
Numerical Analysis of the

Matrix Logarithm

Nick Higham

School of Mathematics

The University of Manchester

higham@ma.man.ac.uk

http://www.ma.man.ac.uk/~higham/

Computational Methods with Applications

Harrachov 2007

http://www.ma.man.ac.uk/~higham/
http://www.ma.man.ac.uk
http://www.man.ac.uk
mailto:higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

Defining f(A) Applications Theory Methods

Outline

1 Definition of log(A)

2 Applications

3 Theory

4 Numerical methods

MIMS Nick Higham Matrix Logarithm 2 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Matrix Logarithm

A logarithm of A ∈ C
n×n is any matrix X such that eX = A.

Existence.

Representation, classification.

Computation.

Conditioning.

First, approach via theory of matrix functions. . .

MIMS Nick Higham Matrix Logarithm 3 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Multiplicity of Definitions

There have been proposed in the literature since 1880

eight distinct definitions of a matric function,

by Weyr, Sylvester and Buchheim,

Giorgi, Cartan, Fantappiè, Cipolla,

Schwerdtfeger and Richter.

— R. F. Rinehart,

The Equivalence of Definitions of a Matric Function,

Amer. Math. Monthly (1955)

MIMS Nick Higham Matrix Logarithm 4 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Jordan Canonical Form

Z−1AZ = J = diag(J1, . . . , Jp), Jk︸︷︷︸
mk×mk

=





λk 1

λk
. . .
. . . 1

λk





Definition

f (A) = Zf (J)Z−1 = Zdiag(f (Jk))Z
−1,

f (Jk) =





f (λk) f ′(λk) . . .
f (mk−1))(λk)

(mk − 1)!

f (λk)
. . .

...
. . . f ′(λk)

f (λk)




.

MIMS Nick Higham Matrix Logarithm 5 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Interpolation

Definition (Sylvester, 1883; Buchheim, 1886)

Distinct e’vals λ1, . . . , λs, ni = max size of Jordan blocks for

λi . Then f (A) = p(A), where p is unique Hermite

interpolating poly of degree <
∑s

i=1 ni satisfying

p(j)(λi) = f (j)(λi), j = 0 : ni − 1, i = 1 : s.

MIMS Nick Higham Matrix Logarithm 7 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Cauchy Integral Theorem

Definition

f (A) =
1

2πi

∫

Γ

f (z)(zI − A)−1 dz,

where f is analytic on and inside a closed contour Γ that

encloses λ(A).

MIMS Nick Higham Matrix Logarithm 8 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Equivalence of Definitions

Theorem

The three definitions are equivalent, modulo analyticity

assumption for Cauchy.

MIMS Nick Higham Matrix Logarithm 9 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Composite Functions

Theorem

f (t) = g(h(t)) ⇒ f (A) = g(h(A)), provided latter matrix

defined.

Corollary

exp(log(A)) = A when log(A) is defined.

MIMS Nick Higham Matrix Logarithm 10 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Outline

1 Definition of log(A)

2 Applications

3 Theory

4 Numerical methods

MIMS Nick Higham Matrix Logarithm 11 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Application: Markov Models

Time-homogeneous continuous-time Markov process with

transition probability matrix P(t) ∈ R
n×n. Transition intensity

matrix Q related to P by

P(t) = eQt .

Elements of Q satisfy

qij ≥ 0, i 6= j ,
n∑

j=1

qij = 0.

Embeddability problem

When does a given stochastic P have

a real logarithm Q that is an intensity

matrix?

MIMS Nick Higham Matrix Logarithm 13 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

The Average Eye

First order character of optical system characterized by

transference matrix T =
[

S
0

δ
1

]
∈ R

5×5, where S ∈ R
4×4 is

symplectic: ST JS = J, where J =
[

0
−I2

I2
0

]
.

Average m−1
∑m

i=1 Ti is not a transference matrix.

Harris (2005) proposes the average exp(m−1
∑m

i=1 log(Ti)).

MIMS Nick Higham Matrix Logarithm 14 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

The Average Eye

First order character of optical system characterized by

transference matrix T =
[

S
0

δ
1

]
∈ R

5×5, where S ∈ R
4×4 is

symplectic: ST JS = J, where J =
[

0
−I2

I2
0

]
.

Average m−1
∑m

i=1 Ti is not a transference matrix.

Harris (2005) proposes the average exp(m−1
∑m

i=1 log(Ti)).

For Hermitian pos def A and B, Arsigny et al. (2007) define

the log-Euclidean mean

E(A, B) = exp(1
2
(log(A) + log(B))).

MIMS Nick Higham Matrix Logarithm 14 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Outline

1 Definition of log(A)

2 Applications

3 Theory

4 Numerical methods

MIMS Nick Higham Matrix Logarithm 15 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Logs of A = I3

B =




0 0 0

0 0 0

0 0 0



 ,

C =




0 2π − 1 1

−2π 0 0

−2π 0 0



 , D =




0 2π 1

−2π 0 0

0 0 0



 ,

eB = eC = eD = I3.

Λ(C) = Λ(D) = {0, 2πi ,−2πi}.

MIMS Nick Higham Matrix Logarithm 18 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Principal Log and pth Root

Let A ∈ C
n×n have no eigenvalues on R

− .

Principal log

X = log(A) denotes unique X such that

eX = A.

−π < Im
(
λ(X)

)
< π.

For next 2 slides only, allow Im
(
λ(X)

)
= π.

Principal pth root

For integer p > 0, X = A1/p is unique X such that

X p = A.

−π/p < arg(λ(X)) < π/p.

MIMS Nick Higham Matrix Logarithm 19 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

All Solutions of eX = A

Theorem (Gantmacher)

A ∈ C
n×n nonsing with Jordan canonical form

Z−1AZ = J = diag(J1, J2, . . . , Jp). All solutions to eX = A

are given by

X = Z U diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p) U

−1
Z−1,

where

L
(jk)
k = log(Jk(λk)) + 2 jk π i Imk

,

jk ∈ Z arbitrary, and U an arbitrary nonsing matrix that

commutes with J.

MIMS Nick Higham Matrix Logarithm 20 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

All Solutions of eX = A: Classified

Theorem

A ∈ C
n×n nonsing: p Jordan blocks, s distinct ei’vals.

eX = A has a countable infinity of solutions that are primary

functions of A:

Xj = Zdiag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p)Z−1,

where λi = λk implies ji = jk . If s < p then eX = A has

non-primary solutions

Xj(U) = Z U diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p) U

−1
Z−1,

where jk ∈ Z arbitrary, U arbitrary nonsing with UJ = JU,

and for each j ∃ i and k s.t. λi = λk while ji 6= jk .

MIMS Nick Higham Matrix Logarithm 21 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Logs of A = I3

C =




0 2π − 1 1

−2π 0 0

−2π 0 0



 , D =




0 2π 1

−2π 0 0

0 0 0



 ,

e0 = eC = eD = I3. Λ(C) = Λ(D) = {0, 2πi ,−2πi}.

U =




1 α 0

0 1 α
0 0 1



 , α ∈ C,

X = U diag(2πi ,−2πi , 0)U−1 = 2π i




1 −2α 2α2

0 1 −α
0 0 1



 .

MIMS Nick Higham Matrix Logarithm 22 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Two Facts on Commuting Matrices

Theorem

If A, B ∈ C
n×n commute then ∃ a unitary U ∈ C

n×n such that

U∗AU and U∗BU are both upper triangular.

MIMS Nick Higham Matrix Logarithm 23 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Two Facts on Commuting Matrices

Theorem

If A, B ∈ C
n×n commute then ∃ a unitary U ∈ C

n×n such that

U∗AU and U∗BU are both upper triangular.

Theorem

For A, B ∈ C
n×n, e(A+B)t = eAteBt for all t if and only if

AB = BA.

MIMS Nick Higham Matrix Logarithm 23 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

When Does log(BC) = log(B) + log(C)?

Theorem

Let B, C ∈ C
n×n commute and have no ei’vals on R

−. If for

every ei’val λj of B and the corr. ei’val µj of C,

|arg λj + arg µj | < π, then log(BC) = log(B) + log(C).

MIMS Nick Higham Matrix Logarithm 24 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

When Does log(BC) = log(B) + log(C)?

Theorem

Let B, C ∈ C
n×n commute and have no ei’vals on R

−. If for

every ei’val λj of B and the corr. ei’val µj of C,

|arg λj + arg µj | < π, then log(BC) = log(B) + log(C).

Proof. log(B) and log(C) commute, since B and C do.

Therefore

elog(B)+log(C) = elog(B)elog(C) = BC.

Thus log(B) + log(C) is some logarithm of BC. Then

Im(log λj + log µj) = arg λj + arg µj ∈ (−π, π),

so log(B) + log(C) is the principal logarithm of BC.

MIMS Nick Higham Matrix Logarithm 24 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Outline

1 Definition of log(A)

2 Applications

3 Theory

4 Numerical methods

MIMS Nick Higham Matrix Logarithm 25 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Henry Briggs (1561–1630)

Arithmetica Logarithmica (1624)

Logarithms to base 10 of 1–20,000 and

90,000–100,000 to 14 decimal places.

MIMS Nick Higham Matrix Logarithm 26 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Henry Briggs (1561–1630)

Arithmetica Logarithmica (1624)

Logarithms to base 10 of 1–20,000 and

90,000–100,000 to 14 decimal places.

Briggs must be viewed as one of the

great figures in numerical analysis.

—Herman H. Goldstine,

A History of Numerical Analysis (1977)

MIMS Nick Higham Matrix Logarithm 26 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Briggs’ Log Method (1617)

log(ab) = log a + log b ⇒ log a = 2 log a1/2.

Use repeatedly:

log a = 2k log a1/2k

.

Write a1/2k
= 1 + x and note log(1 + x) ≈ x . Briggs worked

to base 10 and used

log10 a ≈ 2k · log10 e · (a1/2k

− 1).

MIMS Nick Higham Matrix Logarithm 29 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Matrix Logarithm

Take B = C in previous theorem:

log A = log
(
A1/2 · A1/2

)
= 2 log A1/2,

since arg λ(A1/2) ∈ (−π/2, π/2).

MIMS Nick Higham Matrix Logarithm 30 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Matrix Logarithm

Take B = C in previous theorem:

log A = log
(
A1/2 · A1/2

)
= 2 log A1/2,

since arg λ(A1/2) ∈ (−π/2, π/2).

Use Briggs’ idea: log A = 2k log
(
A1/2k)

.

MIMS Nick Higham Matrix Logarithm 30 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Matrix Logarithm

Take B = C in previous theorem:

log A = log
(
A1/2 · A1/2

)
= 2 log A1/2,

since arg λ(A1/2) ∈ (−π/2, π/2).

Use Briggs’ idea: log A = 2k log
(
A1/2k)

.

Kenney & Laub’s (1989) inverse scaling and squaring

method:

Bring A close to I by repeated square roots.

Approximate log A1/2k
using an [m/m] Padé

approximant rm(x) ≈ log(1 + x).

Rescale to find log(A).

MIMS Nick Higham Matrix Logarithm 30 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.

MIMS Nick Higham Matrix Logarithm 31 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.

⋆ Use fixed Padé degree m.

⋆ Let m vary optimally with ‖A‖.

MIMS Nick Higham Matrix Logarithm 31 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.

⋆ Use fixed Padé degree m.

⋆ Let m vary optimally with ‖A‖.

◮ MATLAB’s logm (m = 8).

MIMS Nick Higham Matrix Logarithm 31 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Options

Apply ISS

To original A: Cheng, H, Kenney & Laub (2001).

Requires square roots of full matrices.

To triangular Schur factor.

To diagonal blocks within the Schur–Parlett method.

⋆ Use fixed Padé degree m.

⋆ Let m vary optimally with ‖A‖.

◮ MATLAB’s logm (m = 8).

◮ Improved logm.

MIMS Nick Higham Matrix Logarithm 31 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Padé Approximants

rkm = pkm/qkm is a [k/m] Padé approximant of f if pkm and

qkm are polys of degree at most k and m and

f (x) − rkm(x) = O
(
xk+m+1

)
.

For f (x) = log(1 + x),

r11(x) =
2x

2 + x
,

r22(x) =
6x + 3x2

6 + 6x + x2
,

r33(x) =
60x + 60x2 + 11x3

60 + 90x + 36x2 + 3x3
.

MIMS Nick Higham Matrix Logarithm 32 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Padé Approximants

rkm = pkm/qkm is a [k/m] Padé approximant of f if pkm and

qkm are polys of degree at most k and m and

f (x) − rkm(x) = O
(
xk+m+1

)
.

Theorem (Kenney & Laub, 1989)

For ‖X‖ < 1,

‖rmm(X) − log(I + X)‖ ≤ |rmm(−‖X‖) − log(1 − ‖X‖)|.

MIMS Nick Higham Matrix Logarithm 32 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Algorithmic Ingredients

log A = 2k log
(
A1/2k)

≈ 2k rm

(
A1/2k

− I
)
.

For given A1/2k
, error bound determines min m s.t. rm

suff. accurate.

Choose k and m = m(k) to minimize overall cost.

Since
(
I − A1/2k+1)(

I + A1/2k+1)
= I − A1/2k

,

‖I − A1/2k+1

‖ ≈
1

2
‖I − A1/2k

‖.

Evaluate the partial fraction form

rm(x) =
m∑

j=1

α
(m)
j x

1 + β
(m)
j x

,

where α
(m)
j weights and β

(m)
j Gauss–Legendre nodes.

MIMS Nick Higham Matrix Logarithm 33 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Schur–Parlett Algorithm

H & Davies (2003), funm:

Compute Schur decomposition A = QTQ∗.

Re-order T to block triangular form in which

eigenvalues within a block are “close” and those of

separate blocks are “well separated”.

Evaluate Fii = f (Tii).

Solve the Sylvester equations

Tii Fij − Fij Tjj = FiiTij − TijFjj +

j−1∑

k=i+1

(FikTkj − TikFkj).

Undo the unitary transformations.

MIMS Nick Higham Matrix Logarithm 34 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Schur–Parlett Algorithm

H & Davies (2003), funm:

Compute Schur decomposition A = QTQ∗.

Re-order T to block triangular form in which

eigenvalues within a block are “close” and those of

separate blocks are “well separated”.

Evaluate Fii = log(Tii).

Solve the Sylvester equations

Tii Fij − Fij Tjj = FiiTij − TijFjj +

j−1∑

k=i+1

(FikTkj − TikFkj).

Undo the unitary transformations.

MIMS Nick Higham Matrix Logarithm 34 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Function of 2 × 2 Block

f

([
λ1 t12

0 λ2

])
=



 f (λ1) t12

f (λ2) − f (λ1)

λ2 − λ1

0 f (λ2)



 .

Inaccurate if λ1 ≈ λ2.

Need a better way to compute the divided difference

f [λ2, λ1].

MIMS Nick Higham Matrix Logarithm 35 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Log of 2 × 2 Block

log λ2 − log λ1 = log

(
λ2

λ1

)
+ 2π i U(log λ2 − log λ1)

= log

(
1 + z

1 − z

)
+ 2π i U(log λ2 − log λ1),

where U = unwinding number, z = (λ2 − λ1)/(λ2 + λ1).

atanh(z) :=
1

2
log

(
1 + z

1 − z

)
,

MIMS Nick Higham Matrix Logarithm 36 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Log of 2 × 2 Block

log λ2 − log λ1 = log

(
λ2

λ1

)
+ 2π i U(log λ2 − log λ1)

= log

(
1 + z

1 − z

)
+ 2π i U(log λ2 − log λ1),

where U = unwinding number, z = (λ2 − λ1)/(λ2 + λ1).

atanh(z) :=
1

2
log

(
1 + z

1 − z

)
,

f12 = t12

2 atanh(z) + 2πiU(log λ2 − log λ1)

λ2 − λ1

.

MIMS Nick Higham Matrix Logarithm 36 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Numerical Experiment

◮ 67 test matrices, dimension 2–10.

◮ Evaluated ‖X̂ − log(A)‖F/‖ log(A)‖F .

◮ Notation:

◮ logm: MATLAB 7.4 (R2007a).

◮ logm_new: New version of logm.

◮ iss_schur: Schur decomp then ISS.

◮ iss: ISS on full A.

◮ cond(A) = lim
ǫ→0

max
‖E‖2≤ǫ‖A‖2

‖ log(A + E) − log(A)‖2

ǫ‖ log(A)‖2

.

MIMS Nick Higham Matrix Logarithm 37 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

Performance Profile

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

logm_new
iss_schur

logm
iss

MIMS Nick Higham Matrix Logarithm 40 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

log(A)b

Hale, H & Trefethen, Computing Aα, log(A) and Related

Matrix Functions by Contour Integrals, 2007.

New methods for f (A)b where f has singularities in

(−∞, 0] and A is a matrix with ei’vals on or near (0,∞).

Contour integrals + conformal map + repeated

trapezium rule ⇒ geometric convergence.

MIMS Nick Higham Matrix Logarithm 41 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

In Conclusion

Matrix logarithm and square root are

archetypal examples of multivalued matrix

functions (LambertW: Corless, Ding, H & Jeffrey,

2007).

Able to classify all logs.

Non-primary logs of interest, but little is

known.

Improvements to inverse scaling and squaring

alg and to logm.

Exploiting structure?

MIMS Nick Higham Matrix Logarithm 42 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

References I

R. J. Bradford, R. M. Corless, J. H. Davenport, D. J.

Jeffrey, and S. M. Watt.

Reasoning about the elementary functions of complex

analysis.

Annals of Mathematics and Artificial Intelligence,

36:303–318, 2002.

S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J.

Laub.

Approximating the logarithm of a matrix to specified

accuracy.

SIAM J. Matrix Anal. Appl., 22(4):1112–1125, 2001.

MIMS Nick Higham Matrix Logarithm 38 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

References II

R. M. Corless, H. Ding, N. J. Higham, and D. J. Jeffrey.

The solution of S exp(S) = A is not always the Lambert

W function of A.

In ISSAC ’07: Proceedings of the 2007 International

Symposium on Symbolic and Algebraic Computation,

pages 116–121, New York, 2007. ACM Press.

R. M. Corless and D. J. Jeffrey.

The unwinding number.

ACM SIGSAM Bulletin, 30(2):28–35, June 1996.

MIMS Nick Higham Matrix Logarithm 39 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

References III

E. D. Dolan and J. J. Moré.

Benchmarking optimization software with performance

profiles.

Math. Programming, 91:201–213, 2002.

F. R. Gantmacher.

The Theory of Matrices, volume one.

Chelsea, New York, 1959.

MIMS Nick Higham Matrix Logarithm 40 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

References IV

N. Hale, N. J. Higham, and L. N. Trefethen.

Computing Aα, log(A) and related matrix functions by

contour integrals.

MIMS EPrint 2007.xxx, Manchester Institute for

Mathematical Sciences, The University of Manchester,

UK, Aug. 2007.

N. J. Higham.

Evaluating Padé approximants of the matrix logarithm.

SIAM J. Matrix Anal. Appl., 22(4):1126–1135, 2001.

MIMS Nick Higham Matrix Logarithm 41 / 42

http://www.mims.manchester.ac.uk/

Defining f(A) Applications Theory Methods

References V

N. J. Higham.

Functions of Matrices: Theory and Computation.

2008.

Book to appear.

MIMS Nick Higham Matrix Logarithm 42 / 42

http://www.mims.manchester.ac.uk/

	Definition of log(A)
	Applications
	Theory
	Numerical methods

