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1. The Cayley Transform

Definition 1. Given

A ∈ Cn,n, −1 ∈/σ(A), (1)

the Cayley Transform is defined by

F := C(A) = (I + A)−1(I −A). (2)

(See, e.g., Fallatt and Tsatsomeros, ELA (2002), for properties

and other references).

Definition 2. Under the assumptions of Definition 1, we call

Extrapolated Cayley Tranform, with extrapolation parameter ω,

the function

Fω := (I + ωA)−1(I − ωA), ω ∈ C\{0}, −1 ∈/σ(ωA). (3)

Basic Assumption: From now on it is assumed that A ∈ Rn,n is

positive stable, that is its eigenvalues a ∈ σ(A) have Re a > 0.
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2. Applications

The (Extrapolated) Cayley Transform or their scalar analogues
(e.g., w = 1−ωa

1+ωa, (Möbius transformation)), appear, among oth-
ers, in the solution of:
1) The Linear Complementarity Problem (LCP) when the basic
matrix A is, in addition, real symmetric positive definite, by the
Modulus Algorithm (W.M.G. van Bokhoven (1981)).
2) The problem of the determination of optimal acceleration pa-
rameter in the
a) Classical Stationary Alternating Direction Implicit (ADI) Iter-
ative Method (D.W Peaceman and H.H. Rachford Jr. SINUM
(1955)).
b) A complex linear system, with matrix coefficient positive sta-
ble by
i) The HS Splitting (Z.-Z. Bai, G.H. Golub and M.K. Ng SIMAX
(2003)).
ii) The NS Splitting (Z.Z. Bai, H.G. Golub and M.K. Ng NLAA
(2006)).
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3. Optimization Problem

Problem I: For A ∈ Rn,n positive stable, determine the Extrap-

olation Parameter ω (> 0) that minimizes the spectral radius of

the Extrapolated Cayley Tranform, i.e.

min
ω>0

ρ(Fω) = min
ω>0

max
a∈σ(A)

∣∣∣∣1− ωa

1 + ωa

∣∣∣∣ (< 1) . (4)
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4. Generalizing Optimization Problem / Möbius Transformation

Definition 3.Convex Hull H of σ(A) is the smallest convex poly-

gon that contains σ(A) in the closure of its interior.

Since A is real positive stable, σ(A) and H are symmetric (wrt)

the positive real semiaxis.

Problem II: Determine the extrapolation parameter ω that solves

the minimax problem

min
ω>0

max
a∈H

∣∣∣∣1− ωa

1 + ωa

∣∣∣∣ (< 1) . (5)
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Consider the function

w := w(a) =
1− ωa

1 + ωa
, a ∈ H, ω > 0. (6)

i) w is a Möbius transformation

ii) w has no poles

iii) w(a) is not the constant function

iv) w(a) maps the point a onto w of the same complex plane.

Its inverse transformation w−1 satisfies

w−1(w(a)) = a =
1− w

ω(1 + w)
, w = w(a), a ∈ H, ω > 0. (7)

i) w−1 is a Möbius transformation

ii) w−1 has no poles

iii) w−1 is not the constant function

iv) w−1 maps back w onto its pre-image a.
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5. Analyzing Möbius Transformation / Geometric Interpretation

Consider the images w(σ(A)) and w(H) through (6).

Analyze into a sequence of elementary transformations

w = 2 ·
1

1 + ωa
− 1. (8)

a
w1=ωa→ w1

w2=1+w1→ w2

w3=
1

w2→ w3
w4=2w3→ w4

w=w4−1→ w (9)

and

w
w4=w+1→ w4

w3=
w4
2→ w3

w2=
1

w3→ w2
w1=w2−1→ w1

a=
w1
ω→ a. (10)
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Interpret each simple transformation (9) in geometric terms:

i) w1 = ωa : Similitude (Homothesy), center at O(0,0), ratio ω

ii) w2 = w1 + 1 : Translation by +1

iii) w3 = 1
w2

: Inversion, pole at z = 0

iv) w4 = 2w3 : Similitude, center at z = 0, ratio 2

v) w = w4 − 1 : Translation by −1.
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Observe that:

Similitudes: centers at z = 0, ratios positive real numbers,

Translations: parallel to real axis,

Inversion: pole at point z = 0 lying strictly outside pre-images it

inverts.
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Interpret each simple transformation (10) in geometric terms:

i) w4 = w + 1 : Translation by +1.

ii) w3 = w4
2 : Similitude (Homothesy), center at O(0,0), ratio 1

2.

iii) w2 = 1
w3

: Inversion, pole at z = 0.

iv) w1 = w2 − 1 : Translation by −1.

v) a = w1
ω : Similitude, center at z = 0, ratio 1

ω.
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Observe that:

Translations: parallel to real axis,

Similitudes: centers at z = 0, ratios positive real numbers,

Inversion: pole at point z = 0 lying strictly outside pre-images it

inverts.
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Images w(σ(A)) and w(H) will be symmetric wrt the real axis

(due to the nature of the Möbius transformations (6) and (7)

(real coefficients and no poles)).

For an ω > 0, let Cω the circle, center at O(0,0) and radius

ρ := ρ(Cω) = max
a∈H

|w(a)| (< 1). (11)

Cω passes through a boundary point of w(H).

Therefore, in view of nature of the inverse Möbius transformation

(7), Cω must be image of a circle C.
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Cω : |w| = ρ ⇔ |w|2 = ρ2 ⇔ ww = ρ2 ⇔ (12)

1− ωa

1 + ωa
·
1− ωa

1 + ωa
= ρ2 ⇔ ω2(1−ρ2)aa−ω(1+ρ2)(a+a)+(1−ρ2) = 0 ⇔

aa−
(1 + ρ2)

ω(1− ρ2)
(a + a) +

1

ω2
= 0 ⇔

aa−
(1 + ρ2)

ω(1− ρ2)
(a + a) +

(
(1 + ρ2)

ω(1− ρ2)

)2

=

(
(1 + ρ2)

ω(1− ρ2)

)2

−
1

ω2
⇔
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∣∣∣∣∣a− (1 + ρ2)

ω(1− ρ2)

∣∣∣∣∣
2

=

(
2ρ

ω(1− ρ2)

)2

⇔

∣∣∣∣∣a− (1 + ρ2)

ω(1− ρ2)

∣∣∣∣∣ =
2ρ

ω(1− ρ2)
⇔ |a− c| = R : C, (13)

where

c :=
1 + ρ2

ω(1− ρ2)
, R :=

2ρ

ω(1− ρ2)
(c > R ≥ 0). (14)

From (14) solving for ω and ρ we obtain

ω =
1√

c2 −R2
, (15)

ρ =
c−

√
c2 −R2

R
=

√
c + R−

√
c−R√

c + R +
√

c−R
. (16)
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By virtue of (11), (12) and (13), circle C
1) will have center on positive real semiaxis,

2) will lie in open right half complex plane,

3) will pass through a boundary point of H, namely a vertex (and

its symmetric wrt positive real semiaxis), and

4) will contain all vertices of H in the closure of its interior.

Definition 4. A circle C satisfying the above four properties will

be called capturing circle (cc) of H.∗.

Note: There are infinitely many cc’s of a certain H.

∗From now on the word “captures” will mean “contains in the closure of its
interior”
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It has been proved that:

ρ(Fω) ≡ max
a∈σ(A)

|w(a)| ≡ ρ(w(C)) ≡ max
a∈H

|w(a)| ≡ ρ(Cω) ≡ ρ.

Theorem 1. The solutions to Problems I and II are identical

min
ω>0

ρ(Cω) = min
ω>0

max
a∈H

∣∣∣∣1− ωa

1 + ωa

∣∣∣∣ , Re a > 0. (17)

18



6. Propositions

Theorem 2. Let C be a cc of H, K(c,0) (c > 0) and R (< c) be

its center and radius, respectively, and Cω be its image via (6).

Then, from (14) solving for ω and ρ, it is obtained that

ω =
1√

c2 −R2
, ρ := ρ (Cω) =

√
c + R−

√
c−R√

c + R +
√

c−R
. (18)
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Lemma 1. The function

f(x) :=

√
1 + x−

√
1− x√

1 + x +
√

1− x
(19)

is continuously increasing in [0,1). Also, for x ∈ [d, e) ⊆ [0,1),

f(x) attains its minimum at the minimum value of x = d.

Theorem 3. The solution to either Problem I or Problem II is

equivalent to the determination of the optimal capturing circle

(cc) C∗ of H so that the ratio R
c is a minimum.
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7. The Algorithm / Comments on Algorithm
The extrapolation problem in a simpler case, |1−ωa|, was solved
In the Real Case in
A.J. Hughes Hallett Proceedings (1981), CAM (1982)
A.H. IJCM (1983)
In the Complex Case in
A.H. LAA (1984), LAA (2004)
G. Opfer and G. Schober LAA (1984)

Under the notation and the assumptions made so far, C∗ of H,
of Theorem 3, is determined as follows:

The Algorithm

Step 1. Pi(βi, γi), i = 1(1)k, 0 < βi < βi+1, i = 1(1)k − 1, γi ≥
0, i = 1(1)k, vertices of H, in the first quadrant of the complex
plane.
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Step 2. Find Pi corresponding to largest polar angle θi,

max
i=1(1)k

tan θi = max
i=1(1)k

γi

βi
. (20)

If two such vertices exist go to Step 3; otherwise

Let i ∈ {1,2, . . . , k} be the index and Ci the circle that is tangent

to the line OPi at Pi and has center on the real axis.

If Ci captures H, it is Cω∗ of H (one-point optimal cc).

If no such a cc Cω∗ exists go to next Step.

Step 3. Determine all circles through pairs of vertices Pi, Pj, i =

1(1)k − 1, j = i + 1(1)k, with centers on the real axis.

Let Ki,j(ci,j,0) and Ri,j = (Ki,jPi) = (Ki,jPj) centers and radii.

Discard those that either capture O or do not capture H.

From remaining the one corresponding to the smallest ratio
Ri,j

(OKi,j)
is Cω∗ of H (two-point optimal cc).
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a) Let i ∈ {1,2, . . . , k} be the index corresponding to the optimal

one-point cc. Then, its center and radius are given by

K∗
i
(c∗

i
,0), c∗

i
=

β2
i

+ γ2
i

βi

, R∗
i

=
γi

√
β2

i
+ γ2

i

βi

. (21)

b) To determine optimal two-point cc from centers Ki,j and radii

Ri,j of the

(
k
2

)
possible cc’s, find

ci,j =
(β2

j + γ2
j )− (β2

i + γ2
i )

2(βj − βi)
, Ri,j =

√
[(β2

j + γ2
j ) + (β2

i + γ2
i )− 2βiβj]2 − 4γ2

i γ2
j

2(βj − βi)
.

(22)

Discard circles for which ci,j ≤ 0 or 0 < ci,j ≤ Ri,j.

From rest find optimal cc as the unique cc that captures the

other k − 2 vertices of H and corresponds to the smallest ratio

Ri,j

ci,j
=

√
[(β2

j + γ2
j ) + (β2

i + γ2
i )− 2βiβj]

2 − 4γ2
i γ2

j

(β2
j + γ2

j )− (β2
i + γ2

i )
. (23)
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8. Examples LCP

A ∈ Rn,n, det(A) 6= 0, b ∈ Rn, Rn 3 x ≥ 0, r = Ax−b ≥ 0, xT r = 0

Example 1: A = tridiag(−1,2,−1) ∈ R9,9, b = [2 − 1 − 1 − 1 − 1 − 1 −
1 − 1 − 1]T .

A is symmetric positive definite (P−matrix and positive stable).

Its extreme eigenvalues are am = 4sin2
(

π
20

)
and aM = 4cos2

(
π
20

)
.

Using the Modulus Algorithm,

with C = (I + A)−1(I −A), ||C||2 = ρ(C) = 0.82168115604716,

125 iterations for LCP solution.

Using the Optimal (Extrapolated) Modulus Algorithm,

ω∗ = 1.61803398874989, ||Cω∗||2 = ρ(Cω∗) = 0.72654252800536,

93 iterations for same LCP solution.

x = [1.00000000000000 0 0 0 0 0 0 0 0]T ,
r = Ax− b

= [0 0.00000000000000 1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000]T .

(24)
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Example 2:

A =

[
1 0
3 2

]
, b =

[
2

−1

]
.

A positive stable, σ(A) = {1, 2}.
A P−matrix, all its principal minors are positive.

32 iterations for LCP solution.

x = [2 0]T , r = [0 7.00000000000000]T .

ω∗ = 1√
2

= 0.70710678118655, ρ(Cω∗) = 0.17157287525381.

21 iterations for same LCP solution.
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NOTES

1) The Optimal Capturing Circle Cω∗ has also been found in case
the Convex Hull H under consideration is :
a) A Circle or a Circular Region (Sector, Section or Zone) and
b) An Ellipse or an Elliptical Region (Sector, Section, or Zone).

2) The Modulus Algorithm by van Bokhoven and also its exten-
sion by Kappel and Watson (1996) can be improved by stationary
and/or nonstationary extrapolation.

3) The Optimal Extrapolation Parameter ω∗ of the present work
generalizes a known Mathematical Problem.
Consider the Poisson Equation in the Unit Square under Dirichlet
Boundary Conditions. Use a 5-Point Discretization with Equal
Mesh Size in each Co-ordinate Direction.
Then the Optimal Acceleration Parameter r of the corresponding
Stationary Alternating Direction Implicit (ADI) Iterative Method
(Peaceman-Rachford Method) is found as the solution to the
following Minmax Problem
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min
r>0

max
0<δ≤a≤ε

∣∣∣∣r − a

r + a

∣∣∣∣.
Rewrite it as

min
1
r>0

max
0<δ≤a≤ε

∣∣∣∣1− 1
ra

1 + 1
ra

∣∣∣∣.
In this Problem H := [δ, ε] and ω := 1

r !

4) For the solution of a Complex Linear System by the Method

of

a) Hermitian/Skew Hermitian Splitting (H is as above).

b) Normal/Skew Hermitian Splitting (H is a rectangle). If some

more information on the spectrum is known it can be improved

further using the Algorithm described.
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