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1 Introductory Remarks

Aim

� Treatment of large-scale linear systems of equations is a common need in
modern computations

Large-scale systems: size n = 105; 106 or larger, depending on the available

storage size.

� The use of matrices and matrix operations lead in general to di�culties

Storage of O(n2) for fully populated matrices is usually not available.

Usual approach: Explicit use of matrices avoided, instead indirect matrix-vector

multiplications (FFT, sparse matrices).

Here: Direct representation of matrices (dense matrices included).



Remark: Analysis vs. Linear Algebra

Traditionally, Analysis and Linear Algebra have di�erent viewpoints concerning

topology.

Example: In Analysis the set of functions is immediately restricted to certain

subsets of di�erent smoothness: L2; C, Ck etc. A tool like a �nite Taylor series

can only be applied to the subset Ck.

In Linear Algebra, algorithms are usually required to work for all matrices (or

symmetric or pos. def. matrices, etc.).

For large-scale problems, matrices are discretisations of operators. Hence, the

topology of Functional Analysis is needed.

Consequence: Algorithms are considered to work for matrices with su�cient

\smoothness".



Remark: Approximation

� Matrices arise after a discretisation process. Therefore, a further approxi-
mation error of similar (or smaller) size does not matter.

� Under certain \smoothness conditions" n�n-matrices can be approximated
by O(n) or O(n log� n) data (! N -term approximation with

N = O(n); O(n log� n)).

TASK: One has to construct \data-sparse" representations of matrices involving

only N data.

A typical size is

N = O(n � logn � logd 1");

d: spatial dimension, ": accuracy of the approximation.

If " � n�const; then logd 1" = O(logd n):



Remark: Matrix Operations

Low storage cost for matrices is only one aspect. The data-sparse representation

must also support the relevant operations:

� matrix-vector multiplication

� transposition A! A>

� matrix-matrix addition

� matrix-matrix multiplication

� matrix inversion

� LU decomposition

The results may be again approximations! Cost: O(n log� n).



Typical Fields of Application:

� Boundary Element Method (BEM):
Formulation of homogeneous elliptic boundary value problems by integral equa-

tion formulations

) System matrices are fully populated matrices

� Finite Element Method (FEM):
Elliptic boundary value problems lead to sparse matrices A, but for instance A�1

is full.

Sometimes Schur complements

A11 �A12A
�1
22 A21

are needed, which are also full.

� Further Applications: matrix equations, matrix functions



2 Construction of Hierarchical Matrices

� Decompose the matrix into suitable subblocks.

� Approximate the matrix in each subblock by a rank-k-matrix�

subblock =
kX
i=1

aib
>
i

(for suitably small local rank k).

Illustration:

�k is upper bound. The true rank may be smaller.



Example for Demonstration

Let n = 2p; p = 0; 1; : : : The H-matrix format is chosen as follows:

All subblocks are �lled by rank-k-matrices (here k = 1).

� number of blocks: 3n� 2;

� storage cost: n+ 2n log2 n;

� cost of matrix-vector multiplication: 4n log2 n� n+ 2:



Matrix Addition

Di�culty:

Addition of two rank-k submatrices yields rank 2k:

Remedy:

Truncation to rank k (via SVD) yields a result in the same H-matrix format.

Notation:

A�k B is the true sum truncated to rank k:

� Cost for Rank-1-addition �1 is 18n log2 n+O(n):



Matrix-Matrix Multiplication

Recursion:

H �H =

"
H R
R H

#
�
"
H R
R H

#

=

"
H �H +R �R H �R+R �H
R �H +H �R H �H +R �R

#
:

� The approximate multiplication of two H-matrices requires

13n log22 n+ 65n log2 n� 51n+ 52

operations.



Matrix Inversion

The (exact) inverse of A is"
A�111 +A�111 A12S

�1A21A
�1
11 �A�111 A12S�1

�S�1A21A�111 S�1

#

with the Schur complement S = A22 �A21A
�1
11 A12:

� The approximate inversion of an H-matrix requires

13n log22 n+ 47n log2 n� 109n+ 110 operations,

� cost of approximate LU decomposition: 112 n log
2
2 n+25n log2 n� 28n+28:



Remarks to the Introductory Example

At least, the rank 1 is to be replaced by a larger rank k:

Moreover, in general, the simple format is to be replaced by a

more re�ned format like



General Construction of Hierarchical Matrices
Partition of the Matrix

How to partition the matrix in subblocks?

I: index set of matrix rows; J : index set of matrix columns.

Block: b = � � � with � � I; � � J:

Cluster Tree:

The cluster tree T (I) contains a collection of subsets � � I (similarly: T (J)).

Block Cluster Tree T (I � J):

Collection of (small and large) blocks b = � � � with � 2 T (I); � 2 T (J):
Criterion for selection: b as large as possible and admissible, i.e.,

min fdiam(�); diam(�)g � � dist(�; �):



Cluster Tree
I: index set containing the row indices i of the matrix A =

�
Aij

�
:

We partition I recursively into (e.g.) two subsets.

This process ends if the subsets of I have a su�ciently small cardinality.

The resulting tree T (I) is called the cluster tree.

Ω

τΩ

σ

REMARK: For usual discretisations, an index i 2 I is associated to an
nodal point xi 2 Rd or the support supp(�i) � Rd of a basis function �i:
The practical performance uses bounding boxes:



Block-Cluster Tree

NOTATION: T (I � J) is the block-cluster tree. Elements: blocks b = � � �.

τ
σ
b

Let � � � 2 T (I � J) be a block (=) � 2 T (I), � 2 T (J)).
� 0; � 00 2 T (I) sons of �; i.e., � = � 0 [ � 00: Similarly, �0; �00 2 T (J) sons of

� 2 T (J): Then the four sons of � �� 2 T (I � J) are � 0��0; � 0��00; � 00��0;
� 00 � �00 2 T (I � J). If either � of � is a leaf, � � � is not further partitioned.

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

7!

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

7!

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

7! 7!
green blocks: admissible, red: non-admissible



DEFINITION (admissible block) Fix some � > 0: A block � � � 2 T (I � J) is

called admissible if

min fdiam(
�); diam(
�)g � � dist(
� ;
�)

or � � � is a leaf. � � � 2 T (I � J) is called maximally admissible if the father
of � � � is non-admissible.

Ω

Ω

τ

σ

DEFINITION (Partition P ): P � T (I � J) is de�ned by: 1) di�erent b 2 P

are disjoint, 2) their union
S
b2P p = I � J is complete, 3) they are maximally

admissible.



3 Application to BEM

Example: (Au) (x) :=
Z 1
0
log jx� yju(y)dy for x 2 [0; 1]:

Discretisation: collocation with piecewise constant elements in

[xi�1; xi]; xi = ih; i = 1; : : : ; n; h = 1=n;

Midpoints xi�1=2 = (i� 1=2)h are the collocation points:

A = (aij)i;j=1;:::;n with aij =
Z xj
xj�1

log
���xi�1=2 � y

��� dy:
Replace the kernel function �(x; y) = log jx� yj in a certain range of x; y by an
approximation ~�(x; y) of separable form

~�(x; y) =
X

�2KX�(x)Y�(y):



~�(x; y) =
X

�2KX�(x)Y�(y):

Simple choice: Taylor's formula applied with respect to y:

K = f0; 1; : : : ; k � 1g;
X�(x) = derivatives of �(x; �) evaluated at y = y�;

Y�(y) = (y � y�)�:

The kernel �(x; y) = log jx� yj leads to the error estimate

j�(x; y)� ~�(x; y)j � jy � y�jk=k
(jx� y�j � jy � y�j)k

for jx� y�j � jy � y�j:

If � is replaced by ~�; the integral aij =
R xj
xj�1 �(xi�1=2; y)dy becomes

~aij =
X
�2K

X�(xi�1=2)
Z xj
xj�1

Y�(y)dy: (�)

Let b be a block and restrict i; j in (�) to b: Then (�) describes a block matrix
~Ajb: Each term of the sum in (�) is an rank-1 matrix ab> with

ai = X�(xi�1=2); bj =
Z xj
xj�1

Y�(y)dy:

Since #K = k, the block ~Ajb is of rank-k type.



Furthermore, one can check that

j�(x; y)� ~�(x; y)j � 1

k

�
1

2

�k
; kA� ~Ak1 � 2�k=k:

Discretisation error h{; where the step size h is related to n = #I by h � 1
n:

Hence k should be chosen such that

2�k �
�
1

n

�{
:

Hence,

k = O(logn)

is the required rank.

NOTE: a) The construction of the cluster and block-cluster tree is automatic

(black-box).

b) Similarly, the construction of the approximation ~A is black-box (usually by

interpolation instead of Taylor expansion).



4 Application to FEM

REMARK: a) A FEM system matrix is an H-matrix. Non-trivial blocks = 0.
b) For a uniformly elliptic di�erential operator with L1-coe�cients, the in-
verse of the FEM-matrix can be exponentially well approximated by an H-matrix
[Bebendorf - Hackbusch 2003].

When solving a linear system of equations Ax = b; one can make use of the LU

decomposition. The particular advantage of the LU decomposition for sparse

matrices A is that the factors L and U contain many zero block (�ll-in is not

complete!). Example of an factor L :
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EXAMPLE (inverse Problem):

Given: electric/magnetic �eld at � 400 sensor positions on the head surface.
What is the current distribution in the brain ? Where are the sources (epileptic

�t) ?

PDE: �div �(x)ru(x) = f(x); x 2 
 � R3, @nu = 0 on @
:

 and �(x) determined from EEG,MEG. The boundary value problem has to be

solved for � 400 right-hand sides.

Triangulation with

N = 147287 tetraeder conductivity �



- Galerkin discretisation  Ax = b

- The system has to be solved for � 400 right-hand sides b
- Stopping criterion: kAx� bk= kbk � 10�8

- Machine: SUNFire, 900 MHz, single processor

Pardisoy LUH; " = 10�6 PEBBLESz

Setup 237 468 13
Solve 2.4 1.0 10
Total 1197 868 4013

yPardiso (direct solver by Schenk & Co)
zPEBBLES (algebraic multigrid code by Langer/Haase)



Comparisons
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5 Matrix Equations

Lyapunov: AX +XA> = C

Sylvester AX �XB = C

Riccati: AX +XA> �XFX = C

Given: A;B;C; F ; desired matrix-valued solution: X:

Applications: optimal control problems for elliptic / parabolic pdes.

� Low rank C;F ) low rank X

� H-matrix C, low rank F ) H-matrix X

Computation via H-arithmetic, possibly combined with multi-grid methods.



Matrix-Riccati Equation

A>X +XA�XFX +G = O (A < O):

LEMMA: The solution X satis�es

X = �(M>M)�1M>N;

where h
M N

i
:= sign

 "
A> G
F �A

#!
�
"
I O
O I

#
:

LEMMA: Assume that <e� 6= 0 for all eigenvalues � 2 �(S):
Start: S(0) := S: Then the iteration

S(i+1) :=
1

2

�
S(i) +

�
S(i)

��1�
converges quadratically to sign(S):



Example of a matrix-Riccati equation: A = �h (1D)

The following table shows the relative error
 ~X �X


2
= kXk2 :

n = 101 256 1024 65 536
k = 1 8.810-3 1.510-1 1.310-1 -
k = 2 2.410-4 2.610-4 4.210-4 6.710-4
k = 4 7.710-8 9.110-8 1.110-7 6.210-7
k = 6 1.910-10 3.710-10 2.410-10 1.710-9

Number of iterations 12 14 17 26
time� [sec] 2.2 8.5 67 18263

*) k=2, Sun Quasar 450 MHz, computation by Dr. L. Grasedyck

In the last case, the matrix X has 4; 294; 967; 296 entries.



6 Matrix-Valued Functions f(A)

EXAMPLE: Matrix-exponential function e�tA.

Cauchy-Dunford representation

e�tA =
1

2�i

Z
�
e�zt (zI �A)�1 dt

using a parabola �:

Ω
CS

CP

After parametrisation and quadrature:

TN(t) :=
NX

`=�N
`e

��`t (z`I �A)�1 ; z` 2 �:

Error estimate for t � t0 > 0 :TN(t)� e�tA
 . e�cN2=3:

) N � logn: Total cost: O(n log� n).



7 Beyond Hierarchical Matrices:

Tensor Systems as Higher-dimensional Analogue

Tensor space V := V1 
 V2 
 : : :
 Vd:

DEFINITION: A rank-k-tensor is of the form

kX
�=1

v
(�)
1 
 v

(�)
2 
 : : :
 v

(�)
d with v

(�)
j 2 Vj:

QUESTION: Given v 2 V, are there rank-k-approximations ~v ?
How can they be computed?

Vi = Rni�mi ) 
 denotes the Kronecker product of matrices.

QUESTION: Given M =
PkM
�=1M

(�)
1 
M (�)

2 
 : : :
M (�)
d . Under what condi-

tions can the eigenvectors be approximated by rank-k-tensors?



Example from the electronic Schr�odinger equation

Hartree-Fock equation F  b(y) = �b b(y) involves the Hartree potential

VH(x) = 2
N=2X
b=1

Z  �b(y) b(y)

jx� yj
dy =

Z
�(y)

jx� yj
dy; (1)

where �(y) = 2
PN=2
b=1  b(y) 

�
b(y) is the electron density.

Standard approaches use Gaussians g
(j)
k (yj) = (yj � A

(j)
k )`k e��k(yj�A

(j)
k )2 to

represent the orbital (wavefunction) by

 b(y) �
K X
k=1

g
(1)
k (y1) g

(2)
k (y2) g

(3)
k (y3): (2)

Here, K = tensor rank. We start with a representation (2) produced by the

MOLPRO program package using the MATROP program for matrix operations.

Eq. (2) yields �(y) =  �b(y) b(y) with K := K (K + 1)=2 terms.



Optimising the tensor representation reduces the tensor rank to a much smaller

rank � while almost keeping the same order of accuracy:

�(y) �
�X
k=1

%
(1)
k (y1) %

(2)
k (y2) %

(3)
k (y3); �� K:

The computational work for evaluating the Hartree potential (1) depends essen-

tially on the tensor rank.

EXAMPLE CH4: The MOLPRO program yields K = 1540; which can be

reduced by our approach to � = 45: The computing time for evaluating VH for

the tensor representation with � = 45 is 8 hours, while the estimated time for

K = 1540 is 190 hours.

molecule initial rank Kof �(y) �nal rank � relative error error in energy (hartree)

CH4 1540 45 9.0�10�6 6.0�10�5
C2H2 2346 50 1.3�10�4 5.0�10�4
C2H6 4656 55 8.8�10�5 4.0�10�4



Separable PDE in [0; 1]d, d large

Let 
 = (0; 1)d � Rd; equidistant grid: 
h = (h; 2h; : : : ; nh) with

(n+ 1)h = 1:

Here: n = 1024:

Separable PDE: L =
Pd
�=1 a�(xv)

@2

@x2v
; e.g., L = �:

Discretisation of �L by usual di�erence formula:

A = �Lh = �
dX

�=1

a�(xv)D
h
x�x� (Dh

x�x� : 2nd di�erence)

= A1 � I � : : :� I + I �A2 � : : :� I + : : :+ I � I � : : :�Ad:

Goal: Approximation of L�1h .

Numerical result (Grasedyck 2004):

For d = 2048; accuracy 10�5 to 10�6: 5 min computer time

Related dimension:

N = 10242048 = 1:24� 106165:



Underlying method

1=x can be approximated by exponential sums
Pk
�=1 !� exp(��x):

min
!�;��

max
x2[x0;x1]

����1x �Xk

�=1
!� exp(��x)

���� � O(e�ck); c > 0;

min
!�;��

max
x2[x0;1)

����1x �Xk

�=1
!� exp(��x)

���� � O(e�ck
1=2
); c > 0:

Let [x0; x1] or [x0;1) contain the spectrum of Lh: Then

L�1h �
Xk

�=1
!� exp(��Lh):

The special tensor structure

Lh =
dX

�=1

I � : : :� I � Lh;� � I � : : :� I

implies

exp(��Lh) =
dO

�=1

exp(��Lh;�):

Approximation of exp(��Lh;�) by H-matrices (see above).
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For a complete list see

http://www.mis.mpg.de (!institute reports) or

http://www.mis.mpg.de/scicomp/hackbusch e.html

For scienti�c purposes a software library is freely available (licence form to be

signed),

for commercial applications: HLibPro


