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QR and QZ algorithms

QR algorithm standard method for solving dense nonsym-
metric eigenvalue problems (eig(A))

QZ algorithm standard method for solving dense genera-
lized eigenvalue problems (eig(A,B))

Both have recently undergone significant improvements.
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QR and QZ algorithms

QR algorithm standard method for solving dense nonsym-
metric eigenvalue problems (eig(A))

QZ algorithm standard method for solving dense genera-
lized eigenvalue problems (eig(A,B))

Both have recently undergone significant improvements.

QR for 2961× 2961 matrix (Matrix Market’s PDE2961):

0 1 2 3 4 5 6 7
Execution time in minutes

LAPACK 3.0LAPACK 3.0LAPACK 3.0

LAPACK 3.1 [Braman, Byers, Mathias’02]
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QR and QZ algorithms

QR algorithm standard method for solving dense nonsym-
metric eigenvalue problems (eig(A))

QZ algorithm standard method for solving dense genera-
lized eigenvalue problems (eig(A,B))

Both have recently undergone significant improvements.

QZ for 3600× 3600 matrix pencil (Matrix Market’s BCSST21):

0 2 4 6 8 10 12 14 16
Execution time in minutes

LAPACK 3.0LAPACK 3.0LAPACK 3.0

LAPACK 3.2 [Kågström, Kressner’06]

New ingredients: block multishift + advanced deflation techniques.
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Goal of QR algorithm

For real n× n matrix A, compute orthogonal Q s.t.

QT AQ = T =







 ,

where T is in real Schur form.

Diagonal of T yields eigenvalues of A.

First k columns of Q span invariant subspace X : AX ⊆ X .
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Goal of QR algorithm

For real n× n matrix A, compute orthogonal Q s.t.

QT AQ = T =







 ,

where T is in real Schur form.

Diagonal of T yields eigenvalues of A.

First k columns of Q span invariant subspace X : AX ⊆ X .

Goal of this talk

Show intimate relation between QR algorithm and Krylov
subspace techniques.

Provide intuitive explanation and convergence bounds
capturing observed improvements.
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The basic multishift QR algorithm

QR generates sequence of orthogonally similar matrices

A0, A1, A2, . . .
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The basic multishift QR algorithm

QR generates sequence of orthogonally similar matrices

A0, A1, A2, . . .

(i) Initial reduction to Hessenberg form

A0 ← QT

0AQ0 =

[

@
@

@
@
@

]
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The basic multishift QR algorithm

QR generates sequence of orthogonally similar matrices

A0, A1, A2, . . .

(i) Initial reduction to Hessenberg form

A0 ← QT

0AQ0 =

[

@
@

@
@
@

]

(ii) QR iterations (preserve Hessenberg form)

for i← 1, 2, . . .
Select m� n shifts σ1, . . . , σm.

QR factorization pi(Ai−1) = QiRi with pi(z) =
m
∏

j=1

(z − σj).

Update Ai ← QT

iAi−1Qi.
end for

Careful implementation: implicit, bulge chasing.
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Idea behind blocked multishift QR

Do computations only locally (red area), delay and accumulate
updates of rest (blue area).

Bulk of computation becomes level BLAS 3 (matrix-matrix
multiplications).

Typically reduces execution time by factor 2–3.

[Lang’99], [Braman, Byers, Mathias’02].
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Progress made by multishift QR iterations

A = hess(randn(11)); After 1 iteration . . .

0 1 1 1 0 1 1 1 1 1 0

1 0 1 0 0 1 0 0 0 1 1

1 0 0 −1 1 1 1 1 1 1

1 0 1 1 0 0 1 0 0

1 1 0 0 1 1 1 1

1 1 1 0 1 0 0

1 −1 1 0 1 0

0 0 0 1 0

1 0 0 1

0 0 0

−1 1

shifts = eigenvalues of bottom right 4× 4 submatrix.
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Progress made by multishift QR iterations

A = hess(randn(11)); After 2 iterations . . .

0 1 0 1 1 0 1 0 1 1 1

1 0 −2 0 1 0 0 0 1 0 0

0 1 1 1 0 1 −1 0 1 0

1 1 0 0 1 0 1 0 1

1 1 1 0 −1 1 1 0

0 1 0 0 1 0 0

1 0 1 0 0 0

−1 0 1 0 0

0 0 0 0

0 1 1

−2 1

shifts = eigenvalues of bottom right 4× 4 submatrix.
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Progress made by multishift QR iterations

A = hess(randn(11)); After 3 iterations . . .

1 1 0 −1 1 0 1 0 0 1 1

1 0 −1 −1 0 0 −1 1 0 1 −1

0 1 1 1 0 1 0 0 1 1

1 1 0 0 1 1 1 −2 1

0 0 1 0 1 0 1 0

1 0 0 0 1 0 0

1 1 0 0 0 1

−5 0 0 0 1

0 0 0 0

−2 1 1

−3 1

shifts = eigenvalues of bottom right 4× 4 submatrix.

Daniel Kressner, TU Berlin Aggressive early deflation – p.7/24



Progress made by multishift QR iterations

A = hess(randn(11)); After 4 iterations . . .

0 1 0 0 1 0 1 0 0 1 1

1 0 0 −2 1 0 0 0 1 1 0

0 1 1 1 1 1 0 0 1 0

1 1 0 1 0 1 1 0 1

−1 1 1 1 1 0 1 1

1 0 0 1 0 −1 0

0 1 −1 1 0 0

−10 0 0 0 1

0 0 −1 0

−7 1 1

−3 1

shifts = eigenvalues of bottom right 4× 4 submatrix.
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Progress made by multishift QR iterations

A = hess(randn(11)); After 5 iterations . . .

0 1 0 0 0 0 0 1 0 0 0

1 0 0 −1 1 1 0 0 0 1 −1

0 1 1 1 0 1 0 0 1 −1

1 1 1 1 1 1 0 0 0

−1 1 1 1 1 −1 1 0

0 1 1 0 0 1 0

0 1 −1 1 0 −1

−22 0 0 0 0

0 0 0 0

−4 1 1

0 0

shifts = eigenvalues of bottom right 4× 4 submatrix.
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Idea of aggressive early deflation

A = hess(randn(11)); After 4 iterations . . .

0 1 0 0 1 0 1 0 0 1 1

1 0 0 −2 1 0 0 0 1 1 0

0 1 1 1 1 1 0 0 1 0

1 1 0 1 0 1 1 0 1

−1 1 1 1 1 0 1 1

1 0 0 1 0 −1 0

0 1 −1 1 0 0

−10 0 0 0 1

0 0 −1 0

−7 1 1

−3 1

It turns out that some eigenvalues have already converged.
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Idea of aggressive early deflation

Compute Schur form of bottom 4× 4 submatrix . . .

0 1 0 0 1 0 1 0 0 1 1

1 0 0 −2 1 0 0 1 −1 1 0

0 1 1 1 1 1 0 −1 1 0

1 1 0 1 0 1 1 0 1

−1 1 1 1 1 1 1 1

1 0 0 0 1 −1 0

0 1 1 0 0 0

−11 0 0 0 0

−11 1 0 0 1

−19 1 1

−21 −4 1

Two eigenvalues can be deflated!
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Idea of aggressive early deflation

Or: Compute Schur form of bottom 9× 9 submatrix . . .

0 1 0 −1 1 1 0 0 0 1 1

1 0 0 0 1 0 0 1 −1 1 0

0 1 1 1 0 1 1 0 1 −2

0 1 1 1 1 1 1 0 1 1

−2 1 1 1 1 1 1 1

−3 1 1 0 0 0 0

−4 0 1 0 0 0 0

−14 0 0 0 0

−14 1 0 0 1

−22 1 1

−24 −4 1

Four eigenvalues can be deflated!
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A closer look at the Hessenberg matrix

After i iterations . . .

ε

AQ̂i = Q̂i

Observed: If shifts are eigenvalues of bottom right m×m submatrix:
ε→ 0 locally quadratically.
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A closer look at the Hessenberg matrix

After i iterations . . .

ε

ATQ̂i = Q̂i

For notational convenience: transpose
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A closer look at the Hessenberg matrix

After i iterations . . .

ε

ATQ̂iF = Q̂iF

For notational convenience: transpose and flip rows+columns .
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A closer look at the Hessenberg matrix

After i iterations . . .

ε

ATQ̂iF = Q̂iF

For notational convenience: transpose and flip rows+columns .

Set

Q̂iF =
[

u
(i)
1 , u

(i)
2 , . . . , u(i)

n

]

.
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Connection to Krylov subspaces

Then

AT

[

u
(i)
1 , . . . , u(i)

m

]

=
[

u
(i)
1 , . . . , u(i)

m

]

+ u
(i)
m+1 00 ε
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Connection to Krylov subspaces

Then

AT

[

u
(i)
1 , . . . , u(i)

m

]

=
[

u
(i)
1 , . . . , u(i)

m

]

+ u
(i)
m+1 00 ε

This is an Arnoldi decomposition and reveals

span
{

u
(i)
1 , . . . , u(i)

m

}

= span
{

u
(i)
1 , ATu

(i)
1 , . . . , (AT)m−1u

(i)
1

}

:= Xi.

Moreover, ε→ 0 iff Xi converges to an invariant subspace X of AT.
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Formal convergence result [Watkins/Elsner’91]

Let cols of
X form orthonormal basis for X ,
X⊥ form orthonormal basis for X⊥.

Corresponding block Schur decomposition:

A [X⊥, X] = [X⊥, X]

[

A11 A12

0 A22

]

.

If QR algorithm converges then

d
(

X ,Xi

)

≤ C ‖pi(A11)
−1‖ ‖pi(A22)‖d

(

X ,Xi−1

)

,

where pi is the shift polynomial used in iteration i.
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Formal convergence result [Watkins/Elsner’91]

Let cols of
X form orthonormal basis for X ,
X⊥ form orthonormal basis for X⊥.

Corresponding block Schur decomposition:

A [X⊥, X] = [X⊥, X]

[

A11 A12

0 A22

]

.

If QR algorithm converges then

d
(

X ,Xi

)

≤ C ‖pi(A11)
−1‖ ‖pi(A22)‖d

(

X ,Xi−1

)

,

where pi is the shift polynomial used in iteration i.

Chosen shifts converge to eigenvalues of A22

 ‖pi(A22)‖ ≤ C̃ d
(

X ,Xi−1

)

 d
(

X ,Xi

)

≤ Ĉ d
(

X ,Xi−1

)2
.
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Intermediate summary

QR generates sequence of m-dimensional Krylov subspaces Xi

converging locally quadratically to invariant subspace X of AT.

Convergence bound determined by maximal distance between
all shifts and the eigenvalues beloning to X .
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Intermediate summary

QR generates sequence of m-dimensional Krylov subspaces Xi

converging locally quadratically to invariant subspace X of AT.

Convergence bound determined by maximal distance between
all shifts and the eigenvalues beloning to X .

Questions:

Does Xi contain much better approximations to individual
eigenvectors?

Does it make sense to consider Krylov subspaces larger than
m?
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Example ( n = 250,m = 4)

Convergence of individual Ritz vectors x1, . . . , x4 from Xi to
eigenvectors vs. ε:

i = 0 i = 1 i = 2 i = 3 i = 4
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
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Example ( n = 250,m = 4)

Convergence of individual Ritz vectors x1, . . . , x4 from Xi to
eigenvectors vs. ε:

i = 0 i = 1 i = 2 i = 3 i = 4
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Some Ritz vectors converge much faster than others.

ε determined by the poorest Ritz vector approx.
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Example ( n = 250,m = 4)

Convergence of individual Ritz vectors x1, . . . , x4 from Xi to
eigenvectors vs. ε:

i = 0 i = 1 i = 2 i = 3 i = 4
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Classical deflation (LAPACK 3.0) based on ε; cannot benefit
from faster convergence of individual Ritz vectors.
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Convergence result for individual eigenvectors

Let v1, . . . , vm be left eigenvectors of A belonging to eigenvalues
λ1, . . . , λm contained in A22.

[K.’06]: For each vj ,

d
(

vj ,Xi

)

≤ C ‖pi(A11)
−1‖ |pi(λj)| d

(

vj ,Xi−1

)

.

|pi(λj)| can be much smaller than ‖pi(A22)‖;

only one shift needs to converge in order to obtain rapid
convergence.
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The Krylo v-Schur algorithm [Stewart’01]

AT

[

u
(i)
1 , . . . , u(i)

m

]

=
[

u
(i)
1 , . . . , u(i)

m

]

+ u
(i)
m+1 00 ε

Compute Schur decomposition of Hessenberg factor:

AT

[

ũ
(i)
1 , . . . , ũ(i)

m

]

=
[

ũ
(i)
1 , . . . , ũ(i)

m

]

+ u
(i)
m+1 1 εεε 2 3

If |ε1| ≤ u‖A‖F , converged Ritz vector ũ
(i)
1 is deflated by setting

ε1 = 0.

If |ε1| > u‖A‖F , test other Ritz vectors by reordering Schur
form.
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The Krylov-Schur algorithm on A

ε

Daniel Kressner, TU Berlin OAggressive early deflation – p.20/24



The Krylov-Schur algorithm on A

ε
ε
ε1

2

3

Re-interpreting Krylov-Schur algorithm for Xi in terms of orthogonal

operations on A reveals theoretical and numerical equivalence to

aggressive early deflation [Braman/Byers/Mathias’02] as
implemented in LAPACK 3.1.
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Example ( n = 250,m = 4)

Convergence of individual Ritz vectors x1, . . . , x4 from

span{u
(i)
1 , . . . , u

(i)
4 } to eigenvectors vs. ε:

i = 0 i = 1 i = 2 i = 3 i = 4
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
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Example ( n = 250,m = 4)

Convergence of individual Ritz vectors x1, . . . , x8 from Krylov

subspace span{u
(i)
1 , . . . , u

(i)
8 } to eigenvectors vs. ε:

i = 0 i = 1 i = 2 i = 3 i = 4
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Larger Xi add Krylov subspace acceleration.
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Convergence with Krylov subspace acceleration

Let v1, . . . , vm be left eigenvectors of A belonging to eigenvalues
λ1, . . . , λm contained in A22. Let w ≥ m be dim of Krylov subspace

Xi = span{u
(i)
1 , . . . , u(i)

w }.

Then [K’06]:

d
(

vj ,Xi

)

≤ C ‖pi(A11)
−1‖ |pi(λj)| inf

φ∈Pw−m

‖φ(A11)‖

|φ(λj)|
d
(

vj ,Xi−1

)

.
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Convergence with Krylov subspace acceleration

Let v1, . . . , vm be left eigenvectors of A belonging to eigenvalues
λ1, . . . , λm contained in A22. Let w ≥ m be dim of Krylov subspace

Xi = span{u
(i)
1 , . . . , u(i)

w }.

Then [K’06]:

d
(

vj ,Xi

)

≤ C ‖pi(A11)
−1‖ |pi(λj)| inf

φ∈Pw−m

‖φ(A11)‖

|φ(λj)|
d
(

vj ,Xi−1

)

.

Extra term infφ∈Pw−m
‖φ(A11)‖/|φ(λj)| can be expected to

become very small as w � m.

Need extra assumptions on eigenvalue distribution of A11 to
obtain quantitative results using, e.g., elementary potential
theory [Beattie/Embree/Rossi’04].
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Aggressive early deflation in practice

Choice of m and w crictical for obtaining good performance.

Current setting in LAPACK’s QR and QZ based on experiments with
random matrices, e.g.,

500 ≤ n ≤ 3000 : m = 64, w = 96.

Usually not optimal for practical examples.
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Aggressive early deflation in practice

Choice of m and w crictical for obtaining good performance.

Current setting in LAPACK’s QR and QZ based on experiments with
random matrices, e.g.,

500 ≤ n ≤ 3000 : m = 64, w = 96.

Usually not optimal for practical examples.

Ongoing work

develop heuristics for dynamical choice of w based on
convergence bounds;

replace ScaLAPACK’s QR by two-level recursive aggressive
early deflation approach.
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Conclusions

Aggressive early deflation = extraction of Ritz vectors from
Krylov subspaces associated with the QR algorithm.

Can be turned into improved convergence bounds and intuitive
explanations why aggressive early deflation works so well.
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