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1. Introduction

Consider an orthogonally invariant linear approximation
problem

AX ≈ B , A ∈ R
m×n , X ∈ R

n×d , B ∈ R
m×d

or, equivalently,

[
B A

]
[
− Id

X

]

≈ 0 .

With no loss of generality it is assumed:
•AT B 6= 0 (otherwise the columns of B are not corre-

lated with the columns of A, XTLS ≡ 0) ;

•m ≥ n + d (add zero rows if necessary).

The linear approximation problem specified by

min
X,E,G

∥
∥

[
G E

] ∥
∥

F
s.t. (A + E) X = B + G (1)

is called the total least squares (TLS) problem with the TLS
solution XTLS ≡ X and the correction matrix [ G |E ] .

When does the TLS solution exist?
Is it uniquely defined?

2. Single right-hand side case

With d = 1 , the problem reduces to Ax ≈ b . Consider the
singular value decomposition (SVD)

[
b A

]
= U Σ V T

with the singular values of [ b |A ]

σ1 ≥ . . . ≥ σp > σp+1 = . . . = σn+1 ≥ 0 ,

and the partitioning

p
︷ ︸︸ ︷

n − p + 1
︷ ︸︸ ︷

V =

[
V11 V12
V21 V22

]
} 1
} n

.

(If σ1 = σn+1 , then p = 0 and σp , V11 , V21 are nonexis-
tent.)

Existence and uniqueness of the TLS solution has been an-
alyzed in [1, 4, 5, 6], which gives the following classification:

• If V12 6= 0 with p = n , then
• the TLS problem has the unique (basic) solution.

• If V12 6= 0 with p < n , then
• the TLS problem has infinitely many solutions, the
• goal is to find the minimum norm solution.

• If V12 = 0 , then
• the TLS problem does not have a solution, but
• the TLS concept can be extended to the so called
• nongeneric solution (that does not solve (1)).

Core reduction:

In [6] it is shown that for any A , b there exist orthogonal
matrices P , Q such that

PT
[

b AQ
]

=

[
b1 A11 0
0 0 A22

]

.

The original problem and its solution are fully defined by two
independent subproblems

A11 x1 ≈ b1 and A22 x2 ≈ 0 ,

where the first one (called core problem) always has the
TLS solution and for the second we take x2 ≡ 0. Moreover,

x ≡ Q

[
x1
0

]

represents the solution of the original problem identical to
one of the corresponding solutions described above (basic,
minimum norm, nongeneric).

The core problem concept clarifies the meaning of the non-
generic solution.

3. Multiple right-hand sides case

Consider the SVD
[

B A
]

= U Σ V T

with the singular values of [ B |A ]

σ1 ≥ . . . ≥ σp > σp+1 = . . . = σn+1 = . . .

= σn+e > σn+e+1 ≥ . . . ≥ σn+d ≥ 0 ,

and the partitioning
p

︷ ︸︸ ︷
n + e − p
︷ ︸︸ ︷

d − e
︷ ︸︸ ︷

V =

[
V11 V12 V13
V21 V22 V23

]
} d

} n
.

(If σ1 = σn+1 , then p = 0 and σp , V11 , V21 are nonexis-
tent. If σn+1 = σn+d , then e = d and σn+e+1 , V13 , V23 are
nonexistent.)

Classical analysis [4] gives:

• If rank ([ V12 |V13 ]) = d with p = n , then
• the TLS problem has the unique (basic) solution.

• If rank ([ V12 |V13 ]) = d with e = d , then
• the TLS problem has infinitely many solutions,
• the goal is to find the minimum norm solution.

• If rank ([ V12 |V13 ]) < d , then
• the TLS problem does not have a solution, but
• the TLS concept can be extended to the so called
• nongeneric solution (that does not solve (1)).

Difficulty:

The case [ V12 |V13 ] of full row rank (equal to d ) with p < n

and e < d , is not analyzed in the literature, and a TLS so-
lution is not defined. The TLS algorithm [4] by Van Huffel,
however computes some X for any problem AX ≈ B .

Remember that the block V12 corresponds to the singular
value σn+1 , while the block V13 corresponds to singular val-
ues σj < σn+1 . In the further analysis we look at individual
ranks of the matrices V12 and V13 .

Notation:

When [ V12 |V13 ] is of full row rank (equal to d ), this rank can
be “divided” between blocks V12 and V13 in three different
ways, see [7].

Denote F1 the set of problems (1) for which
• rank ([ V12 |V13 ]) = d with
• rank (V12) = e and rank (V13) = d − e (maximal).
• (Special cases p = n and e = d .)

Denote F2 the set of problems (1) for which
• rank ([ V12 |V13 ]) = d with
• rank (V12) > e and rank (V13) = d − e (maximal).

Denote F3 the set of problems (1) for which
• rank ([ V12 |V13 ]) = d with
• rank (V12) > e and rank (V13) < d − e .

Denote S the set of problems (1) for which
• rank ([ V12 |V13 ]) < d .

The sets Fj , j = 1 , 2 , 3 , and S , are mutually disjoint and
cover all cases that can occur.

Complete classification of TLS problems, see [7]:

• If the problem belongs in F1 , then
• the TLS problem has a solution.
• If p = n , then the solution is unique, otherwise
• the goal is to find the minimum norm solution.

• If the problem belongs in F2 , then
• the TLS problem has a solution, but
• the TLS algorithm [4] does not compute it.

• If the problem belongs in F3 , then
• the TLS problem does not have a solution.

• If the problem belongs in S , then
• the TLS problem does not have a solution, but
• the TLS concept can be extended to the so called
• nongeneric solution (that does not solve (1)).

F1 F2 F3 S

-�

TLS algorithm returns
the min. norm solution

-�

TLS algorithm returns
“nongeneric solution”

-�

TLS algorithm returns
nongeneric solution

-� TLS sol. exists
(∃ min. norm sol.?)

-� TLS solution does not exist

rank (V12) = e
rank (V13) = d − e

-�
rank (V12) > e

rank (V13) = d − e
-�

rank (V12) > e
rank (V13) < d − e

-�

-�

Problems for which rank ([ V12 |V13]) = d

-�

rank ([ V12 |V13]) < d

︸ ︷︷ ︸
All problems AX ≈ B

4. Conclusions

The analysis of the multiple right-hand side problems is
complicated. In particular, in the set F2 two different “so-
lutions” can be defined – the solution of the minimization
problem (1), and the solution given by the TLS algorithm
[4]. Extension of the core reduction to multiple right-hand
side problems is in progress, see [7].
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