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Matrix Logarithm

A logarithm of A ∈ C
n×n is any matrix X such that eX = A.

Existence.

Representation, classification.

Computation.

Conditioning.

First, approach via theory of matrix functions. . .
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Multiplicity of Definitions

There have been proposed in the literature since 1880

eight distinct definitions of a matric function,

by Weyr, Sylvester and Buchheim,

Giorgi, Cartan, Fantappiè, Cipolla,

Schwerdtfeger and Richter.

— R. F. Rinehart,

The Equivalence of Definitions of a Matric Function,

Amer. Math. Monthly (1955)
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Jordan Canonical Form

Z−1AZ = J = diag(J1, . . . , Jp), Jk︸︷︷︸
mk×mk

=





λk 1

λk
. . .
. . . 1

λk





Definition

f (A) = Zf (J)Z−1 = Zdiag(f (Jk))Z
−1,

f (Jk) =





f (λk) f ′(λk) . . .
f (mk−1))(λk)

(mk − 1)!

f (λk)
. . .

...
. . . f ′(λk)

f (λk)




.
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Interpolation

Definition (Sylvester, 1883; Buchheim, 1886)

Distinct e’vals λ1, . . . , λs, ni = max size of Jordan blocks for

λi . Then f (A) = p(A), where p is unique Hermite

interpolating poly of degree <
∑s

i=1 ni satisfying

p(j)(λi) = f (j)(λi), j = 0 : ni − 1, i = 1 : s.
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Cauchy Integral Theorem

Definition

f (A) =
1

2πi

∫

Γ

f (z)(zI − A)−1 dz,

where f is analytic on and inside a closed contour Γ that

encloses λ(A).
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Equivalence of Definitions

Theorem

The three definitions are equivalent, modulo analyticity

assumption for Cauchy.
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Composite Functions

Theorem

f (t) = g(h(t)) ⇒ f (A) = g(h(A)), provided latter matrix

defined.

Corollary

exp(log(A)) = A when log(A) is defined.
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Application: Markov Models

Time-homogeneous continuous-time Markov process with

transition probability matrix P(t) ∈ R
n×n. Transition intensity

matrix Q related to P by

P(t) = eQt .

Elements of Q satisfy

qij ≥ 0, i 6= j ,
n∑

j=1

qij = 0.

Embeddability problem

When does a given stochastic P have

a real logarithm Q that is an intensity

matrix?
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The Average Eye

First order character of optical system characterized by

transference matrix T =
[

S
0

δ
1

]
∈ R

5×5, where S ∈ R
4×4 is

symplectic: ST JS = J, where J =
[

0
−I2

I2
0

]
.

Average m−1
∑m

i=1 Ti is not a transference matrix.

Harris (2005) proposes the average exp(m−1
∑m

i=1 log(Ti)).
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The Average Eye

First order character of optical system characterized by

transference matrix T =
[

S
0

δ
1

]
∈ R

5×5, where S ∈ R
4×4 is

symplectic: ST JS = J, where J =
[

0
−I2

I2
0

]
.

Average m−1
∑m

i=1 Ti is not a transference matrix.

Harris (2005) proposes the average exp(m−1
∑m

i=1 log(Ti)).

For Hermitian pos def A and B, Arsigny et al. (2007) define

the log-Euclidean mean

E(A, B) = exp(1
2
(log(A) + log(B))).
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Logs of A = I3

B =




0 0 0

0 0 0

0 0 0



 ,

C =




0 2π − 1 1

−2π 0 0

−2π 0 0



 , D =




0 2π 1

−2π 0 0

0 0 0



 ,

eB = eC = eD = I3.

Λ(C) = Λ(D) = {0, 2πi ,−2πi}.
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Principal Log and pth Root

Let A ∈ C
n×n have no eigenvalues on R

− .

Principal log

X = log(A) denotes unique X such that

eX = A.

−π < Im
(
λ(X )

)
< π.

For next 2 slides only, allow Im
(
λ(X )

)
= π.

Principal pth root

For integer p > 0, X = A1/p is unique X such that

X p = A.

−π/p < arg(λ(X )) < π/p.

MIMS Nick Higham Matrix Logarithm 19 / 42

http://www.mims.manchester.ac.uk/


Defining f(A) Applications Theory Methods

All Solutions of eX = A

Theorem (Gantmacher)

A ∈ C
n×n nonsing with Jordan canonical form

Z−1AZ = J = diag(J1, J2, . . . , Jp). All solutions to eX = A

are given by

X = Z U diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p ) U

−1
Z−1,

where

L
(jk )
k = log(Jk(λk)) + 2 jk π i Imk

,

jk ∈ Z arbitrary, and U an arbitrary nonsing matrix that

commutes with J.
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All Solutions of eX = A: Classified

Theorem

A ∈ C
n×n nonsing: p Jordan blocks, s distinct ei’vals.

eX = A has a countable infinity of solutions that are primary

functions of A:

Xj = Zdiag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p )Z−1,

where λi = λk implies ji = jk . If s < p then eX = A has

non-primary solutions

Xj(U) = Z U diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p ) U

−1
Z−1,

where jk ∈ Z arbitrary, U arbitrary nonsing with UJ = JU,

and for each j ∃ i and k s.t. λi = λk while ji 6= jk .
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Logs of A = I3

C =




0 2π − 1 1

−2π 0 0

−2π 0 0



 , D =




0 2π 1

−2π 0 0

0 0 0



 ,

e0 = eC = eD = I3. Λ(C) = Λ(D) = {0, 2πi ,−2πi}.

U =




1 α 0

0 1 α
0 0 1



 , α ∈ C,

X = U diag(2πi ,−2πi , 0)U−1 = 2π i




1 −2α 2α2

0 1 −α
0 0 1



 .
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Two Facts on Commuting Matrices

Theorem

If A, B ∈ C
n×n commute then ∃ a unitary U ∈ C

n×n such that

U∗AU and U∗BU are both upper triangular.
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Two Facts on Commuting Matrices

Theorem

If A, B ∈ C
n×n commute then ∃ a unitary U ∈ C

n×n such that

U∗AU and U∗BU are both upper triangular.

Theorem

For A, B ∈ C
n×n, e(A+B)t = eAteBt for all t if and only if

AB = BA.
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When Does log(BC) = log(B) + log(C)?

Theorem

Let B, C ∈ C
n×n commute and have no ei’vals on R

−. If for

every ei’val λj of B and the corr. ei’val µj of C,

|arg λj + arg µj | < π, then log(BC) = log(B) + log(C).
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When Does log(BC) = log(B) + log(C)?

Theorem

Let B, C ∈ C
n×n commute and have no ei’vals on R

−. If for

every ei’val λj of B and the corr. ei’val µj of C,

|arg λj + arg µj | < π, then log(BC) = log(B) + log(C).

Proof. log(B) and log(C) commute, since B and C do.

Therefore

elog(B)+log(C) = elog(B)elog(C) = BC.

Thus log(B) + log(C) is some logarithm of BC. Then

Im(log λj + log µj) = arg λj + arg µj ∈ (−π, π),

so log(B) + log(C) is the principal logarithm of BC.
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Henry Briggs (1561–1630)

Arithmetica Logarithmica (1624)

Logarithms to base 10 of 1–20,000 and

90,000–100,000 to 14 decimal places.
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Henry Briggs (1561–1630)

Arithmetica Logarithmica (1624)

Logarithms to base 10 of 1–20,000 and

90,000–100,000 to 14 decimal places.

Briggs must be viewed as one of the

great figures in numerical analysis.

—Herman H. Goldstine,

A History of Numerical Analysis (1977)
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Briggs’ Log Method (1617)

log(ab) = log a + log b ⇒ log a = 2 log a1/2.

Use repeatedly:

log a = 2k log a1/2k

.

Write a1/2k
= 1 + x and note log(1 + x) ≈ x . Briggs worked

to base 10 and used

log10 a ≈ 2k · log10 e · (a1/2k

− 1).
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Matrix Logarithm

Take B = C in previous theorem:

log A = log
(
A1/2 · A1/2

)
= 2 log A1/2,

since arg λ(A1/2) ∈ (−π/2, π/2).
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Matrix Logarithm

Take B = C in previous theorem:

log A = log
(
A1/2 · A1/2

)
= 2 log A1/2,

since arg λ(A1/2) ∈ (−π/2, π/2).

Use Briggs’ idea: log A = 2k log
(
A1/2k )

.
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Matrix Logarithm

Take B = C in previous theorem:

log A = log
(
A1/2 · A1/2

)
= 2 log A1/2,

since arg λ(A1/2) ∈ (−π/2, π/2).

Use Briggs’ idea: log A = 2k log
(
A1/2k )

.

Kenney & Laub’s (1989) inverse scaling and squaring

method:

Bring A close to I by repeated square roots.

Approximate log A1/2k
using an [m/m] Padé

approximant rm(x) ≈ log(1 + x).

Rescale to find log(A).
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Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.
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Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.

⋆ Use fixed Padé degree m.

⋆ Let m vary optimally with ‖A‖.
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Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.

⋆ Use fixed Padé degree m.

⋆ Let m vary optimally with ‖A‖.

◮ MATLAB’s logm (m = 8).
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Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.

⋆ Use fixed Padé degree m.

⋆ Let m vary optimally with ‖A‖.

◮ MATLAB’s logm (m = 8).

◮ Improved logm.
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Padé Approximants

rkm = pkm/qkm is a [k/m] Padé approximant of f if pkm and

qkm are polys of degree at most k and m and

f (x) − rkm(x) = O
(
xk+m+1

)
.

For f (x) = log(1 + x),

r11(x) =
2x

2 + x
,

r22(x) =
6x + 3x2

6 + 6x + x2
,

r33(x) =
60x + 60x2 + 11x3

60 + 90x + 36x2 + 3x3
.
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Padé Approximants

rkm = pkm/qkm is a [k/m] Padé approximant of f if pkm and

qkm are polys of degree at most k and m and

f (x) − rkm(x) = O
(
xk+m+1

)
.

Theorem (Kenney & Laub, 1989)

For ‖X‖ < 1,

‖rmm(X ) − log(I + X )‖ ≤ |rmm(−‖X‖) − log(1 − ‖X‖)|.
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Algorithmic Ingredients

log A = 2k log
(
A1/2k )

≈ 2k rm

(
A1/2k

− I
)
.

For given A1/2k
, error bound determines min m s.t. rm

suff. accurate.

Choose k and m = m(k) to minimize overall cost.

Since
(
I − A1/2k+1)(

I + A1/2k+1)
= I − A1/2k

,

‖I − A1/2k+1

‖ ≈
1

2
‖I − A1/2k

‖.

Evaluate the partial fraction form

rm(x) =
m∑

j=1

α
(m)
j x

1 + β
(m)
j x

,

where α
(m)
j weights and β

(m)
j Gauss–Legendre nodes.
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Schur–Parlett Algorithm

H & Davies (2003), funm:

Compute Schur decomposition A = QTQ∗.

Re-order T to block triangular form in which

eigenvalues within a block are “close” and those of

separate blocks are “well separated”.

Evaluate Fii = f (Tii).

Solve the Sylvester equations

Tii Fij − Fij Tjj = FiiTij − TijFjj +

j−1∑

k=i+1

(FikTkj − TikFkj).

Undo the unitary transformations.
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Schur–Parlett Algorithm

H & Davies (2003), funm:

Compute Schur decomposition A = QTQ∗.

Re-order T to block triangular form in which

eigenvalues within a block are “close” and those of

separate blocks are “well separated”.

Evaluate Fii = log(Tii).

Solve the Sylvester equations

Tii Fij − Fij Tjj = FiiTij − TijFjj +

j−1∑

k=i+1

(FikTkj − TikFkj).

Undo the unitary transformations.
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Function of 2 × 2 Block

f

([
λ1 t12

0 λ2

])
=



 f (λ1) t12

f (λ2) − f (λ1)

λ2 − λ1

0 f (λ2)



 .

Inaccurate if λ1 ≈ λ2.

Need a better way to compute the divided difference

f [λ2, λ1].
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Log of 2 × 2 Block

log λ2 − log λ1 = log

(
λ2

λ1

)
+ 2π i U(log λ2 − log λ1)

= log

(
1 + z

1 − z

)
+ 2π i U(log λ2 − log λ1),

where U = unwinding number, z = (λ2 − λ1)/(λ2 + λ1).

atanh(z) :=
1

2
log

(
1 + z

1 − z

)
,
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Log of 2 × 2 Block

log λ2 − log λ1 = log

(
λ2

λ1

)
+ 2π i U(log λ2 − log λ1)

= log

(
1 + z

1 − z

)
+ 2π i U(log λ2 − log λ1),

where U = unwinding number, z = (λ2 − λ1)/(λ2 + λ1).

atanh(z) :=
1

2
log

(
1 + z

1 − z

)
,

f12 = t12

2 atanh(z) + 2πiU(log λ2 − log λ1)

λ2 − λ1

.
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Numerical Experiment

◮ 67 test matrices, dimension 2–10.

◮ Evaluated ‖X̂ − log(A)‖F/‖ log(A)‖F .

◮ Notation:

◮ logm: MATLAB 7.4 (R2007a).

◮ logm_new: New version of logm.

◮ iss_schur: Schur decomp then ISS.

◮ iss: ISS on full A.

◮ cond(A) = lim
ǫ→0

max
‖E‖2≤ǫ‖A‖2

‖ log(A + E) − log(A)‖2

ǫ‖ log(A)‖2

.
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Performance Profile

1 2 3 4 5 6 7 8 9 10
0.1

0.2
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0.4
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0.6

0.7

0.8

0.9

1

α

p
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logm
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log(A)b

Hale, H & Trefethen, Computing Aα, log(A) and Related

Matrix Functions by Contour Integrals, 2007.

New methods for f (A)b where f has singularities in

(−∞, 0] and A is a matrix with ei’vals on or near (0,∞).

Contour integrals + conformal map + repeated

trapezium rule ⇒ geometric convergence.
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In Conclusion

Matrix logarithm and square root are

archetypal examples of multivalued matrix

functions (LambertW: Corless, Ding, H & Jeffrey,

2007).

Able to classify all logs.

Non-primary logs of interest, but little is

known.

Improvements to inverse scaling and squaring

alg and to logm.

Exploiting structure?
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