open unit disk, then infimum is achieved by a function f that is a scalar multiple of a finite Blaschke product:

$$\tilde{f}(z) = \mu \prod_{k=0}^{n-1} \frac{z - \alpha_k}{1 - \bar{\alpha}_k z}, \quad |\alpha_k| < 1
= \mu \frac{\gamma_0 + \gamma_1 z + \dots + \gamma_{n-1} z^{n-1}}{\bar{\gamma}_{n-1} + \bar{\gamma}_{n-2} z + \dots + \bar{\gamma}_0 z^{n-1}}.$$

• Using second representation, Glader and Lindström showed how to compute \tilde{f} and $\|\tilde{f}\|_{\mathcal{L}^{\infty}(\mathcal{D})}$ by solving a simple eigenvalue problem.

Given $S \subset \mathbf{C}$, $\lambda_1, \ldots, \lambda_n \in S$, and w_1, \ldots, w_n , find

 $\inf\{\|f\|_{\mathcal{L}^{\infty}(S)}: f(\lambda_j) = w_j, j = 1, ..., n\}.$

 If S is a simply-connected open set, it can be mapped onto the open unit disk D via a one-to-one analytic mapping g.

 $\inf\{\|F\|_{\mathcal{L}^{\infty}(S)}: F(\lambda_j) = w_j\} =$ $\inf\{\|f \circ g\|_{\mathcal{L}^{\infty}(S)}: (f \circ g)(\lambda_j) = w_j\} =$ $\inf\{\|f\|_{\mathcal{L}^{\infty}(\mathcal{D})}: f(g(\lambda_j)) = w_j\}.$

• Some results also known when S is multiply-connected.

The Field of Values and 2 by 2 Matrices

- Suppose S = W(A). Crouzeix showed that $M_{opt}(A, W(A)) \leq 11.08$ and he conjectures that $M_{opt}(A, W(A)) \leq 2$. (He proved this if A is 2 by 2 or if W(A) is a disk.) In most cases, do not have good estimates for $m_{opt}(A, W(A))$, but...
- If A is a 2 by 2 matrix, since W(A) = H₁(A), the polynomial numerical hull of degree 1, and since any function of a 2 by 2 matrix A can be written as a first degree polynomial in A,
 - $||p(A)|| \geq ||p_1||_{\mathcal{L}^{\infty}(W(A))}$ \geq inf{ $||f||_{\mathcal{L}^{\infty}(W(A))}$: f(A) = p(A)}.

Hence for 2 by 2 matrices:

 $m_{opt}(A, W(A)) = 1$ and $M_{opt}(A, W(A)) \leq 2$.

Example:

$$A = \left(\begin{array}{cc} 0 & 1\\ -.01 & 0 \end{array}\right)$$

The Unit Disk and Perturbed Jordan Blocks

$$A = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ \nu & & & 0 \end{pmatrix}, \quad \nu \in (0, 1).$$

- The eigenvalues of A are the nth roots of
 ν: λ_j = ν^(1/n)e^{2πij/n}.
- For $\nu = 1$, A is a normal matrix with eigenvalues uniformly distributed about the unit circle. W(A) is the convex hull of the eigenvalues. $\mathcal{H}_{n-1}(A)$ consists of the eigenvalues and the origin. The ϵ -pseudospectrum consists of disks about the eigenvalues of radius ϵ .

• For $\nu = 0$, A is a Jordan block with eigenvalue 0. W(A) is a disk about the origin of radius $\cos(\pi/(n+1))$. $\mathcal{H}_{n-1}(A)$ is a disk of radius $1 - \log(2n)/n + \log(\log(2n))/n + o(1/n)$, and this is equal to the ϵ -pseudospectrum for $\epsilon \approx \log(2n)/(2n) - \log(\log(2n))/(2n)$.

$$A = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ \nu & & & 0 \end{pmatrix}, \quad \nu \in (0, 1).$$

Theorem. For any polynomial p, $\|p(A)\| = \inf\{\|f\|_{\mathcal{L}^{\infty}(\mathcal{D})} : f(A) = p(A)\}.$ Thus $M_{opt}(A, \mathcal{D}) = m_{opt}(A, \mathcal{D}) = 1.$

Proof: $A = V \wedge V^{-1}$, where V^T is the Vandermonde matrix for the eigenvalues:

$$V^{T} = \begin{pmatrix} 1 & \lambda_{1} & \dots & \lambda_{1}^{n-1} \\ 1 & \lambda_{2} & \dots & \lambda_{2}^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_{n} & \dots & \lambda_{n}^{n-1} \end{pmatrix}$$

How do we compute the minimal-norm interpolating function \tilde{f} ?

As noted earlier, it has the form

$$\tilde{f}(z) = \mu \frac{\gamma_0 + \gamma_1 z + \dots + \gamma_{n-1} z^{n-1}}{\bar{\gamma}_{n-1} + \bar{\gamma}_{n-2} z + \dots + \bar{\gamma}_0 z^{n-1}},$$

and satisfies $\tilde{f}(\lambda_j) = p(\lambda_j), j = 1, ..., n$.

If $\gamma = (\gamma_0, \dots, \gamma_{n-1})^T$, and Π is the permutation matrix with 1's on its skew diagonal (running from top right to bottom left), then these conditions are:

 $V^{-T}p(\Lambda)V^{T}\Pi\bar{\gamma} = (p(A))^{T}\Pi\bar{\gamma} = \mu\gamma.$

Glader and Lindström showed that there is a real scalar μ for which this equation has a nonzero solution vector γ and that the largest such μ is $\|\tilde{f}\|_{\mathcal{L}^{\infty}(\mathcal{D})}$.

Since $(p(A))^T \Pi$ is (complex) symmetric, it has an SVD of the form $X \Sigma X^T$. The solutions to above equation are: $\gamma = \mathbf{x}_j$, $\mu = \sigma_j$; and $\gamma = i\mathbf{x}_j$, $\mu = -\sigma_j$. \Box

Example:

$$A = \left(\begin{array}{cc} 0 & 1\\ -.01 & 0 \end{array}\right)$$

Corollary. If $A = V\Lambda V^{-1}$ where V^T is the Vandermonde matrix for Λ ; i.e., if A is a companion matrix with eigenvalues in \mathcal{D} , then $m_{opt}(A, \mathcal{D}) = 1$.

Proof:

 $V^{-T}p(\Lambda)V^{T}\Pi\bar{\gamma} = (p(A))^{T}\Pi\bar{\gamma} = \mu\gamma,$ so $\|p(A)\| \ge |\mu|.$ \Box

Example: Companion matrix with 5 random eigenvalues in the unit disk. $||A^j||$ and lower bound.

The Unit Disk and More General Matrices

Map S to \mathcal{D} via g and study $A = g(\mathcal{A})$. Then $m_{opt}(A, \mathcal{D}) = \inf_{\|\mathbf{w}\|_{\infty} = 1} \frac{\|V \operatorname{diag}(\mathbf{w})V^{-1}\|}{\inf\{\|f\|_{\mathcal{L}^{\infty}(\mathcal{D})} : f(\lambda_j) = w_j \ \forall j\}},$ $M_{opt}(A, \mathcal{D}) = \sup_{\|\mathbf{w}\|_{\infty} = 1} \frac{\|V \operatorname{diag}(\mathbf{w})V^{-1}\|}{\inf\{\|f\|_{\mathcal{L}^{\infty}(\mathcal{D})} : f(\lambda_j) = w_j \ \forall j\}},$

Unless all (but a few) eigenvalues of A are very close to ∂D, for certain w's the minimal norm interpolating function will be huge. If κ(V) is very large, but not as large as the constant of interpolation: sup_{||w||∞}=1 inf{||f||_{L∞(D)} : f(λ_j) = w_j ∀j}, then m_{opt} will be tiny.

For other w's, the minimal norm interpolating function is well-behaved. For example, w_j = λ^k_j shows M_{opt} ≥ max_k ||A^k||, which may be much greater than 1, especially if ill-conditioned eigenvalues are close to ∂D.

In many cases, it appears difficult/impossible to find a set S where both m_{opt} and M_{opt} are of moderate size.

Summary and Thoughts

Given an n by n matrix A, we looked for a set $S \subset \mathbf{C}$ and scalars m and M with M/m of moderate size ($\langle \langle \kappa(V) \rangle$ if $\kappa(V)$ is large) such that for all polynomials p:

 $m \cdot \inf\{\|f\|_{\mathcal{L}^{\infty}(S)} : f(A) = p(A)\} \le \|p(A)\|$

 $\leq M \cdot \inf\{\|f\|_{\mathcal{L}^{\infty}(S)} : f(A) = p(A)\}.$

 In a few exceptional cases (2 by 2 matrices, and perturbed Jordan blocks), we found such a set.

- In general, it seems difficult, perhaps impossible, to find such a set. The problem is that interpolating Blaschke products (like interpolating polynomials) can (but do not always) do wild things between the interpolation points. Hence to get a good value for m, need S to contain little more than $\sigma(A)$. But if $\kappa(V)$ is large, to get a good value for M, need S to contain significantly more than $\sigma(A)$.
- Perhaps the problem should be changed. Limit the class of polynomials. Or look for two different sets $S_m \subset \mathbf{C}$ for lower bounds on ||p(A)|| and $S_M \subset \mathbf{C}$ for upper bounds.