Hierarchical Matrices

Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Inselstr. 22-26, D-04103 Leipzig, Germany wh@mis.mpg.de

http://www.mis.mpg.de/scicomp/hackbusch_e.html

Harrachov, August 20, 2007

1 Introductory Remarks

Aim

• Treatment of large-scale linear systems of equations is a common need in modern computations

Large-scale systems: size $n = 10^5, 10^6$ or larger, depending on the available storage size.

• The use of matrices and matrix operations lead in general to difficulties

Storage of $O(n^2)$ for fully populated matrices is usually not available.

Usual approach: Explicit use of matrices avoided, instead indirect matrix-vector multiplications (FFT, sparse matrices).

Here: Direct representation of matrices (dense matrices included).

Remark: Analysis vs. Linear Algebra

Traditionally, Analysis and Linear Algebra have different viewpoints concerning topology.

Example: In Analysis the set of functions is immediately restricted to certain subsets of different smoothness: L^2 , C, C^k etc. A tool like a finite Taylor series can only be applied to the subset C^k .

In Linear Algebra, algorithms are usually required to work for *all* matrices (or symmetric or pos. def. matrices, etc.).

For large-scale problems, matrices are discretisations of operators. Hence, the topology of Functional Analysis is needed.

Consequence: Algorithms are considered to work for matrices with sufficient "smoothness".

Remark: Approximation

- Matrices arise after a discretisation process. Therefore, a further approximation error of similar (or smaller) size does not matter.
- Under certain "smoothness conditions" n×n-matrices can be approximated by O(n) or O(n log*n) data (→ N-term approximation with N = O(n), O(n log*n)).

TASK: One has to construct "data-sparse" representations of matrices involving only N data.

A typical size is

$$N = O(n \cdot \log n \cdot \log^d \frac{1}{\varepsilon}),$$

d: spatial dimension, ε : accuracy of the approximation. If $\varepsilon \approx n^{-const}$, then $\log^d \frac{1}{\varepsilon} = O(\log^d n)$.

Remark: Matrix Operations

Low storage cost for matrices is only one aspect. The data-sparse representation must also support the relevant operations:

- matrix-vector multiplication
- transposition $A \to A^{\top}$
- matrix-matrix addition
- matrix-matrix multiplication
- matrix inversion
- LU decomposition

The results may be again approximations! Cost: $O(n \log^* n)$.

Typical Fields of Application:

Boundary Element Method (BEM):

Formulation of homogeneous elliptic boundary value problems by integral equation formulations

 \Rightarrow System matrices are fully populated matrices

Finite Element Method (FEM):

Elliptic boundary value problems lead to sparse matrices A, but for instance A^{-1} is full.

Sometimes Schur complements

$$A_{11} - A_{12} A_{22}^{-1} A_{21}$$

are needed, which are also full.

Further Applications: matrix equations, matrix functions

2 Construction of Hierarchical Matrices

- Decompose the matrix into suitable subblocks.
- Approximate the matrix in each subblock by a rank-k-matrix*

$$subblock = \sum_{i=1}^{k} a_i b_i^{\top}$$

(for suitably small local rank k).

Illustration:

 $^{*}k$ is upper bound. The true rank may be smaller.

Example for Demonstration

Let $n = 2^p$, p = 0, 1, ... The \mathcal{H} -matrix format is chosen as follows:

All subblocks are filled by rank-k-matrices (here k = 1).

- number of blocks: 3n 2,
- storage cost: $n + 2n \log_2 n$,
- cost of matrix-vector multiplication: $4n \log_2 n n + 2$.

Matrix Addition

Difficulty: Addition of two rank-k submatrices yields rank 2k.

Remedy:

Truncation to rank k (via SVD) yields a result in the same \mathcal{H} -matrix format.

Notation:

 $A \oplus_k B$ is the true sum truncated to rank k.

• Cost for Rank-1-addition \oplus_1 is $18n \log_2 n + O(n)$.

Matrix-Matrix Multiplication

Recursion:

$$\begin{array}{l} H \ast H \\ = \\ \begin{bmatrix} H & R \\ R & H \end{bmatrix} \ast \begin{bmatrix} H & R \\ R & H \end{bmatrix} \\ = \\ \begin{bmatrix} H \ast H + R \ast R & H \ast R + R \ast H \\ R \ast H + H \ast R & H \ast H + R \ast R \end{bmatrix}$$

 \bullet The approximate multiplication of two $\mathcal H\text{-matrices}$ requires

$$13n \log_2^2 n + 65n \log_2 n - 51n + 52$$

operations.

Matrix Inversion

The (exact) inverse of A is

$$\begin{bmatrix} A_{11}^{-1} + A_{11}^{-1}A_{12}S^{-1}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}S^{-1} \\ -S^{-1}A_{21}A_{11}^{-1} & S^{-1} \end{bmatrix}$$

with the Schur complement $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$.

• The approximate inversion of an $\mathcal H\text{-matrix}$ requires

$$13n\log_2^2 n + 47n\log_2 n - 109n + 110$$
 operations,

• cost of approximate LU decomposition: $\frac{11}{2}n \log_2^2 n + 25n \log_2 n - 28n + 28$.

Remarks to the Introductory Example

At least, the rank 1 is to be replaced by a larger rank k.

General Construction of Hierarchical Matrices Partition of the Matrix

How to partition the matrix in subblocks?

I: index set of matrix rows, *J*: index set of matrix columns. Block: $b = \tau \times \sigma$ with $\tau \subset I$, $\sigma \subset J$.

Cluster Tree:

The cluster tree T(I) contains a collection of subsets $\tau \subset I$ (similarly: T(J)).

Block Cluster Tree $T(I \times J)$:

Collection of (small and large) blocks $b = \tau \times \sigma$ with $\tau \in T(I)$, $\sigma \in T(J)$. Criterion for selection: b as large as possible and admissible, i.e.,

 $\min \{ \operatorname{diam}(\tau), \operatorname{diam}(\sigma) \} \geq \eta \operatorname{dist}(\tau, \sigma).$

Cluster Tree

I: index set containing the row indices *i* of the matrix $A = (A_{ij})$.

We partition I recursively into (e.g.) two subsets.

This process ends if the subsets of I have a sufficiently small cardinality. The resulting tree T(I) is called the cluster tree.

REMARK: For usual discretisations, an index $i \in I$ is associated to an nodal point $x_i \in \mathbb{R}^d$ or the support supp $(\phi_i) \subset \mathbb{R}^d$ of a basis function ϕ_i . The practical performance uses bounding boxes:

Block-Cluster Tree

NOTATION: $T(I \times J)$ is the block-cluster tree. Elements: blocks $b = \tau \times \sigma$.

Let $\tau \times \sigma \in T(I \times J)$ be a block ($\Longrightarrow \tau \in T(I), \sigma \in T(J)$). $\tau', \tau'' \in T(I)$ sons of τ , i.e., $\tau = \tau' \cup \tau''$. Similarly, $\sigma', \sigma'' \in T(J)$ sons of $\sigma \in T(J)$. Then the four sons of $\tau \times \sigma \in T(I \times J)$ are $\tau' \times \sigma', \tau' \times \sigma'', \tau'' \times \sigma', \tau'' \times \sigma''$. $\tau'' \times \sigma'' \in T(I \times J)$. If either τ of σ is a leaf, $\tau \times \sigma$ is not further partitioned.

green blocks: admissible, red: non-admissible

DEFINITION (admissible block) Fix some $\eta > 0$. A block $\tau \times \sigma \in T(I \times J)$ is called admissible if

 $\min \left\{ \mathsf{diam}(\Omega_{\tau}), \mathsf{diam}(\Omega_{\sigma}) \right\} \geq \eta \operatorname{dist}(\Omega_{\tau}, \Omega_{\sigma})$

or $\tau \times \sigma$ is a leaf. $\tau \times \sigma \in T(I \times J)$ is called maximally admissible if the father of $\tau \times \sigma$ is non-admissible.

DEFINITION (Partition *P*): $P \subset T(I \times J)$ is defined by: 1) different $b \in P$ are disjoint, 2) their union $\bigcup_{b \in P} p = I \times J$ is complete, 3) they are maximally admissible.

3 Application to BEM

Example:
$$(\mathcal{A}u)(x) := \int_0^1 \log |x-y| u(y) dy$$
 for $x \in [0,1]$.

Discretisation: collocation with piecewise constant elements in

$$[x_{i-1}, x_i], x_i = ih, \quad i = 1, \dots, n, \ h = 1/n,$$

Midpoints $x_{i-1/2} = (i - 1/2)h$ are the collocation points:

$$A = (a_{ij})_{i,j=1,...,n}$$
 with $a_{ij} = \int_{x_{j-1}}^{x_j} \log |x_{i-1/2} - y| dy$.

Replace the kernel function $\kappa(x, y) = \log |x - y|$ in a certain range of x, y by an approximation $\tilde{\kappa}(x, y)$ of separable form

$$\tilde{\kappa}(x,y) = \sum_{\iota \in K} X_{\iota}(x) Y_{\iota}(y).$$

$$\tilde{\kappa}(x,y) = \sum_{\iota \in K} X_{\iota}(x) Y_{\iota}(y).$$

Simple choice: Taylor's formula applied with respect to y:

$$egin{array}{rcl} K &= \{0,1,\ldots,k-1\}, \ X_{\iota}(x) &= ext{ derivatives of } \kappa(x,\cdot) ext{ evaluated at } y=y^{*}, \ Y_{\iota}(y) &= \ (y-y^{*})^{\iota}. \end{array}$$

The kernel $\kappa(x,y) = \log |x-y|$ leads to the error estimate

$$|\kappa(x,y) - \tilde{\kappa}(x,y)| \le rac{|y-y^*|^k/k}{(|x-y^*|-|y-y^*|)^k} \quad ext{for} \quad |x-y^*| \ge |y-y^*|.$$

If κ is replaced by $\tilde{\kappa}$, the integral $a_{ij} = \int_{x_{j-1}}^{x_j} \kappa(x_{i-1/2}, y) dy$ becomes

$$\tilde{a}_{ij} = \sum_{\iota \in K} X_{\iota}(x_{i-1/2}) \int_{x_{j-1}}^{x_j} Y_{\iota}(y) dy.$$
(*)

Let b be a block and restrict i, j in (*) to b. Then (*) describes a block matrix $\tilde{A}|_b$. Each term of the sum in (*) is an rank-1 matrix ab^{\top} with

$$a_i = X_{\iota}(x_{i-1/2}), \quad b_j = \int_{x_{j-1}}^{x_j} Y_{\iota}(y) dy.$$

Since #K = k, the block $\tilde{A}|_b$ is of rank-k type.

Furthermore, one can check that

$$|\kappa(x,y) - ilde{\kappa}(x,y)| \leq rac{1}{k} \left(rac{1}{2}
ight)^k, \qquad \|A - ilde{A}\|_\infty \leq 2^{-k}/k$$

Discretisation error h^{\varkappa} , where the step size h is related to n = #I by $h \sim \frac{1}{n}$. Hence k should be chosen such that

$$2^{-k} \sim \left(\frac{1}{n}\right)^{\varkappa}$$

Hence,

 $k = O(\log n)$

is the required rank.

NOTE: a) The construction of the cluster and block-cluster tree is automatic (black-box).

b) Similarly, the construction of the approximation \tilde{A} is black-box (usually by interpolation instead of Taylor expansion).

4 Application to FEM

REMARK: a) A FEM system matrix is an \mathcal{H} -matrix. Non-trivial blocks = 0. b) For a uniformly elliptic differential operator with L^{∞} -coefficients, the inverse of the FEM-matrix can be exponentially well approximated by an \mathcal{H} -matrix [Bebendorf - Hackbusch 2003].

When solving a linear system of equations Ax = b, one can make use of the LU decomposition. The particular advantage of the LU decomposition for sparse matrices A is that the factors L and U contain many zero block (fill-in is not complete!). Example of an factor L:

EXAMPLE (inverse Problem):

Given: electric/magnetic field at \approx 400 sensor positions on the head surface. What is the current distribution in the brain? Where are the sources (epileptic fit)?

PDE: $-\operatorname{div} \sigma(x) \nabla u(x) = f(x), \quad x \in \Omega \subset \mathbb{R}^3, \ \partial_n u = 0 \text{ on } \partial \Omega.$

 Ω and $\sigma(x)$ determined from EEG,MEG. The boundary value problem has to be solved for \approx 400 right-hand sides.

conductivity σ

- Galerkin discretisation $\rightsquigarrow Ax = b$
- The system has to be solved for \approx 400 right-hand sides b
- Stopping criterion: $\|Ax b\| / \|b\| \le 10^{-8}$
- Machine: SUNFire, 900 MHz, single processor

	$Pardiso^\dagger$	${ m LU}_{{\cal H}},\;arepsilon=10^{-6}$	PEBBLES [‡]
Setup	237	468	13
Solve	2.4	1.0	10
Total	1197	868	4013

[†]Pardiso (direct solver by Schenk & Co) [‡]PEBBLES (algebraic multigrid code by Langer/Haase)

Comparisons

5 Matrix Equations

Lyapunov:	$AX + XA^{\top}$	=	C
Sylvester	AX - XB	=	C
Riccati:	$AX + XA^{\top} - XFX$	=	C

Given: A, B, C, F; desired matrix-valued solution: X.

Applications: optimal control problems for elliptic / parabolic pdes.

- Low rank $C, F \Rightarrow$ low rank X
- \mathcal{H} -matrix C, low rank $F \Rightarrow \mathcal{H}$ -matrix X

Computation via \mathcal{H} -arithmetic, possibly combined with multi-grid methods.

Matrix-Riccati Equation

$$A^{\top}X + XA - XFX + G = O \qquad (A < O).$$

LEMMA: The solution X satisfies

$$X = -(M^{\top}M)^{-1}M^{\top}N,$$

where

$$\begin{bmatrix} M & N \end{bmatrix} := \operatorname{sign} \left(\begin{bmatrix} A^{\top} & G \\ F & -A \end{bmatrix} \right) - \begin{bmatrix} I & O \\ O & I \end{bmatrix}.$$

LEMMA: Assume that $\Re e\lambda \neq 0$ for all eigenvalues $\lambda \in \sigma(S)$. Start: $S^{(0)} := S$. Then the iteration

$$S^{(i+1)} := \frac{1}{2} \left(S^{(i)} + \left(S^{(i)} \right)^{-1} \right)$$

converges quadratically to sign(S).

Example of a matrix-Riccati equation: $A = \Delta_h$ (1D)

The following table shows the relative error $\|\tilde{X} - X\|_2 / \|X\|_2$.

	n = 101	256	1024	65 536
k = 1	8.8 ₁₀ -3	1.5_{10} -1	1.3_{10} -1	-
k = 2	2.4 ₁₀ -4	2.6 ₁₀ -4	4.2 ₁₀ -4	6.7 ₁₀ -4
k = 4	7.7 ₁₀ -8	9.1 ₁₀ -8	1.1_{10} -7	6.2 ₁₀ -7
k = 6	1.9_{10} -10	3.7 ₁₀ -10	2.4 ₁₀ -10	1.7 ₁₀ -9
Number of iterations	12	14	17	26
time* [sec]	2.2	8.5	67	18263

*) k=2, Sun Quasar 450 MHz, computation by Dr. L. Grasedyck

In the last case, the matrix X has 4, 294, 967, 296 entries.

6 Matrix-Valued Functions f(A)

EXAMPLE: Matrix-exponential function e^{-tA} .

Cauchy-Dunford representation

using a parabola Γ.

After parametrisation and quadrature:

$$T_N(t) := \sum_{\ell=-N}^N \gamma_\ell e^{-lpha_\ell t} \left(z_\ell I - A \right)^{-1}, \qquad z_\ell \in \mathsf{\Gamma}.$$

Error estimate for $t \ge t_0 > 0$:

$$\left\|T_N(t) - e^{-tA}\right\| \lesssim e^{-cN^{2/3}}$$

 $\Rightarrow N \sim \log n$. Total cost: $O(n \log^* n)$.

7 Beyond Hierarchical Matrices: Tensor Systems as Higher-dimensional Analogue

Tensor space $\mathbb{V} := V_1 \otimes V_2 \otimes \ldots \otimes V_d$.

DEFINITION: A rank-k-tensor is of the form

$$\sum_{\mu=1}^{k} v_1^{(\mu)} \otimes v_2^{(\mu)} \otimes \ldots \otimes v_d^{(\mu)} \quad \text{with } v_j^{(\mu)} \in V_j$$

QUESTION: Given $v \in \mathbb{V}$, are there rank-k-approximations \tilde{v} ? How can they be computed?

 $V_i = \mathbb{R}^{n_i \times m_i} \Rightarrow \otimes$ denotes the Kronecker product of matrices.

QUESTION: Given $M = \sum_{\mu=1}^{k_M} M_1^{(\mu)} \otimes M_2^{(\mu)} \otimes \ldots \otimes M_d^{(\mu)}$. Under what conditions can the eigenvectors be approximated by rank-*k*-tensors?

Example from the electronic Schrödinger equation

Hartree-Fock equation $F_{\psi} \psi_b(\mathbf{y}) = \epsilon_b \psi_b(\mathbf{y})$ involves the Hartree potential

$$V_H(\mathbf{x}) = 2\sum_{b=1}^{N/2} \int \frac{\psi_b^*(\mathbf{y})\psi_b(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} d\mathbf{y} = \int \frac{\rho(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} d\mathbf{y},$$
(1)

where $\rho(\mathbf{y}) = 2 \sum_{b=1}^{N/2} \psi_b(\mathbf{y}) \psi_b^*(\mathbf{y})$ is the electron density.

Standard approaches use Gaussians $g_k^{(j)}(y_j) = (y_j - A_k^{(j)})^{\ell_k} e^{-\alpha_k (y_j - A_k^{(j)})^2}$ to represent the orbital (wavefunction) by

$$\psi_b(\mathbf{y}) \approx \sum_{k=1}^{K_{\psi}} g_k^{(1)}(y_1) g_k^{(2)}(y_2) g_k^{(3)}(y_3).$$
 (2)

Here, K_{ψ} = tensor rank. We start with a representation (2) produced by the MOLPRO program package using the MATROP program for matrix operations. Eq. (2) yields $\rho(\mathbf{y}) = \psi_b^*(\mathbf{y})\psi_b(\mathbf{y})$ with $K := K_{\psi}(K_{\psi} + 1)/2$ terms. Optimising the tensor representation reduces the tensor rank to a much smaller rank κ while almost keeping the same order of accuracy:

$$\rho(\mathbf{y}) \approx \sum_{k=1}^{\kappa} \varrho_k^{(1)}(y_1) \, \varrho_k^{(2)}(y_2) \, \varrho_k^{(3)}(y_3), \qquad \kappa \ll K.$$

The computational work for evaluating the Hartree potential (1) depends essentially on the tensor rank.

EXAMPLE CH_4 : The MOLPRO program yields K = 1540, which can be reduced by our approach to $\kappa = 45$. The computing time for evaluating V_H for the tensor representation with $\kappa = 45$ is 8 hours, while the estimated time for K = 1540 is 190 hours.

molecule	initial rank K of $ ho(y)$	final rank κ	relative error	error in energy (hartree)
CH ₄	1540	45	9.0×10^{-6}	$6.0 imes 10^{-5}$
C_2H_2	2346	50	1.3×10^{-4}	$5.0 imes 10^{-4}$
C_2H_6	4656	55	8.8×10^{-5}	4.0×10^{-4}

Separable PDE in $[0, 1]^d$, d large

Let
$$\Omega=(0,1)^d\subset \mathbb{R}^d$$
; equidistant grid: $\Omega_h=(h,2h,\ldots,nh)$ with $(n+1)\,h=1.$

Here: n = 1024.

Separable PDE: $L = \sum_{\nu=1}^{d} a_{\nu}(x_{\nu}) \frac{\partial^2}{\partial x_{\nu}^2}$, e.g., $L = \Delta$.

Discretisation of -L by usual difference formula:

$$A = -L_h = -\sum_{\nu=1}^d a_{\nu}(x_{\nu}) D_{x_{\nu}x_{\nu}}^h \qquad (D_{x_{\nu}x_{\nu}}^h: \text{ 2nd difference})$$
$$= A_1 \times I \times \ldots \times I + I \times A_2 \times \ldots \times I + \ldots + I \times I \times \ldots \times A_d.$$
Goal: Approximation of L_h^{-1} .

Numerical result (Grasedyck 2004): For d = 2048, accuracy 10^{-5} to 10^{-6} : 5 min computer time

Related dimension:

$$N = 1024^{2048} = 1.24 \times 10^{6165}.$$

Underlying method

1/x can be approximated by exponential sums $\sum_{\nu=1}^{k} \omega_{\nu} \exp(\alpha_{\nu} x)$:

$$\begin{split} \min_{\omega_{\nu},\alpha_{\nu}} \max_{x\in[x_{0},x_{1}]} \left| \frac{1}{x} - \sum_{\nu=1}^{k} \omega_{\nu} \exp(\alpha_{\nu}x) \right| &\leq O(e^{-ck}), \quad c > 0, \\ \min_{\omega_{\nu},\alpha_{\nu}} \max_{x\in[x_{0},\infty)} \left| \frac{1}{x} - \sum_{\nu=1}^{k} \omega_{\nu} \exp(\alpha_{\nu}x) \right| &\leq O(e^{-ck^{1/2}}), \quad c > 0. \end{split}$$

Let $[x_0, x_1]$ or $[x_0, \infty)$ contain the spectrum of L_h . Then

$$L_h^{-1} \approx \sum_{\nu=1}^k \omega_{\nu} \exp(\alpha_{\nu} L_h).$$

The special tensor structure

$$L_h = \sum_{\mu=1}^d I \times \ldots \times I \times L_{h,\mu} \times I \times \ldots \times I$$

implies

$$\exp(\alpha_{\nu}L_{h}) = \bigotimes_{\mu=1}^{d} \exp(\alpha_{\nu}L_{h,\mu}).$$

Approximation of $\exp(\alpha_{\nu}L_{h,\mu})$ by \mathcal{H} -matrices (see above).

8 Literature etc.

W.H.: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices. Computing, 62:89–108, 1999 (Report 98-27, Oct. 1998, Universität Kiel)

W.H., B.Khoromskij, S.A.Sauter: On H^2 -matrices. In Lectures on applied mathematics, S. 9–29. Springer-Verlag, Berlin, 2000 (München, June 1999)

W.H., B.Khoromskij: A sparse H-matrix arithmetic. Part II: Application to multi-dimensional problems. Computing, 64:21–47, 2000

I.P.Gavrilyuk, W.H., B.Khoromskij: H-matrix approximation for the operator exponential with applications. Numer. Math., 92:83–111, 2002.

W.H., S.Börm: Data-sparse approximation by adaptive H^2 -matrices. Computing, 69:1–35, 2002.

W.H., L.Grasedyck, S.Börm: An introduction to hierarchical matrices. Math. Bohem., 127:229–241, 2002

M.Bebendorf, W.H.: Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L^{∞} -coefficients. Numer. Math., 95:1–28, 2003

L.Grasedyck, W.H., B.Khoromskij: Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing, 70:121–165, 2003

L.Grasedyck, W.H.: Construction and arithmetics of H-matrices. Computing 70:295–334, 2003

L.Grasedyck, W.H., Sabine Le Borne. Adaptive geometrically balanced clustering of H-matrices. Computing, 73:1–23, 2004.

I.P.Gavrilyuk, W.H., B.Khoromskij: Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems. Computing 74:131–157, 2005

W.H., B.Khoromskij, E.E.Tyrtyshnikov: Hierarchical Kronecker tensor-product approximations. J. Numer. Math. 13:119–156, 2005.

W.H., B.Khoromskij, and R.Kriemann: Direct Schur complement method by domain decomposition based on H-matrix approximation. Comput. Vis. Sci., 8:179–188, 2005.

W.H., B.Khoromskij: Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions. Computing, 76:177-202, 2006 - Part II. HKT representation of certain operators. Computing 76 (2006) 203-225.

L. Banjai, W.H: H- and H^2 -matrices for low and high frequency Helmholtz equation. To appear in IMA J. Numer. Anal.

For a complete list see

http://www.mis.mpg.de (→institute reports) or http://www.mis.mpg.de/scicomp/hackbusch_e.html

For scientific purposes a software library is freely available (licence form to be signed),

for commercial applications: HLibPro