The effect of aggressive early deflation on the convergence of the QR algorithm

Daniel Kressner
TU Berlin

kressner@math.ethz.ch

Harrachov 2007
Computational Methods with Applications

QR and QZ algorithms

QR algorithm	standard method for solving dense nonsymmetric eigenvalue problems (eig(A))
QZ algorithm	standard method for solving dense generalized eigenvalue problems (eig(A,B))

Both have recently undergone significant improvements.

QR and **QZ** algorithms

QR algorithm standard method for solving dense nonsym-

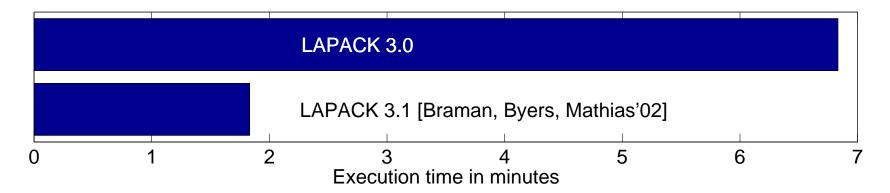
metric eigenvalue problems (eig(A))

QZ algorithm standard method for solving dense genera-

lized eigenvalue problems (eig(A,B))

Both have recently undergone significant improvements.

QR for 2961×2961 matrix (Matrix Market's PDE2961):

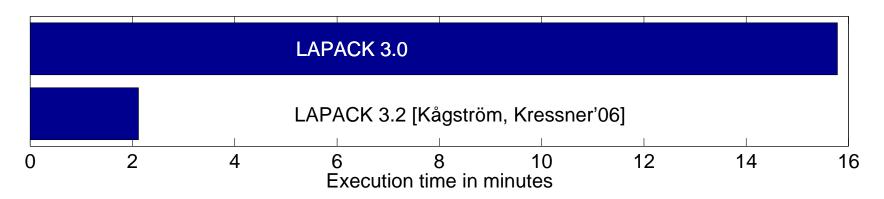


QR and **QZ** algorithms

QR algorithm	standard method for solving dense nonsymmetric eigenvalue problems (eig(A))
QZ algorithm	standard method for solving dense generalized eigenvalue problems (eig(A,B))

Both have recently undergone significant improvements.

QZ for 3600×3600 matrix pencil (Matrix Market's BCSST21):



New ingredients: block multishift + advanced deflation techniques.

Goal of QR algorithm

For real $n \times n$ matrix A, compute orthogonal Q s.t.

$$Q^T A Q = T = \left[\begin{array}{c} \\ \\ \end{array} \right],$$

where T is in real Schur form.

- $lue{}$ Diagonal of T yields eigenvalues of A.
- First k columns of Q span invariant subspace \mathcal{X} : $A\mathcal{X} \subseteq \mathcal{X}$.

Daniel Kressner, TU Berlin

∇ Aggressive early deflation – p.2/2

Goal of QR algorithm

For real $n \times n$ matrix A, compute orthogonal Q s.t.

$$Q^T A Q = T = \left[\begin{array}{c} \\ \\ \end{array} \right],$$

where T is in real Schur form.

- $lue{}$ Diagonal of T yields eigenvalues of A.
- First k columns of Q span invariant subspace \mathcal{X} : $A\mathcal{X} \subseteq \mathcal{X}$.

Goal of this talk

- Show intimate relation between QR algorithm and Krylov subspace techniques.
- Provide intuitive explanation and convergence bounds capturing observed improvements.

The basic multishift QR algorithm

QR generates sequence of orthogonally similar matrices

$$A_0, A_1, A_2, \dots$$

The basic multishift QR algorithm

QR generates sequence of orthogonally similar matrices

$$A_0, A_1, A_2, \dots$$

(i) Initial reduction to Hessenberg form

$$A_0 \leftarrow Q_0^\mathsf{T} A Q_0 = \boxed{}$$

The basic multishift QR algorithm

QR generates sequence of orthogonally similar matrices

$$A_0, A_1, A_2, \dots$$

(i) Initial reduction to Hessenberg form

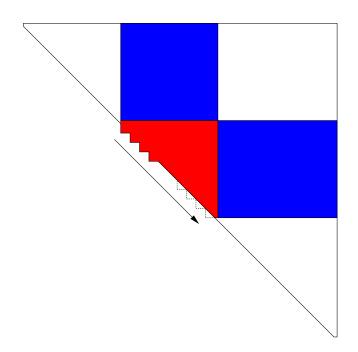
$$A_0 \leftarrow Q_0^\mathsf{T} A Q_0 = \boxed{}$$

(ii) QR iterations (preserve Hessenberg form)

for
$$i\leftarrow 1,2,\ldots$$
 Select $m\ll n$ shifts σ_1,\ldots,σ_m . QR factorization $p_i(A_{i-1})=Q_iR_i$ with $p_i(z)=\prod\limits_{j=1}^m(z-\sigma_j)$. Update $A_i\leftarrow Q_i^{\mathsf{T}}A_{i-1}Q_i$. end for

Careful implementation: implicit, bulge chasing.

Idea behind blocked multishift QR

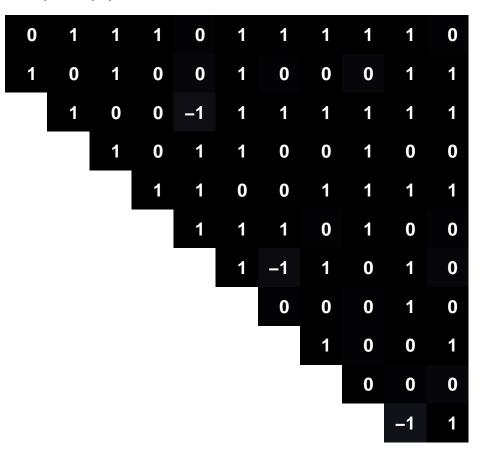


Do computations only locally (red area), delay and accumulate updates of rest (blue area).

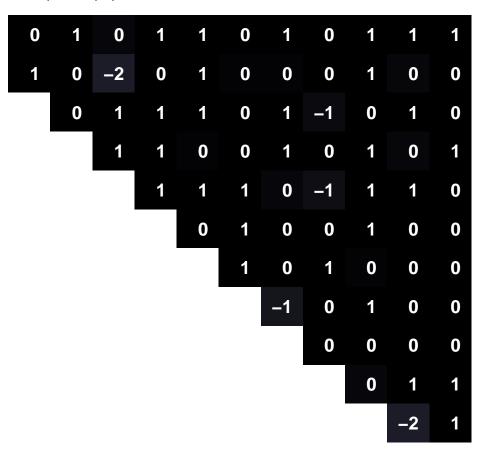
- Bulk of computation becomes level BLAS 3 (matrix-matrix multiplications).
- Typically reduces execution time by factor 2–3.

[Lang'99], [Braman, Byers, Mathias'02].

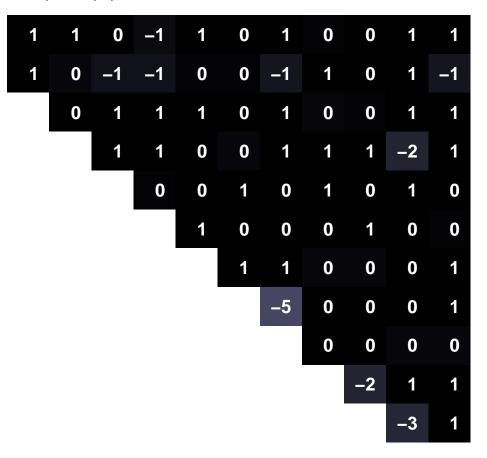
A = hess(randn(11)); After 1 iteration...



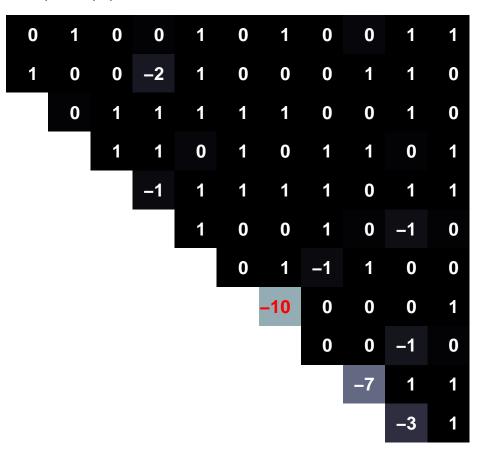
A = hess(randn(11)); After 2 iterations...



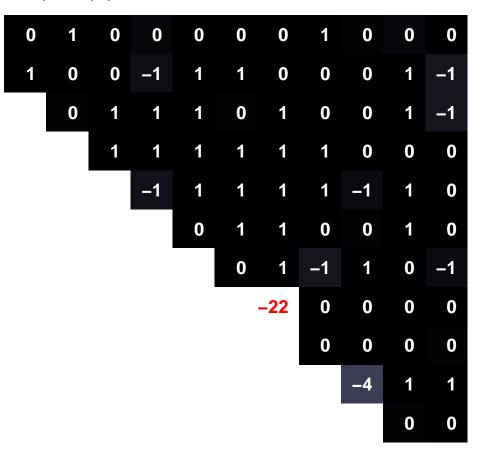
A = hess(randn(11)); After 3 iterations...



A = hess(randn(11)); After 4 iterations...

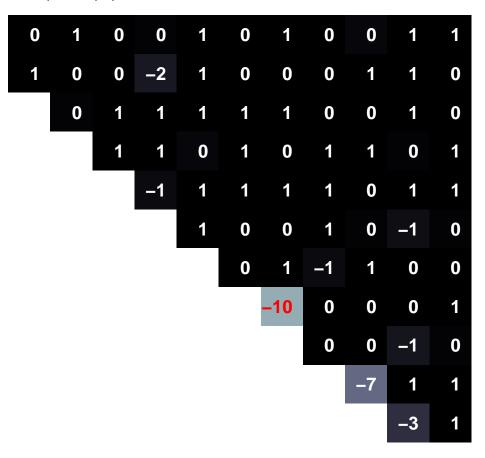


A = hess(randn(11)); After 5 iterations...



Idea of aggressive early deflation

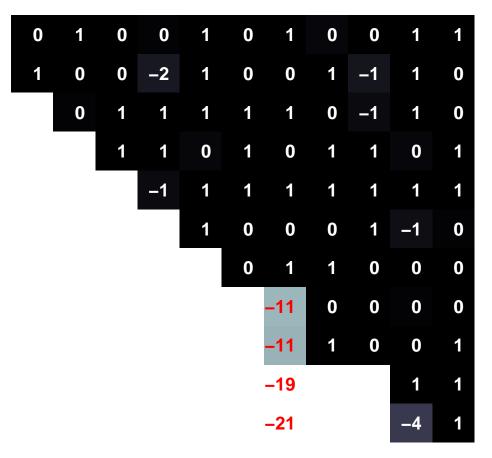
A = hess(randn(11)); After 4 iterations...



It turns out that some eigenvalues have already converged.

Idea of aggressive early deflation

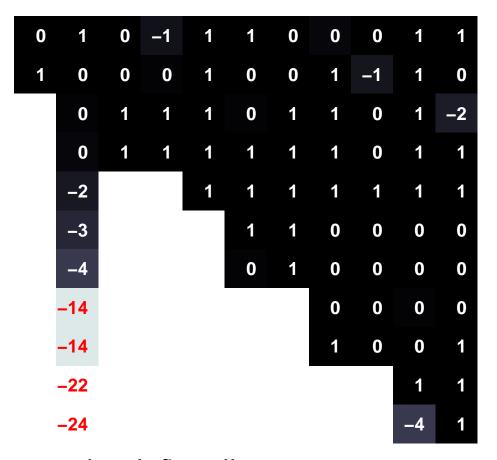
Compute Schur form of bottom 4×4 submatrix . . .



Two eigenvalues can be deflated!

Idea of aggressive early deflation

Or: Compute Schur form of bottom 9×9 submatrix . . .



Four eigenvalues can be deflated!

After i iterations . . .

Observed: If shifts are eigenvalues of bottom right $m \times m$ submatrix: $\varepsilon \to 0$ locally quadratically.

After *i* iterations . . .

For notational convenience: transpose

After *i* iterations . . .

XXXXXXXXXX

For notational convenience: transpose and flip rows+columns.

After *i* iterations . . .

For notational convenience: transpose and flip rows+columns.

Set

$$\hat{Q}_i F = \left[u_1^{(i)}, u_2^{(i)}, \dots, u_n^{(i)} \right].$$

Connection to Krylov subspaces

Then

$$A^{\mathsf{T}}\left[u_1^{(i)},\ldots,u_m^{(i)}\right] = \left[u_1^{(i)},\ldots,u_m^{(i)}\right] \begin{bmatrix} \begin{matrix} \mathsf{X} \\ \mathsf{X} \\ \mathsf{X} \\ \mathsf{X} \end{matrix} \end{bmatrix} + u_{m+1}^{(i)} \begin{bmatrix} \mathsf{0} & \mathsf{0} & \mathsf{\epsilon} \end{bmatrix}$$

Connection to Krylov subspaces

Then

$$A^{\mathsf{T}}\left[u_1^{(i)},\ldots,u_m^{(i)}\right] = \left[u_1^{(i)},\ldots,u_m^{(i)}\right] \left|\begin{array}{c} \mathsf{X}\mathsf{X}\mathsf{X}\\ \mathsf{X}\mathsf{X}\mathsf{X}\\ \mathsf{X}\mathsf{X} \end{array}\right| + u_{m+1}^{(i)}\left[\begin{array}{c} \mathsf{0} \ \mathsf{0} \ \mathsf{\varepsilon} \end{array}\right]$$

This is an Arnoldi decomposition and reveals

$$\mathrm{span}\left\{u_1^{(i)},\,\ldots,\,u_m^{(i)}\right\} = \mathrm{span}\left\{u_1^{(i)},A^{\mathsf{T}}u_1^{(i)},\ldots,(A^{\mathsf{T}})^{m-1}u_1^{(i)}\right\} := \mathcal{X}_i.$$

Moreover, $\varepsilon \to 0$ iff \mathcal{X}_i converges to an invariant subspace \mathcal{X} of A^T .

Daniel Kressner TU Berlin

Formal convergence result [Watkins/Elsner'91]

Let cols of X form orthonormal basis for X, form orthonormal basis for X^{\perp} .

Corresponding block Schur decomposition:

$$A[X_{\perp}, X] = [X_{\perp}, X] \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}.$$

If QR algorithm converges then

$$d(\mathcal{X}, \mathcal{X}_i) \leq C \|p_i(\mathbf{A}_{11})^{-1}\| \|p_i(\mathbf{A}_{22})\| d(\mathcal{X}, \mathcal{X}_{i-1}),$$

where p_i is the shift polynomial used in iteration i.

Formal convergence result [Watkins/Elsner'91]

Let cols of X form orthonormal basis for X, form orthonormal basis for X^{\perp} .

Corresponding block Schur decomposition:

$$A[X_{\perp}, X] = [X_{\perp}, X] \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}.$$

If QR algorithm converges then

$$d(\mathcal{X}, \mathcal{X}_i) \leq C \|p_i(\mathbf{A}_{11})^{-1}\| \|p_i(\mathbf{A}_{22})\| d(\mathcal{X}, \mathcal{X}_{i-1}),$$

where p_i is the shift polynomial used in iteration i.

Chosen shifts converge to eigenvalues of A_{22}

$$\Rightarrow$$
 $||p_i(A_{22})|| \leq \tilde{C} d(\mathcal{X}, \mathcal{X}_{i-1}) \Rightarrow d(\mathcal{X}, \mathcal{X}_i) \leq \hat{C} d(\mathcal{X}, \mathcal{X}_{i-1})^2.$

Daniel Kressner, TU Berlin

Intermediate summary

- QR generates sequence of m-dimensional Krylov subspaces \mathcal{X}_i converging locally quadratically to invariant subspace \mathcal{X} of A^T .
- Convergence bound determined by maximal distance between all shifts and the eigenvalues beloning to \mathcal{X} .

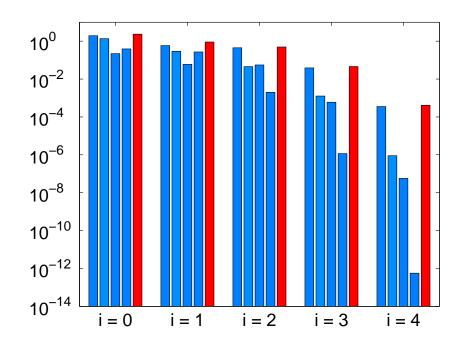
Intermediate summary

- QR generates sequence of m-dimensional Krylov subspaces \mathcal{X}_i converging locally quadratically to invariant subspace \mathcal{X} of A^T .
- Convergence bound determined by maximal distance between all shifts and the eigenvalues beloning to \mathcal{X} .

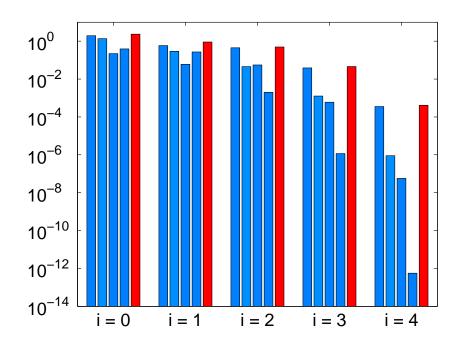
Questions:

- Does \mathcal{X}_i contain much better approximations to individual eigenvectors?
- Does it make sense to consider Krylov subspaces larger than m?

Convergence of individual Ritz vectors x_1, \ldots, x_4 from \mathcal{X}_i to eigenvectors vs. ε :

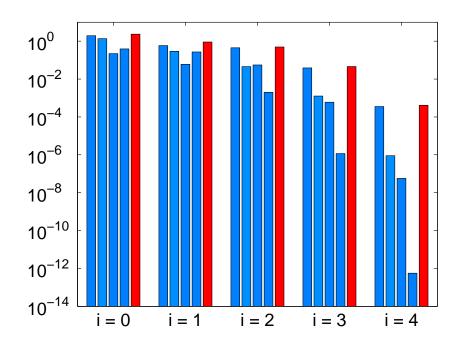


Convergence of individual Ritz vectors x_1, \ldots, x_4 from \mathcal{X}_i to eigenvectors vs. ε :



- Some Ritz vectors converge much faster than others.
- \bullet ε determined by the poorest Ritz vector approx.

Convergence of individual Ritz vectors x_1, \ldots, x_4 from \mathcal{X}_i to eigenvectors vs. ε :



• Classical deflation (LAPACK 3.0) based on ε ; cannot benefit from faster convergence of individual Ritz vectors.

Convergence result for individual eigenvectors

Let v_1, \ldots, v_m be left eigenvectors of A belonging to eigenvalues $\lambda_1, \ldots, \lambda_m$ contained in A_{22} .

[K.'06]: For each v_j ,

$$d(v_j, \mathcal{X}_i) \leq C \|p_i(A_{11})^{-1}\| |p_i(\lambda_j)| d(v_j, \mathcal{X}_{i-1}).$$

- $|p_i(\lambda_j)|$ can be much smaller than $||p_i(A_{22})||$;
- only one shift needs to converge in order to obtain rapid convergence.

The Krylov-Schur algorithm [Stewart'01]

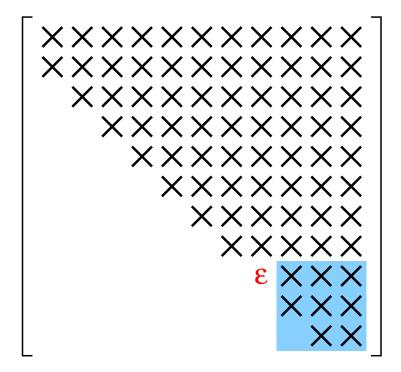
$$A^{\mathsf{T}}\left[u_1^{(i)},\ldots,u_m^{(i)}\right] = \left[u_1^{(i)},\ldots,u_m^{(i)}\right] \begin{bmatrix} \mathbf{X}\mathbf{X}\mathbf{X}\\ \mathbf{X}\mathbf{X}\mathbf{X}\\ \mathbf{X}\mathbf{X} \end{bmatrix} + u_{m+1}^{(i)} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{\epsilon} \end{bmatrix}$$

Compute Schur decomposition of Hessenberg factor:

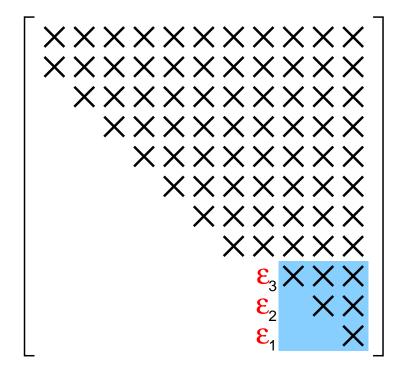
$$A^{\mathsf{T}}\left[\tilde{u}_{1}^{(i)},\,\ldots,\,\tilde{u}_{m}^{(i)}\right] = \left[\,\tilde{u}_{1}^{(i)},\,\ldots,\,\tilde{u}_{m}^{(i)}\,\right] \left[\begin{array}{c} \mathbf{X}\,\mathbf{X}\,\mathbf{X}\\ \mathbf{X}\,\mathbf{X}\\ \mathbf{X} \end{array} \right] + u_{m+1}^{(i)}\left[\,\mathbf{E}_{\mathbf{1}}\,\mathbf{E}_{\mathbf{2}}\,\mathbf{E}_{\mathbf{3}}\,\right]$$

- If $|\varepsilon_1| \leq \mathbf{u} ||A||_F$, converged Ritz vector $\tilde{u}_1^{(i)}$ is deflated by setting $\varepsilon_1 = 0$.
- If $|\varepsilon_1| > \mathbf{u} ||A||_F$, test other Ritz vectors by reordering Schur form.

The Krylov-Schur algorithm on A

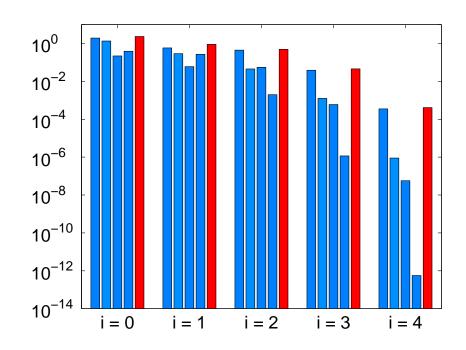


The Krylov-Schur algorithm on A

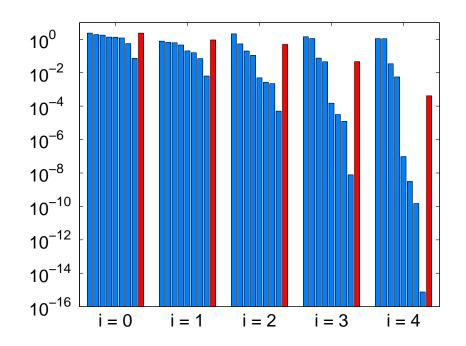


Re-interpreting Krylov-Schur algorithm for \mathcal{X}_i in terms of orthogonal operations on A reveals theoretical and numerical equivalence to aggressive early deflation [Braman/Byers/Mathias'02] as implemented in LAPACK 3.1.

Convergence of individual Ritz vectors x_1, \ldots, x_4 from $\operatorname{span}\{u_1^{(i)}, \ldots, u_4^{(i)}\}$ to eigenvectors vs. ε :



Convergence of individual Ritz vectors x_1, \ldots, x_8 from Krylov subspace $\text{span}\{u_1^{(i)}, \ldots, u_8^{(i)}\}$ to eigenvectors vs. ε :



Larger \mathcal{X}_i add Krylov subspace acceleration.

Convergence with Krylov subspace acceleration

Let v_1, \ldots, v_m be left eigenvectors of A belonging to eigenvalues $\lambda_1, \ldots, \lambda_m$ contained in A_{22} . Let $w \geq m$ be dim of Krylov subspace

$$\mathcal{X}_i = \text{span}\{u_1^{(i)}, \dots, u_w^{(i)}\}.$$

Then [K'06]:

$$d(v_j, \mathcal{X}_i) \le C \|p_i(A_{11})^{-1}\| |p_i(\lambda_j)| \inf_{\phi \in \mathcal{P}_{w-m}} \frac{\|\phi(A_{11})\|}{|\phi(\lambda_j)|} d(v_j, \mathcal{X}_{i-1}).$$

Convergence with Krylov subspace acceleration

Let v_1, \ldots, v_m be left eigenvectors of A belonging to eigenvalues $\lambda_1, \ldots, \lambda_m$ contained in A_{22} . Let $w \geq m$ be dim of Krylov subspace

$$\mathcal{X}_i = \text{span}\{u_1^{(i)}, \dots, u_w^{(i)}\}.$$

Then [K'06]:

$$d(v_j, \mathcal{X}_i) \le C \|p_i(A_{11})^{-1}\| |p_i(\lambda_j)| \inf_{\phi \in \mathcal{P}_{w-m}} \frac{\|\phi(A_{11})\|}{|\phi(\lambda_j)|} d(v_j, \mathcal{X}_{i-1}).$$

- Extra term $\inf_{\phi \in \mathcal{P}_{w-m}} \|\phi(A_{11})\|/|\phi(\lambda_j)|$ can be expected to become very small as $w \gg m$.
- Need extra assumptions on eigenvalue distribution of A_{11} to obtain quantitative results using, e.g., elementary potential theory [Beattie/Embree/Rossi'04].

Aggressive early deflation in practice

Choice of m and w crictical for obtaining good performance.

Current setting in LAPACK's QR and QZ based on experiments with random matrices, e.g.,

$$500 \le n \le 3000$$
: $m = 64$, $w = 96$.

Usually not optimal for practical examples.

Daniel Kressner, TU Berlin

Aggressive early deflation in practice

Choice of m and w crictical for obtaining good performance.

Current setting in LAPACK's QR and QZ based on experiments with random matrices, e.g.,

$$500 \le n \le 3000$$
: $m = 64$, $w = 96$.

Usually not optimal for practical examples.

Ongoing work

- ullet develop heuristics for dynamical choice of w based on convergence bounds;
- replace ScaLAPACK's QR by two-level recursive aggressive early deflation approach.

Conclusions

- Aggressive early deflation = extraction of Ritz vectors from Krylov subspaces associated with the QR algorithm.
- Can be turned into improved convergence bounds and intuitive explanations why aggressive early deflation works so well.

References:

- C. A. Beattie, M. Embree, and J. Rossi. Convergence of restarted Krylov subspaces to invariant subspaces. *SIAM J. Matrix Anal. Appl.*, 25(4):1074–1109, 2004.
- K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II. Aggressive early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.
- B. Kågström and D. Kressner. Multishift variants of the QZ algorithm with aggressive early deflation. SIAM J. Matrix Anal. Appl., 29(1):199-227, 2006.
- D. Kressner. The effect of aggressive early deflation on the convergence of the QR algorithm. Uminf report, Department of Computing Science, Umeå University, 2006.