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Definition. A is orthogonal in a generalized sense if

AAT = AT A = kIn

or
AAT = AT A = k(In + Jn).

Examples.
1. A Hadamard matrix H of order n is an ±1 matrix satisfying

HHT = HT H = nIn.

2. A weighing matrix of order n and weight n − k is a (0, 1,−1)
matrix W = W (n, n − k), k = 1, 2, . . ., satisfying

WW T = W T W = (n − k)In.

W (n, n), n ≡ 0 (mod 4), is a Hadamard matrix.
C. Kravvaritis Minors of (0,±1) orthogonal matrices
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3. A binary Hadamard matrix or S-matrix is a n× n (0, 1) matrix
S satisfying

SST = ST S =
1
4
(n + 1)(In + Jn).

Properties
1 n ≡ 3 (mod 4).
2 SJn = JnS = 1

2(n + 1)Jn

3 the inner product of every two rows and columns is n+1
4 , if

they are distinct, and n+1
2 , otherwise.

4 the sum of the entries of every row and column is n+1
2 .
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Construction. Take an (n + 1)× (n + 1) Hadamard matrix with
first row and column all +1’s, change +1’s to 0’s and −1’s to
+1’s, and delete the first row and column.

Example.

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 → S3 =

 1 0 1
0 1 1
1 1 0


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H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1



→ S7 =



1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1


C. Kravvaritis Minors of (0,±1) orthogonal matrices



Introduction
A technique for minors

Main Results
Application to the growth problem

Numerical experiments
Summary-References

Definitions
Importance
Preliminaries

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1



→ S7 =



1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1


C. Kravvaritis Minors of (0,±1) orthogonal matrices



Introduction
A technique for minors

Main Results
Application to the growth problem

Numerical experiments
Summary-References

Definitions
Importance
Preliminaries

Outline

1 Introduction
Definitions
Importance of this study
Preliminary Results

2 A technique for minors

3 Main Results

4 Application to the growth problem
Background
The proposed idea

5 Numerical experiments

C. Kravvaritis Minors of (0,±1) orthogonal matrices



Introduction
A technique for minors

Main Results
Application to the growth problem

Numerical experiments
Summary-References

Definitions
Importance
Preliminaries

Why Hadamard, weighing and S-matrices?
1 Numerous Applications in various areas of Applied

Mathematics:
Statistics-Theory of Experimental Designs
Coding Theory
Cryptography
Combinatorics
Image Processing
Signal Processing
Analytical Chemistry

2 Interesting properties regarding the size of the pivots
appearing after application of Gaussian Elimination (GE)
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Why computations of determinants?
(1) old and intensively studied mathematical object, but even

nowadays of great research interest;

C. Krattenthaler, Advanced determinant calculus: A
complement, Linear Algebra Appl., 411, 68–166 (2005)

(2) contain their own intrinsic beauty;
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(3) it is always useful to find analytical formulas of
determinants of matrices with special structure and
properties, e.g.

Vandermonde
Hankel
Cauchy
integer

matrices.
Benefits:

more efficient evaluation of determinants − avoidance of
computational failure due to traditional expansion methods;
more insight on some properties of a matrix.

(4) knowledge of determinants may lead to solution of
interesting problems, e.g.

the growth problem;
evaluation of compound matrices.
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Generally: difficult and interesting problem to obtain analytical
formulas for minors of various orders for a given arbitrary matrix
but
possible for (0,±1) orthogonal matrices due to their special
structure and properties.

First known effort for calculating the n − 1, n − 2 and n − 3
minors of Hadamard matrices:
F. R. Sharpe, The maximum value of a determinant, Bull. Amer.
Math. Soc. 14, 121–123 (1907)
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Recent references:

n − 4 minors of Hadamard matrices, relative computer
algorithm:
C. Koukouvinos, M. Mitrouli and J. Seberry, An algorithm to find
formulae and values of minors of Hadamard matrices, Linear
Algebra Appl. 330, 129–147 (2001)

general results for minors of weighing matrices:
C. Kravvaritis and M. Mitrouli, Evaluation of Minors associated
to weighing matrices, Linear Algebra Appl. 426, 774-809 (2007)
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Preliminary Results.

Lemma

Let A = (k − λ)Iv + λJv =


k λ · · · λ
λ k · · · λ
...

. . .
λ λ · · · k

, where k , λ are

integers. Then,

det A = [k + (v − 1)λ](k − λ)v−1 (1)

and for k 6= λ,−(v − 1)λ, A is nonsingular with A−1 =

1
k2 + (v − 2)kλ− (v − 1)λ2 {[k + (v − 2)λ + λ]Iv − λJv}. (2)
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Lemma

Let B =

[
B1 B2
B3 B4

]
, B1 nonsingular. Then

det B = det B1 · det(B4 − B3B−1
1 B2). (3)
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Strategy for calculating all possible (n − j)× (n − j)
minors of (0,±1) orthogonal matrices

Input: A ∈ IRn×n, AAT = AT A = kIn for some k .
Write A in the form

A =

[
Bj×j Uj×(n−j)

V(n−j)×j M(n−j)×(n−j)

]
,

same columns clustered together in U.

Output: the appearing values for det M for every possible upper
left j × j corner B
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Main steps

1 Set up the linear system with unknowns the numbers of
columns of U;
(it results from the properties of A)

2 Figure out MT M taking into account AT A = kIn and write
the result in block form;
(known block sizes↔ solution of the system)

3 Derive det MT M by consecutive applications of formula (3),
with help of (1) and (2).
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Remarks.
1 Orthogonality of A⇒ all diagonal blocks of MT M will be of

the form (a− b)I + bJ and the others of the form cJ;
2 MT M is always symmetric and so is every principal

submatrix of it;
3 Computations carried out effectively by exploiting structure;
4 All possible (n − j)× (n − j) minors are calculated;
5 Same columns are clustered together in Uj×(n−j), e.g.

U3 =

u1 u2 u3 u4 u5 u6 u7 u8

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

⇒ computations are facilitated by the appearing block
forms and derivation of formulas is possible;

6 The technique is demonstrated through the comprehensive
example of S-matrices.
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Main Results

Proposition

Let S be an S-matrix of order n. Then all possible
(n − 1)× (n − 1) minors of S are of magnitude 21−n(n + 1)

n−1
2 ,

and for n > 2 all possible (n − 2)× (n − 2) minors of S are of
magnitude 0 or 23−n(n + 1)

n−3
2 .
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For j > 2→ the solution of the linear system has parameters.
Bounds can be found with:

Lemma

For all possible columns u1, . . . , u2j of an S-matrix S comprising
the first j rows, j ≥ 3, it holds

0 ≤ ui ≤
n − 3

4
, for i ∈

{
1, . . . ,

1
8
· 2j
}
∪
{

7
8
· 2j + 1, . . . , 2j

}
and

0 ≤ ui ≤
n + 1

4
, otherwise.
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For j > 2, using the previous Lemma we get only n-dependant
results

Proposition

Let S be an S-matrix of order n = 11. Then all possible
(n − 3)× (n − 3) minors of S are of magnitude 0 or
25−n(n + 1)

n−5
2 , and all possible (n − 4)× (n − 4) minors of S

are of magnitude 0, 27−n(n + 1)
n−7

2 or 28−n(n + 1)
n−7

2 .
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Background
The proposed idea

Application to the growth problem

Definition. For a completely pivoted (CP, no row and column
exchanges are needed during GE with complete pivoting)
matrix A the growth factor is given by

g(n, A) =
max{p1, p2, . . . , pn}

|a11|
,

where p1, p2, . . . , pn are the pivots of A.

The Growth Problem: Determining g(n, A) for CP A ∈ IRn×n and
for various values of n.
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Open conjecture (Cryer,1968):
For a CP Hadamard matrix H, g(n, H) = n.

New conjecture :
For a CP S-matrix S, g(n, S) = n+1

2 .

First approach: g(11, S11) = 6.
In other words, every possible S11 has growth 6.

C. Kravvaritis Minors of (0,±1) orthogonal matrices



Introduction
A technique for minors

Main Results
Application to the growth problem

Numerical experiments
Summary-References

Background
The proposed idea

Open conjecture (Cryer,1968):
For a CP Hadamard matrix H, g(n, H) = n.

New conjecture :
For a CP S-matrix S, g(n, S) = n+1

2 .

First approach: g(11, S11) = 6.
In other words, every possible S11 has growth 6.

C. Kravvaritis Minors of (0,±1) orthogonal matrices



Introduction
A technique for minors

Main Results
Application to the growth problem

Numerical experiments
Summary-References

Background
The proposed idea

Open conjecture (Cryer,1968):
For a CP Hadamard matrix H, g(n, H) = n.

New conjecture :
For a CP S-matrix S, g(n, S) = n+1

2 .

First approach: g(11, S11) = 6.
In other words, every possible S11 has growth 6.

C. Kravvaritis Minors of (0,±1) orthogonal matrices



Introduction
A technique for minors

Main Results
Application to the growth problem

Numerical experiments
Summary-References

Background
The proposed idea

More information:
N. J. Higham, Accuracy and Stability of Numerical Algorithms,
SIAM, Philadelphia (2002)

The growth factor of a Hadamard matrix of order 12 is 12:
A. Edelman, W. Mascarenhas, On the complete pivoting
conjecture for a Hadamard matrix of order 12, Linear Multilinear
Algebra 38, 181–187 (1995)

The growth factor of a Hadamard matrix of order 16 is 16:
C. Kravvaritis and M. Mitrouli, On the growth problem for a
Hadamard matrix of order 16 , submitted to Numer. Math.
(2007)
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Difficulty of the problem

Pivot pattern invariant under equivalence operations,
i.e. equivalent matrices may have different pivot patterns.

A naive computer exhaustive search finding all possible S11
matrices by performing all possible row and/or column
interchanges requires (11!)2 ≈ 1015 trials.

In addition, the pivot pattern of each one of these matrices
should be computed.

→ many years of computations!
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Solution

Main idea 1: Calculation of pivots from the beginning and from
the end with different techniques

p1 p2 . . . p6
... p7

... p8 . . . p11

−→ ←−

and

p7 =
det S∏11

i=1,i 6=7 pi
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Solution

Main idea 2: Calculate pivots with:

Lemma

Let A be a CP matrix and A(j) denote the j × j principal minor of
A.

(i) [Gantmacher 1959] The magnitude of the pivots appearing
after application of GE operations on A is given by

pj =
A(j)

A(j − 1)
, j = 1, 2, . . . , n, A(0) = 1. (4)

(ii) [Cryer 1968] The maximum j × j minor of A is A(j).
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Main result

Theorem

If GE with complete pivoting is performed on an S-matrix of
order 11 the pivot pattern is

(1, 1, 2,
3
2
,
5
3
,
9
5
, 2,

3
2
, 3, 3, 6).

So, the growth factor is 6.
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Numerical experiments

class pivot patterns (n=15) number
I (1, 1, 2, 1, 4

3 , 1, 2, 1, 2, 2, 8
3 , 2, 4, 4, 8) 12

(1, 1, 2, 1, 4
3 , 2, 3, 1, 2, 2, 8

3 , 2, 4, 4, 8)
(1, 1, 2, 3

2 , 4
3 , 1, 2, 2, 2, 2, 4, 4, 4, 4, 8)

II (1, 1, 2, 1, 5
3 , 6

5 , 2, 1, 2, 2, 8
3 , 2, 4, 4, 8) 15

(1, 1, 2, 1, 5
3 , 6

5 , 2, 4
3 , 2, 2, 8

3 , 2, 4, 4, 8)
(1, 1, 2, 1, 5

3 , 6
5 , 2, 8

5 , 2, 2, 8
3 , 2, 4, 4, 8)

III (1, 1, 2, 1, 4
3 , 9

5 , 2, 1, 2, 2, 8
3 , 2, 4, 4, 8) 18

(1, 1, 2, 1, 5
3 , 9

5 , 2, 1, 2, 2, 8
3 , 2, 4, 4, 8)

(1, 1, 2, 1, 5
3 , 9

5 , 2, 4
3 , 2, 2, 8

3 , 2, 4, 4, 8)
IV (1, 1, 2, 1, 5

3 , 9
5 , 2, 1, 2, 2, 8

3 , 2, 4, 4, 8) 16
(1, 1, 2, 1, 5

3 , 9
5 , 2, 4

3 , 2, 2, 8
3 , 2, 4, 4, 8)

(1, 1, 2, 1, 5
3 , 9

5 , 2, 8
5 , 2, 2, 8

3 , 2, 4, 4, 8)
V (1, 1, 2, 1, 5

3 , 9
5 , 2, 2, 2, 12

5 , 8
3 , 2, 4, 4, 8) 16

(1, 1, 2, 1, 5
3 , 9

5 , 2, 2, 20
9 , 12

5 , 8
3 , 2, 4, 4, 8)

(1, 1, 2, 3
2 , 5

3 , 9
5 , 2, 2, 20

9 , 12
5 , 8

3 , 2, 4, 4, 8)
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Numerical experiments

n pivot patterns number
19 (1, 1, 2, 3

2 , 5
3 , 9

5 , 2, . . ., 5
2 , 5

2 , 10
3 , 5

2 , 5, 5, 10) 187
(1, 1, 2, 3

2 , 5
3 , 9

5 , 9
4 , . . ., 25

9 ,3, 5, 5
2 , 5, 5, 10)

(1, 1, 2, 3
2 , 5

3 , 9
5 , 5

2 , . . ., 25
8 , 15

4 , 5, 5
2 , 5, 5, 10)

23 (1, 1, 2, 1, 5
3 , 8

5 , 2, . . ., 3, 3, 4, 3, 6, 6, 12) 228
(1, 1, 2, 3

2 , 5
2 , 9

5 , 3, . . ., 10
3 , 18

5 , 6, 3, 6, 6, 12)
(1, 1, 2, 3

2 , 2, 2, 4, . . ., 15
4 , 9

2 , 6, 3, 6, 6, 12)

These results lead to the following conjecture.
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The growth conjecture for S-matrices

Let S be an S-matrix of order n. Reduce S by GE with
complete pivoting. Then, for large enough n,

(i) g(n, S) = n+1
2 ;

(ii) The three last pivots are (in backward order)

n + 1
2

,
n + 1

4
,

n + 1
4

;

(iii) The fourth pivot from the end can be n+1
8 or n+1

4 ;

(iv) Every pivot before the last has magnitude at most n+1
2 ;

(v) The first three pivots are equal to 1, 2, 2. The fourth pivot
can take the values 1 or 3/2.
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Conclusions-Discussions-Open Problems

We proposed a technique for calculating all possible
(n − j)× (n − j) minors of various (0,±1) orthogonal
matrices and demonstrated it with S-matrices;
All possible pivots of the S11 → g(11, S11) = 11.
Methods presented here can be used as basis for
calculating the pivot pattern of S-matrices of higher orders,
such as 15, 19 etc.
High complexity of such problems→ more effective
implementation of the ideas introduced here, or other,
more elaborate ideas.
Reliable (i.e. non-skipping values) criterion for reducing the
total amount of all possible upper left corners B?
More precise upper bound than Lemma 3?
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Parallel implementation of the two main independent tasks.
Statistical approach of the growth problem for Hadamard
and S-matrices by examining the distribution of the pivots,
according to:
L. N. Trefethen and R. S. Schreiber, Average-case stability
of Gaussian elimination, SIAM J. Matrix Anal. Appl. 11,
335–360 (1990)
Generalization for OD’s: An orthogonal design (OD) of
order n and type (u1, u2, . . . , ut), ui positive integers, is an
n × n matrix D with entries from the set
{0,±x1,±x2, . . . ,±xt} that satisfies

DDT = DT D =

(
t∑

i=1

uix2
i

)
In.
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