GMRES Methods for Least Squares Problems

Ken Hayami, Jun-Feng Yin, National Institute of Informatics, Tokyo and

Tokushi Ito Business Design Laboratory Co.,Ltd., Nagoya

HARRACHOV 2007

Computational Linear Algebra with Applications

Harrachov, Czech Republic

August 23rd, 2007

Problem:

$$\min_{\boldsymbol{x}\in\mathbf{R}^n}\|\boldsymbol{b}-A\boldsymbol{x}\|_2$$

 $A \in \mathbf{R}^{m \times n}$

- $\bullet \ m > n \ \text{or} \ m = n \ \text{or} \ m < n$
- not necessarily full rank
- large sparse

$$\uparrow$$

 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ (normal equation)

For m < n

 $AA^{\mathsf{T}}y = b, \quad x = A^{\mathsf{T}}y$ \downarrow minimum norm solution 1. Iterative methods using the normal equation

 $A^{T}A$: square, symmetric, positive definite (if rankA = n) matrix \downarrow Apply Conjugate Gradient method. \downarrow CGLS (Conjugate Gradient Least Squares) method

The CGLS(CGNR) method

Choose x_0 . $r_0 = b - Ax_0, \ p_0 = s_0 = A^{\top}r_0, \ \gamma_0 = \|s_0\|_2^2$ for $i = 0, 1, 2, \ldots$ until $\gamma_i < \epsilon$ $q_i = A p_i$ $\alpha_i = \gamma_i / \|\boldsymbol{q}_i\|_2^2$ $x_{i+1} = x_i + \alpha_i p_i$ $r_{i+1} = r_i - \alpha_i q_i$ $s_{i+1} = A^{\mathsf{T}} r_{i+1}$ $\gamma_{i+1} = \|s_{i+1}\|_2^2$ $\beta_i = \gamma_{i+1} / \gamma_i$ $p_{i+1} = s_{i+1} + \beta_i p_i$ endfor

However,

condition number of $A^{T}A$: square of A. \downarrow Slow convergence Preconditioning necessary

• diagonal scaling

- incomplete Cholesky decomposition (Meijerink, van der Vorst '77)
- incomplete QR decomposition (Jennings, Ajiz '84, Saad '88)
- incomplete Givens orthogonalization (Bai et al. '01)
- robust incomplete factorization (RIF) (Benzi, Tuma '03)

etc.

2. Iterative methods <u>not</u> based on the normal equation

CR-LS(k) method (Zhang and Oyanagi, '89)

Apply Orthomin(k) method to

 $\min_{\boldsymbol{x}\in\mathbf{R}^n}\|\boldsymbol{b}-A\boldsymbol{x}\|_2$

by introducing a mapping matrix $B \in \mathbb{R}^{n \times m}$, and using the Krylov subspace generated by $AB \in \mathbb{R}^{m \times m}$. Consider using **GMRES** (Generalized Minimal RESidual) method instead.

GMRES: efficient and robust method for

Ax = b,

where

 $A \in \mathbf{R}^{n \times n}$: nonsingular.

GMRES(k) method Choose x_0 * $r_0 = b - Ax_0$; $v_1 = r_0 / ||r_0||_2$ for i = 1, 2, ..., k $w_i = A v_i$ for j = 1, 2, ..., i $h_{j,i} = (w_i, v_j)$ $w_i = w_i - h_{j,i} v_j$ end for $h_{i+1,i} = \|w_i\|_2$ $v_{i+1} = w_i / h_{i+1,i}$ Find $y_i \in \mathbf{R}^i$ which minimizes $\|r_i\|_2 = \|\|r_0\|_2 e_i - \bar{H}_i y\|_2$. if $\|\boldsymbol{r}_i\|_2 < \epsilon$ then $x_i = x_0 + [v_1, \ldots, v_i]y_i$; stop endif endfor $x_k = x_0 + [v_1, \ldots, v_k]y_k$ $x_0 = x_k$ Go to *.

(Here,
$$\bar{H}_i = (h_{pq}) \in \mathbf{R}^{(i+1) \times i}$$
,
 $e_i = (1, 0, \dots, 0)^{\top} \in \mathbf{R}^{i+1}$.)

$$\begin{array}{l} \text{Minimizes } \|\boldsymbol{r}_k\|_2 \text{ over} \\ \boldsymbol{x}_k = \boldsymbol{x}_0 + \langle \boldsymbol{v}_1, \cdots, \boldsymbol{v}_k \rangle \\ \langle \boldsymbol{v}_1, \cdots, \boldsymbol{v}_k \rangle = \langle \boldsymbol{r}_0, A \boldsymbol{r}_0, \cdots, A^{k-1} \boldsymbol{r}_0 \rangle \\ (\boldsymbol{v}_i, \boldsymbol{v}_j) = \delta_{ij} \end{array}$$

 $k=\infty$: (full) GMRES.

 $h_{i+1,i} = 0$: breakdown

When A: nonsingular,

GMRES does not break down until it has found the solution of Ax = b, $\forall b$, $\forall x_0 \in \mathbb{R}^n$ (with in *n* steps).

When A : singular,

Theorem 1 (Brown, Walker '97)

GMRES determines a least squares solution of min $||b - Ax||_2$ without breakdown $\forall b, \forall x_0 \in \mathbb{R}^n$ $(\mathcal{R}(A) = \mathcal{R}(A^{\mathsf{T}}).$

 $\mathcal{R}(M)$: range space of M.

How can we apply GMRES to the least squares problem

$$\min_{oldsymbol{x}\in\mathbf{R}^n}\|oldsymbol{b}-Aoldsymbol{x}\|_2$$
 are $A\in\mathbf{P}^{m imes n}$?

where $A \in \mathbf{R}^{m \times n}$?

$$A \in \mathbf{R}^{m \times n}, \ \mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0 \in \mathbf{R}^m.$$

 \downarrow
Cannot create Krylov subspace by $A \times \mathbf{r}_0.$

Basically two ways to overcome by using a mapping matrix $B \in \mathbf{R}^{n \times m}$.

1. AB-GMRES method

Use Krylov subspace:

 $\mathcal{K}_k(AB, \mathbf{r}_0) := \langle \mathbf{r}_0, AB\mathbf{r}_0, \dots, (AB)^{i-1}\mathbf{r}_0 \rangle$ in \mathbf{R}^m .

 $AB \in \mathbf{R}^{m \times m}$.

(cf. CR-LS(k) method by Zhang, Oyanagi)

First note:

Lemma 2

Using

Lemma 3 $\mathcal{R}(AA^{\top}) = \mathcal{R}(A)$ \Box

we can show

Lemma 4 $\mathcal{R}(A^{\mathsf{T}}) = \mathcal{R}(B) \Longrightarrow \mathcal{R}(A) = \mathcal{R}(AB).$ \Box

Thus, assume $\mathcal{R}(A) = \mathcal{R}(AB)$.

Consider solving

$$\min_{\boldsymbol{z}\in\mathbf{R}^m}||\boldsymbol{b}-AB\boldsymbol{z}||_2 = \min_{\boldsymbol{x}\in\mathbf{R}^n}||\boldsymbol{b}-A\boldsymbol{x}||_2$$

using GMRES with initial approximation $z_0 \in \mathbb{R}^m$; $ABz_0 = Ax_0$.

Then, we have the following.

AB-GMRES(k) method

Choose x_0 (; $Ax_0 = ABz_0$). * $r_0 = b - Ax_0$ (= $b - ABz_0$); $v_1 = r_0/||r_0||_2$ for i = 1, 2, ..., k $w_i = ABv_i$ for j = 1, 2, ..., i $h_{j,i} = (w_i, v_j)$ $w_i = w_i - h_{j,i} v_j$ end for $h_{i+1,i} = \|w_i\|_2$ $v_{i+1} = w_i / h_{i+1,i}$ Find $y_i \in \mathbf{R}^i$ which minimizes $\|r_i\|_2 = \|\|r_0\|_2 e_i - \bar{H}_i y\|_2$ $x_i = x_0 + B[v_1, \ldots, v_i]y_i$ $r_i = b - Ax_i$ if $||A^{\mathsf{T}}r_i||_2 < \epsilon$ stop endfor $x_0 = x_k$ Go to *.

Does the AB-GMRES method determine the least squares solution without breakdown ?

Recall the following.

Theorem 5 (Brown, Walker '97) Let $\tilde{A} \in \mathbb{R}^{m \times m}$. Then, the following holds.

Let $\tilde{A} := AB$. Noting

Theorem 6 If $\mathcal{R}(A^{\mathsf{T}}) = \mathcal{R}(B)$, then

$$\mathcal{R}(AB) = \mathcal{R}(B^{\mathsf{T}}A^{\mathsf{T}}) \iff \mathcal{R}(A) = \mathcal{R}(B^{\mathsf{T}}) \quad \Box$$

we obtain

Theorem 7 If $\mathcal{R}(A^{\mathsf{T}}) = \mathcal{R}(B)$, then

Corollary 8 $\mathcal{R}(A^{\top}) = \mathcal{R}(B), \ \mathcal{R}(A) = \mathcal{R}(B^{\top})$ $\downarrow \downarrow$ *AB-GMRES method determines a least squares solution of* $\min_{x \in \mathbb{R}^n} ||b - Ax||_2$ $\forall b \in \mathbb{R}^m, \forall x_0 \in \mathbb{R}^n$ without breakdown. \Box

Remark 1

```
\mathcal{R}(A) = \mathcal{R}(B^{\top})
\stackrel{\uparrow}{\cong} B^{\top} = AC^{\top}; \quad C^{\top}: \text{ nonsingular}
\stackrel{\Downarrow}{\cong} B = CA^{\top}; \quad C: \text{ nonsingular}.
```

2. BA-GMRES method

The other alternative:

Use a matrix $B \in \mathbf{R}^{n \times m}$ to map $r_0 \in \mathbf{R}^m$ to $\tilde{r}_0 = Br_0 \in \mathbf{R}^n$.

Then create Krylov subspace

 $\langle \tilde{\boldsymbol{r}}_0, BA\tilde{\boldsymbol{r}}_0, \dots, (BA)^{i-1}\tilde{\boldsymbol{r}}_0 \rangle$ in \mathbf{R}^n .

 $BA \in \mathbf{R}^{n \times n}$

First note:

Theorem 9

$$\|b - Ax^*\|_2 = \min_{x \in \mathbf{R}^n} \|b - Ax\|_2$$

and

$$||B\boldsymbol{b} - BA\boldsymbol{x}^*||_2 = \min_{\boldsymbol{x} \in \mathbf{R}^n} ||B\boldsymbol{b} - BA\boldsymbol{x}||_2$$

are equivalent for all $oldsymbol{b} \in \mathbf{R}^m$

$$\label{eq:relation} \product \product$$

Also note

Lemma 10 $\mathcal{R}(A) = \mathcal{R}(B^{\top}) \Longrightarrow \mathcal{R}(BA) = \mathcal{R}(B).$

Lemma 11 $\mathcal{R}(BA) = \mathcal{R}(B) \Longrightarrow \mathcal{R}(B^{\mathsf{T}}BA) = \mathcal{R}(B^{\mathsf{T}}).$

Lemma 12 $\mathcal{R}(A) = \mathcal{R}(B^{\top}) \Longrightarrow \mathcal{R}(A) = \mathcal{R}(B^{\top}BA).$ Thus, assume $\mathcal{R}(A) = \mathcal{R}(B^{\mathsf{T}}BA)$,

and consider applying GMRES(k) method to

 $\min_{\boldsymbol{x}\in\mathbf{R}^n}||B\boldsymbol{b}-BA\boldsymbol{x}||_2$

with initial approximation x_0 .

BA-GMRES(*k***)** method

Choose x_0 .

```
* \tilde{r}_0 = B(b - Ax_0)
   v_1 = \tilde{r}_0 / || \tilde{r}_0 ||_2
  for i = 1, 2, \ldots, k until convergence
    w_i = BAv_i
    for j = 1, 2, ..., i
      h_{j,i} = (w_i, v_j)
      w_i = w_i - h_{j,i} v_j
    end for
    h_{i+1,i} = \|w_i\|_2
    v_{i+1} = w_i / h_{i+1,i}
    Find y_i \in \mathbf{R}^i which minimizes \|\tilde{r}_i\|_2 = \|\|\tilde{r}_0\|_2 e_i - \bar{H}_i y\|_2
    x_i = x_0 + [v_1, \ldots, v_i]y_i
    r_i = b - Ax_i
    if ||A^{\mathsf{T}} r_i||_2 < \epsilon stop
  end for
  Go to *.
```

Does BA-GMRES method give the least squares solution without breakdown ?

Noting

Theorem 13 If $\mathcal{R}(A) = \mathcal{R}(B^{\top})$, then

$$\mathcal{R}(BA) = \mathcal{R}(A^{\top}B^{\top}) \iff \mathcal{R}(A^{\top}) = \mathcal{R}(B). \quad \Box$$

Theorem 14 If $\mathcal{R}(A) = \mathcal{R}(B^{\top})$, then

BA-GMRES method determines a least squares solution of $\min_{\boldsymbol{x} \in \mathbf{R}^m} ||\boldsymbol{b} - A \boldsymbol{x}||_2$ $\forall b \in \mathbf{R}^m, \ \forall x_0 \in \mathbf{R}^n$ without breakdown \uparrow $\mathcal{R}(A^{\mathsf{T}}) = \mathcal{R}(B).$

Corollary 15 $\mathcal{R}(A) = \mathcal{R}(B^{\mathsf{T}}), \ \mathcal{R}(A^{\mathsf{T}}) = \mathcal{R}(B)$ **BA-GMRES** method determines a least squares solution of $\min_{\boldsymbol{x}\in\mathbf{R}^m}||\boldsymbol{b}-A\boldsymbol{x}||_2$ $\forall b \in \mathbf{R}^m, \ \forall x_0 \in \mathbf{R}^n \ without \ breakdown.$

Summary on condition for B

General case: rank $A \leq \min(m, n)$,

$$\mathcal{R}(A) = \mathcal{R}(B^{\top}), \ \mathcal{R}(A^{\top}) = \mathcal{R}(B)$$

 $\downarrow \downarrow$
AB-GMRES, BA-GMRES methods give
a least squares solution of min $||b - Ax||_2$
 $\forall b \in \mathbb{R}^m, \forall x_0 \in \mathbb{R}^n$ without breakdown.

··· e.g. Let $B = \alpha A^{\mathsf{T}}$ where $0 \neq \alpha \in \mathbf{R}$.

Full rank case

 $m \ge n = \operatorname{rank} A$ (over-determined case)

Since $AB \in \mathbb{R}^{m \times m}$, $BA \in \mathbb{R}^{n \times n}$, $m \ge n$, use BA-GMRES method. e.g. Let $C := \{ \text{diag}(A^{\top}A) \}^{-1}$ i.e. $BA = \{ \text{diag}(A^{\top}A) \}^{-1} A^{\top}A$.

Convergence Analysis

Theorem 16 Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, $B := CA^{\top}$, $C \in \mathbb{R}^{n \times n}$: sym.pos.def., $\sigma_i \ (1 \le i \le n)$: singular values of $\tilde{A} := AC^{\frac{1}{2}}$. Then, $\sigma_i^2 \ (1 \le i \le n)$: eigenvalues of AB and BA.

If m > n, all other eigenvalues of AB are 0.

[Proof] Let $\tilde{A} := AC^{\frac{1}{2}} = U\Sigma V^{\top}$: SVD, $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$: orthogonal matrices,

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & 0 \\ & & \sigma_n \\ 0 & & \end{bmatrix} \in \mathbf{R}^{m \times n},$$

 $\sigma_1 \geq \ldots \geq \sigma_n \geq 0$: singular values of \tilde{A} .

Then,

$$AB = ACA^{\mathsf{T}} = \tilde{A}\,\tilde{A}^{\mathsf{T}} = U\Sigma\Sigma^{\mathsf{T}}U^{\mathsf{T}},$$
$$BA = CA^{\mathsf{T}}A = C^{\frac{1}{2}}\tilde{A}^{\mathsf{T}}\tilde{A}C^{-\frac{1}{2}} = C^{\frac{1}{2}}V\Sigma^{\mathsf{T}}\Sigma(C^{\frac{1}{2}}V)^{-1}.$$

cf. If rankA = n, $C := \{ diag(A^T A) \}^{-1}$: sym.pos.def. Similarly for RIF. **Theorem 17** The residual r = b - Ax achieved by the *k*-th step of AB-GMRES satisfies

$$\|\boldsymbol{r}_k\|_{\mathcal{R}(A)}\|_2 \leq 2\left(\frac{\sigma_1 - \sigma_n}{\sigma_1 + \sigma_n}\right)^k \|\boldsymbol{r}_0\|_{\mathcal{R}(A)}\|_2.$$

Theorem 18 The residual r = b - Ax achieved by the *k*-th step of BA-GMRES satisfies

$$||Br_k||_2 = ||CA^{\mathsf{T}}r_k||_2 \le 2\sqrt{\kappa(C)} \left(\frac{\sigma_1 - \sigma_n}{\sigma_1 + \sigma_n}\right)^k ||Br_0||_2.$$

CGLS method

Preconditionings $LDL^{\top} \sim A^{\top}A, \tilde{L} = LD^{\frac{1}{2}}$ (e.g. RIF) $diag(A^{\top}A) \sim A^{\top}A, \tilde{L} = (diag(A^{\top}A))^{\frac{1}{2}}.$

Apply CG to

$$A'x' = b' \quad (*)$$

where

$$A' = \tilde{L}^{-1} A^{\mathsf{T}} A \tilde{L}^{-\mathsf{T}}$$
$$x' = \tilde{L}^{\mathsf{T}} x$$
$$b = \tilde{L}^{-1} A^{\mathsf{T}} b.$$

Since

$$(\tilde{L}^{\top})^{-1}A'(\tilde{L}^{\top}) = CA^{\top}A = BA,$$
$$\lambda_i(A') = \lambda_i(BA) = \sigma_i^2, \ i = 1, \dots, n$$

Theorem 19 The residual r = b - Ax of the k-th step of preconditioned CGLS (CG applied to (*)) satisfies

$$\|A^{\mathsf{T}} \boldsymbol{r}_{k}\|_{(A^{\mathsf{T}} A)^{-1}} = \|e_{m}\|_{A^{\mathsf{T}} A} \leq 2 \left(\frac{\sigma_{1} - \sigma_{n}}{\sigma_{1} + \sigma_{n}}\right)^{k} \|A^{\mathsf{T}} \boldsymbol{r}_{0}\|_{(A^{\mathsf{T}} A)^{-1}}.$$

Similar convergence behaviours expected for AB-GMRES, BA-GMRES, and preconditioned CGLS methods, using the same preconditioner C.

 $rankA = m \le n$ (under-determined case)

Let $B = A^{\top}C$ where $C \in \mathbb{R}^{m \times m}$:nonsingular $(B, A^{\top} \in \mathbb{R}^{n \times m}).$ \downarrow $\mathcal{R}(A^{\top}) = \mathcal{R}(B).$ \downarrow $m = \operatorname{rank}A = \operatorname{rank}A^{\top} = \operatorname{rank}B = \operatorname{rank}B^{\top}$ \downarrow $\mathcal{R}(A) = \mathcal{R}(B^{\top}) = \mathbb{R}^{m}.$

Since $AB \in \mathbb{R}^{m \times m}$, $BA \in \mathbb{R}^{n \times n}$, $m \leq n$, use AB-GMRES method.

e.g. Let $C := \{ \text{diag}(AA^{\top}) \}^{-1}$. i.e. $AB = AA^{\top} \{ \text{diag}(AA^{\top}) \}^{-1}$.
Note that when rank $A = m, \mathcal{R}(A) = \mathbb{R}^m \ni b$, so that

 $\min_{x \in \mathbf{R}^n} \|b - Ax\| = \min_{z \in \mathbf{R}^m} \|b - ABz\| = \min_{z \in \mathbf{R}^m} \|b - AA^{\mathsf{T}}Cz\| = 0.$ Hence, AB-GMRES method with $B = A^{\mathsf{T}}C$ gives the minimum norm least squares solution

$$\boldsymbol{x}^* = B\boldsymbol{z}^* = A^{\mathsf{T}}(C\boldsymbol{z}^*)$$

$$\min_{\boldsymbol{x}\in\mathbf{R}^n}\|\boldsymbol{b}-A\boldsymbol{x}\|$$

since

of

$$AA^{\top}(C\boldsymbol{z}^*) = \boldsymbol{b}.$$

Theorem 20

Let $A \in \mathbb{R}^{m \times n}$, $m \leq n$, $B := A^{\mathsf{T}}C$, $C \in \mathbb{R}^{m \times m}$: sym.pos.def., $\sigma_i \ (1 \leq i \leq m)$: singular values of $\tilde{A} := C^{\frac{1}{2}}A$. Then, $\sigma_i^2 \ (1 \leq i \leq m)$: eigenvalues of AB and BA. If m < n, all other eigenvalues of BA are 0. **[Proof]** Let $\tilde{A} := C^{\frac{1}{2}}A = U\Sigma V^{\top}$: SVD, $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$: orthogonal matrices,

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & 0 \\ & & \sigma_m \end{bmatrix} \in \mathbf{R}^{m \times n},$$

 $\sigma_1 \geq \ldots \geq \sigma_m \geq 0$: singular values of \tilde{A} .

Then,

$$AB = AA^{\mathsf{T}}C = C^{-\frac{1}{2}}\tilde{A}\,\tilde{A}^{\mathsf{T}}C^{\frac{1}{2}} = C^{-\frac{1}{2}}U\Sigma\Sigma^{\mathsf{T}}(C^{-\frac{1}{2}}U)^{-1},$$

$$BA = A^{\mathsf{T}}CA = \tilde{A}^{\mathsf{T}}\tilde{A} = V\Sigma^{\mathsf{T}}\Sigma V^{\mathsf{T}}.$$

cf. If rank
$$A = m$$
,
 $C := \{ diag(AA^{T}) \}^{-1} : sym.pos.def.$
Similarly for RIF.

Theorem 21 The residual r = b - Ax achieved by the *k*-th step of AB-GMRES satisfies

$$\|\boldsymbol{r}_k\|_2 \leq 2\sqrt{\kappa_2(C)} \left(\frac{\sigma_1 - \sigma_m}{\sigma_1 + \sigma_m}\right)^k \|\boldsymbol{r}_0\|_2.$$

Theorem 22 The residual r = b - Ax achieved by the k-th step of BA-GMRES satisfies

$$\|B\boldsymbol{r}_k\|_{\mathcal{R}(B)}\|_2 \leq 2\left(\frac{\sigma_1 - \sigma_m}{\sigma_1 + \sigma_m}\right)^k \|B\boldsymbol{r}_0\|_{\mathcal{R}(B)}\|_2.$$

Preconditioned CGLS

$$C = (\tilde{L}\tilde{L}^{\top})^{-1} \in \mathbf{R}^{m \times m}, SPD$$

Precondition

$$AA^{\mathsf{T}}y = b$$

as

$$A'y' = b' \quad (**)$$

where

$$A' = \tilde{L}^{-1} A A^{\mathsf{T}} \tilde{L}^{-\mathsf{T}},$$
$$y' = \tilde{L}^{\mathsf{T}} y,$$
$$b' = \tilde{L}^{-1} b.$$

Since

$$\tilde{L}A'\tilde{L}^{-1} = AA^{\top}C = AB,$$
$$\lambda_i(A') = \lambda_i(AB) = \sigma_i^2, \ i = 1, \dots, m.$$

Theorem 23 The residual $r = b - AA^{T}y$ of the k-th step of preconditioned CGLS (CG applied to (**)) satisfies

$$\|r_k\|_{(AA^{\top})^{-1}} = \|e_m\|_{AA^{\top}} \le 2\left(\frac{\sigma_1 - \sigma_m}{\sigma_1 + \sigma_m}\right)^k \|r_0\|_{(AA^{\top})^{-1}}.$$

Similar convergence behaviours expected for AB-GMRES, BA-GMRES, and preconditioned CGLS methods, using the same preconditioner C.

Choice of B

Besides satisfying $\mathcal{R}(A) = \mathcal{R}(B^{\mathsf{T}})$ and $\mathcal{R}(A^{\mathsf{T}}) = \mathcal{R}(B)$,

B should satisfy $AB \approx I_m$ or $BA \approx I_n$.

Simple choice:

$$B = CA^{\mathsf{T}}, C = \{ diag(A^{\mathsf{T}}A) \}^{-1}$$

when $m \ge n = rankA$,

$$B = A^{\top}C, C := \{ \text{diag}(AA^{\top}) \}^{-1}$$

when rank $A = m \le n$.

Application of Robust Incomplete Factorization (RIF)

(Benzi and Tuma, '03)

 $A^{\mathsf{T}}A \approx LDL^{\mathsf{T}},$

 $A^{\mathsf{T}}A \approx Z^{-\mathsf{T}}DZ^{-1},$

where $A \in \mathbf{R}^{m \times n}$ with $m \ge n = \operatorname{rank} A$,

Z: upper triangular matrix,

L: lower triangular matrix.

Use of (incomplete) $A^{T}A$ -orthogonalization.

Low memory requirement.

RIF Method Let $Z = F = [e_1, e_2, \dots, e_n]$ For $j = 1, \ldots, n$ Do Compute $u_j = Az_j$ Compute $d_j = (\mathbf{u_i}, \mathbf{u_i})$ For i = j + 1, ..., n Do: Compute $v_i = Ae_i$ Compute $\theta_{ij} = \frac{(\mathbf{v_i}, \mathbf{u_j})}{d_i}$ IF $\theta_{ij} > \tau$ Store $L(i,j) = \theta_{ij}$ EndIF Compute $z_i = z_i - \theta_{ij} z_j$ Drop the elements in $\mathbf{z_i}$ smaller than τ EndDo

EndDo

Numerical experiments

PC: Dell Precision 690 CPU: 3.00 GHz, Memory: 16 GB Program, compiler: GNU C/C++ 3.4.3

Linear least squares problems

$$\min_{\boldsymbol{x}\in\mathbf{R}^n}\|\boldsymbol{b}-A\boldsymbol{x}\|_2, \ A\in\mathbf{R}^{m\times n}$$

1. Over-determined case $(m \ge n)$

Test matrices A :

- Generated by MATLAB command "sprandn".
- Specified density and condition number.
- Value of nonzero elements: random (normal distribution)
- Pattern of nonzero elements: random.
- **b**: also random, inconsistent $(b \notin \mathcal{R}(A))$.

Convergence judged by $\frac{\|A^{\top}r\|_2}{\|A^{\top}b\|_2}$, r = b - Ax.

 $x_0 = 0.$

Test matrices (L)

m = 30,000, n = 3,000

density: 0.1%

Name	Condition number
RANDL1	1.9 imes10
RANDL2	$1.6 imes 10^{2}$
RANDL3	$1.3 imes 10^3$
RANDL4	$2.0 imes 10^4$
RANDL5	$1.3 imes10^5$
RANDL6	$1.3 imes10^{6}$
RANDL7	$1.3 imes10^7$

Fig. 1

Comparison of full AB-GMRES and BA-GMRES

```
with diagonal-scaling and RIF preconditioner (\tau = 0.8)
```

```
(RANDL3)
```

```
( ||A^{\mathsf{T}}r||_2/||A^{\mathsf{T}}b||_2 vs. iterations)
```


The effect of the restart period kin the BA-GMRES(k)-RIF method (over-determined problem).

RANDL5	k	100	140	180	220	260	<u>> 295</u>
$(\tau = 0.8)$	iter	755	668	587	498	453	295
	time	25.05	24.81	24.14	22.62	22.15	*14.27
RANDL6	k	160	200	240	280	300	\geq 318
$(\tau = 0.07)$	iter	2,470	2,085	1,856	1,311	599	318
	time	144.68	130.08	121.72	92.88	48.92	*26.73
RANDL7	k	200	280	320	340	360	\geq 362
$(\tau = 0.02)$	iter	2,594	2,168	1,567	900	506	362
	time	179.83	165.79	129.07	80.13	50.99	*37.26

 \overline{k} : restart period, iter: number of iterations

time: computation time (sec.)

Convergence criterion: $||A^{T}r||_{2}/||A^{T}b||_{2} < 10^{-6}$.

The effect of the RIF parameter τ for problem RANDL3.

	au	0.9	0.8	0.7	0.6	0.5	0
CGLS-RIF	iter	83	72	77	65	67	1
	time	5.39	*5.38	5.42	5.43	5.59	68.00
I SOR-RIF	iter	83	73	78	66	68	1
	time	5.39	*5.38	5.42	5.43	5.60	68.00
RCGI S-RIF	iter	79	70	73	64	66	1
	time	5.99	5.86	5.96	5.85	6.08	67.99
BA-GMRES-RIE	iter	70	60	73	64	66	1
	time	5.54	5.47	5.64	5.59	5.63	67.99

iter: number of iterations

time: computation time (sec.)

Convergence criterion: $||A^{\top}r||_2/||A^{\top}b||_2 < 10^{-6}$.

The effect of the RIF parameter τ for problem RANDL6.

	τ	0.09	0.08	0.07	0.06	0.05	0
	iter	670	674	615	706	658	1
	time	34.38	35.39	33.67	38.17	37.31	60.00
I SOR-RIE	iter	680	685	645	736	701	1
	time	34.87	35.50	34.15	37.21	37.41	60.00
RCGI S-RIF	iter	333	324	317	313	307	1
	time	34.11	33.54	33.22	33.39	33.48	60.01
BA-GMRES-RIE	iter	335	325	318	315	309	1
	time	27.03	26.77	*26.73	27.16	27.45	60.01

iter: number of iterations

time: computation time (sec.)

Convergence criterion: $||A^{T}r||_{2}/||A^{T}b||_{2} < 10^{-6}$.

Comparison of convergence

 $||A^{\top}r||_2/||A^{\top}b||_2$ vs. number of iterations

Fig.2: Diagonal scaling (RANDL5)

Fig.3: RIF (RANDL5)

Fig.4: Diagonal scaling (RANDL6)

Fig.5: RIF (RANDL6)

	CG	iLS	LS	LSQR		RCGLS		MRES
	-diag.	-RIF	-diag.	-RIF	-diag.	-RIF	-diag.	-RIF
RANDL1	35	14	35	14	35	14	35	14
$(\tau = 0.5)$	*0.10	4.98	*0.10	4.98	0.16	4.99	0.14	4.99
RANDL2	214	21	214	21	208	21	193	21
$(\tau = 0.7)$	*0.61	5.10	*0.61	5.10	2.77	5.13	2.28	5.11
RANDL3	742	72	740	73	697	70	622	60
$(\tau = 0.8)$	2.08	5.38	*2.07	5.38	26.30	5.62	20.70	5.47
RANDL4	1,147	85	1,154	85	1,062	84	1,069	82
$(\tau = 0.5)$	*3.22	6.38	3.38	6.38	59.35	7.17	59.41	6.62
RANDL5	4,897	470	5,064	401	1,521	305	1,522	299
$(\tau = 0.9)$	13.74	*12.78	14.03	11.79	119.70	14.42	118.87	13.91
RANDL6	10,551	615	11,088	645	1,861	317	1,862	318
$(\tau = 0.07)$	29.65	33.67	30.21	34.15	177.94	26.93	176.93	*26.73
RANDL7	32,143	1,951	35,034	2,443	1,914	371	1,899	362
$(\tau = 0.02)$	89.93	102.28	91.31	128.40	195.63	40.07	183.90	*37.26

Comparison of CPU time

First row: number of iterations

Second row: computation time (seconds).

Convergence criterion: $||A^T r||_2 / ||A^T b||_2 < 10^{-6}$.

Problems from animal breeding studies and meteorology (HIRLAM)

Name	m	n	nnz	density
SMALL	3,140	1,988	8,510	1.4%
MEDIUM	9,397	6,119	25,013	0.04%
LARGE	28,524	17,264	75,018	0.02%
VLARGE	174,193	105,882	463,303	0.003%
HIRLAM	1,385,270	452,200	2,718,200	0.0004%

	CGLS		LS	QR	BAGMRES		
	-diag.	-RIF	-diag.	-RIF	-diag.	-RIF	
SMALL	125	59	125	59	124	58	
$(\tau = 0.2)$	*0.06	0.33	*0.06	0.33	0.54	0.49	
MEDIUM	128	64	128	64	123	62	
$(\tau = 0.3)$	*0.20	2.10	*0.20	2.10	1.67	2.45	
LARGE	133	73	133	73	131	71	
$(\tau = 0.5)$	*0.67	15.83	*0.67	15.83	5.81	17.93	
VLARGE	171	137	170	137	166	136	
$(\tau = 0.8)$	6.00	36.56	*5.97	36.57	58.45	73.45	
HIRLAM	180	164	180	164	170	163	
$(\tau = 0.9)$	*48.16	204.44	48.20	204.46	294.05	464.93	

First row: number of iterations,

Second row: computation time (seconds). Convergence criterion: $||A^{T}r||_{2}/||A^{T}b||_{2} < 10^{-6}$.

Explanation for better convergence of GMRES:

Modified Gram-Schmidt process in GMRES (explicit orthogonalization): Robust against rounding error esp. for ill-conditioned case

VS.

three-term recurrence in CG (implicit orthogonalization)

2. Under-determined case (m < n)

$$\min_{\boldsymbol{x} \in \mathbf{R}^n} \|\boldsymbol{b} - A\boldsymbol{x}\|_2, \quad A \in \mathbf{R}^{m \times n} \quad (m < n).$$

Minimum norm least squares (pseudo-inverse) solution:

$$AA^{\mathsf{T}}y = b, \ x = Ay$$

Previous approach:

Apply (preconditioned) CG: CGNE

Test random matrices RANDLnT: 3,000 ×30,000, density:1.5% (transpose of RANDLn).

$$b = Ax^*$$
 where $x^* = (1, \ldots, 1)^\top$.

Convergence judged by $||r||_2/||b||_2$ (rankA = m: consistent system)

Fig. 6

Comparison of full AB-GMRES and BA-GMRES

with diagonal-scaling and RIF preconditioner

(RANDL3T)

($\|r\|_2/\|b\|_2$ vs. iterations)

Comparison of convergence

 $\|r\|_2/\|b\|_2$ vs. number of iterations

Fig.7: Diagonal scaling (RANDL5T)

Fig.8: RIF (RANDL5T)

Fig.9: Diagonal scaling (RANDL6T)

Fig.10: RIF (RANDL6T)

Comparison of CPU time

	CGNE		LSQR		RCGNE		AB-GMRES	
	-diag.	-RIF	-diag.	-RIF	-diag.	-RIF	-diag.	-RIF
RANDL1T	37	12	37	12	37	12	37	12
$(\tau = 0.4)$	*0.15	5.01	*0.15	5.02	0.23	5.02	0.17	5.01
RANDL2T	259	25	256	25	252	25	247	25
$(\tau = 0.7)$	*1.06	5.16	*1.06	5.16	4.22	5.17	3.75	5.17
RANDL3T	838	81	823	80	783	77	754	75
$(\tau = 0.8)$	*3.43	5.53	*3.43	5.53	33.87	5.81	30.56	5.67
RANDL4T	1,464	116	1,407	114	1,223	106	1,187	106
$(\tau = 0.5)$	5.97	6.94	*5.96	6.94	79.67	7.45	73.67	7.21
RANDL5T	5,548	544	5,414	539	1,535	322	1,533	322
$(\tau = 0.9)$	22.61	13.88	22.71	*13.86	123.80	15.58	121.58	15.11
RANDL6T	12,837	514	12,486	502	1,873	219	1,871	218
$(\tau = 0.01)$	52.38	39.04	50.10	38.99	182.51	27.43	179.85	*26.99
RANDL7T	38,397	3,078	37,792	2,979	2,240	451	2,238	450
$(\tau = 0.04)$	156.01	94.19	152.07	91.69	366.88	44.49	353.92	*43.76

First row: number of iterations

Second row: computation time (seconds).

Convergence criterion: $||r||_2/||b||_2 < 10^{-6}$.

Memory requirements

Intermediate memory required for each method for k iterations.

	$\dim(m)$	$\dim(n)$	dim(k)	total
CGLS	$oldsymbol{r},Aoldsymbol{p}$	$oldsymbol{x},oldsymbol{p},A^{ op}oldsymbol{r}$		2m + 3n
CGNE	$oldsymbol{r},Aoldsymbol{p}$	$oldsymbol{x},oldsymbol{p},A^{ op}oldsymbol{r}$		2m + 3n
LSQR	$oldsymbol{u}$	$oldsymbol{v},oldsymbol{w},oldsymbol{x}$		m + 3n
AB-GMRES(k)	$V, oldsymbol{w}$	$oldsymbol{x}$	$\boldsymbol{y}, \boldsymbol{e}$	$(k+1)m + n + 2k + k^2/2$
BA-GMRES(k)		$V, oldsymbol{w}, oldsymbol{x}$	$\boldsymbol{y}, \boldsymbol{e}$	$(k+2)n+2k+k^2/2$

Conclusions

Proposed two methods for least squares problems using GMRES on

1.
$$\min_{oldsymbol{z} \in \mathbf{R}^m} ||oldsymbol{b} - ABoldsymbol{z}||_2,$$

2. $\min_{oldsymbol{x} \in \mathbf{R}^n} ||Boldsymbol{b} - BAoldsymbol{x}||_2$

Sufficient conditions for *B*: $\mathcal{R}(B) = \mathcal{R}(A^{\mathsf{T}}), \quad \mathcal{R}(B^{\mathsf{T}}) = \mathcal{R}(A).$

Convergence analysis.

Numerical experiments:

GMRES faster than CGLS type methods when used with RIF for ill-conditioned problems.

Thank you!

Preprint:

http://research.nii.ac.jp/TechReports/07-009E.pdf