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‘ 1. Introduction I

Consider an orthogonally invariant linear approximation
problem

AX ~ B AcR™XN X ¢ R™d B RMX

) ) )

or, equivalently,

(BlA] [‘X{d] ~ 0.

With no loss of generality it iIs assumed:

e AT B +£ 0 (otherwise the columns of B are not corre-
lated with the columns of A, X1, g = 0);

em > n+d (add zero rows if necessary).

The linear approximation problem specified by

i | |GIE]|, st (A+E)X =B+G (1)

IS called the total least squares (TLS) problem with the TLS
solution X1 g = X and the correction matrix |G | F'].

When does the TLS solution exist?
Is it uniquely defined?

‘ 2. Single right-hand side case I

With d = 1, the problem reduces to Ax =~ b. Consider the
singular value decomposition (SVD)

(b A] =Uunv!

with the singular values of [ | A]

o] 2 ... 2 0p > 0Opr] = ... = 0ps1 = 0,
and the partitioning
14 n—J]erl
Vo Vip | Vi ;1
Vor | Vi Fn

(If oy = opy1, thenp = 0 and o, Vi1, Vo1 are nonexis-
tent.)

Existence and uniqueness of the TLS solution has been an-
alyzedin[1, 4, 5, 6], which gives the following classification:

olf Vio #0 with p =n, then
the TLS problem has the unique (basic) solution.

olf Vio #0 with p < n, then
the TLS problem has infinitely many solutions, the
goal is to find the minimum norm solution.

olf Vo =0, then
the TLS problem does not have a solution, but
the TLS concept can be extended to the so called
nongeneric solution (that does not solve (1)).

Core reduction:

In [6] it Is shown that for any A,b there exist orthogonal
matrices P, () such that

b1 | A 0
bRl =[G )

The original problem and its solution are fully defined by two
Independent subproblems
Aj1r] = by and Ao x9 =0,

where the first one (called core problem) always has the
TLS solution and for the second we take xo = 0. Moreover,

[

represents the solution of the original problem identical to
one of the corresponding solutions described above (basic,
minimum norm, nongeneric).

The core problem concept clarifies the meaning of the non-
generic solution.

‘ 3. Multiple right-hand sides case I

Consider the SVD
(BlA]=UxV!

with the singular values of [ B | A

0] 2 ... 2 0p > Opy] = ... = Opg] = ...
= Onte > Onteql = --- = Opyq = 0,
and the partitioning
D n+e—p d—e
Vo Vit | Vio | Vi3 yd
Vor | Vao | Vas n

(If o1 = oy41, thenp = 0 and o,, Vi1, Vo are nonexis-
tent. If 0,41 = 0,44, thene = dand o,,4¢41, Vi3, Vo3 are
nonexistent.)

Classical analysis [4] gives:

oIf rank(|Vio|Vis]) = d with p = n, then
the TLS problem has the unique (basic) solution.

olIf rank(|Vio|Vi3]) = d with e = d, then
the TLS problem has infinitely many solutions,
the goal is to find the minimum norm solution.

oIf rank(|Vi9|Vi3]) < d, then
the TLS problem does not have a solution, but
the TLS concept can be extended to the so called
nongeneric solution (that does not solve (1)).

Difficulty:

The case | V5| Vi3] of full row rank (equal to d) with p < n
and e < d, Is not analyzed in the literature, and a TLS so-
lution is not defined. The TLS algorithm [4] by Van Huffel,
however computes some X for any problem AX ~ B.

Remember that the block Vi5 corresponds to the singular
value o,,. 1, while the block V5 corresponds to singular val-
ues o; < oy,41.Inthe further analysis we look at individual
ranks of the matrices Vo and V3.

Notation:

When [V} | Vi3] is of full row rank (equal to d), this rank can
be “divided” between blocks V{5 and Vi3 Iin three different
ways, see [7].

Denote F; the set of problems (1) for which
rank ([ V1o | Vig]) = d  with
rank (Vi9) = e and rank (Vi3) = d — e (maximal).
(Specialcases p=n and e=4d.)

Denote F> the set of problems (1) for which
rank ([ Via | Vig]) = d with
rank (V19) > e and rank (Vi3) = d — e (maximal).

Denote F3 the set of problems (1) for which
rank ([ Via | Vi3]) = d with
rank (Vi9) > e and rank (Vi3) < d—e.

Denote S the set of problems (1) for which
rank ([ Vi2[Vi3]) < d.

Thesets 7;, j = 1,2, 3, and §, are mutually disjoint and
cover all cases that can occur.
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Complete classification of TLS problems, see [7]:

e If the problem belongs in F;, then
the TLS problem has a solution.
If p = n , then the solution is unique, otherwise
the goal is to find the minimum norm solution.

e If the problem belongs in F5, then
the TLS problem has a solution, but
the TLS algorithm [4] does not compute it.

e If the problem belongs in F3, then
the TLS problem does not have a solution.

e If the problem belongsin &, then
the TLS problem does not have a solution, but
the TLS concept can be extended to the so called
nongeneric solution (that does not solve (1)).

TLS algorithm returns TLS algorithm returns TLS algorithm returns
the min. norm solution “nongeneric solution” nongeneric solution
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All problems A X ~ B

‘ 4. Conclusions I

The analysis of the multiple right-nand side problems is
complicated. In particular, in the set 5> two different “so-
utions” can be defined — the solution of the minimization
oroblem (1), and the solution given by the TLS algorithm
4]. Extension of the core reduction to multiple right-hand
side problems is in progress, see [7].
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