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MODEL PROBLEM 1: Dirichlet problem

—Au=f onuw (1)
u=g iny= Ow (2)

Fictitious domain method (FDM):

PDE (1) is solved on the fictitious domaih w C (2, with a simple geome-
try. The corresponding stiffness matwxis structured. The original boundary
conditions (2) ony are enforced by Lagrange multipliers or control variables.

Q
I

Classical FDM withl" = ~ Smooth FDM withl™ # ~

(25)(5)-(G) (8%)(%)=(5)




MODEL PROBLEM 2: Signorini problem

—Au=f onw (3)
ou ou
_g>0 — > ) — =0 iny=
u—gqg >0, 8%_0, (u g)an7 0 iny= ow (4)

FDM formulation uses the non-differentiableax-function to express BC (4):

AU + BrAr = f (5)
C,.u=max{0,C,,u—pB,,u—g)}, i=1,...,m

whereB, ;, Br;, andC, ; are rows of Dirichlet and Neumann trace matrices,
respectively.

The equations (5) can be solved by the semi-smooth Newton method, in whic

Jacobian( A BIT)
-\ 0G(u) 0

is determined by the generalized derivatii@(u).



MODEL PROBLEM 2: Newton method = Active set algorithm

(0)Setk :=1,p > 0,e, > 0,u” € R", A ¢ R™,

(1) Define the inactive and active sets by:

A" = {i: c u" = p(B,u —g) >0}

A B[ gt f
B,a O ( I\ ) = | 9
C%Ik: O I

78 = {i: c,u" ! —p(B, U —g) <0}

(2) Solve:

(3) If [|u* — u* Y|/ ||u¥|| < ey, returnu := u*.

(4) Setk := k + 1, and go to step (1).

Remark:The mixed Dirichlet-Neumann problem is solved in each Newton step,
that is described by the non-symmetric saddle-point system.



FORMULATION: Non-symmetric sadle-point system

(5.%)(3)-(5)

General assumptions

A ... non-symmetridn X n)-matrix
. singularwith p = dim Ker A

By, By ... fullrank (m x n)—matrices
... B, #B,

Special FDM assumptions
e nislarge { = 4198401)
em Kn (m = 360)
epKm (p=1)
e A is structuredso that actions oA or (A™!) are "cheap”

e B,, B, are highlysparseso that their actions are "cheap”
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ALGORITHMS based on the Schur complement reduction

Case 1. A non-singular, symmetric
Case 2: A non-singular, non-symmetric
Case 3: A singular, symmetric

Case 4: A singular, non-symmetric



Case 1: A non-singular, symmetric

A BT u f — u=A"'(f-B")\)
(B 0 ) (A) a <g) — BA 'B'A=BA'f—g
N——
negative Schur complemest

Algorithm
1° Assembled := BA™'f — g.
2° Solve iterativelySA = d with S:= BA™'B".
3° Assembleu := A~ (f — B \).

If A is positive defined, then CGM can be used.

Matrix-vector product$u are performed by:

Su = (B(A™ (871))



Case 2: A non-singular, non-symmetric

A B\ /u f\ = u=A'(f-B/)
(82 O><)\>:<g) — BA B/ A=BAf—g
negative Schur complemest

Algorithmis analogous.

e an iterative method for non-symmetric matrices is required
(GMRES, BIiCG, BICGSTAB, ...)

A (A By ) _ Il 0\ /A B
- \B; 0 B,A™! | 0 —-S

Theorem 1 Let A be non-singular. Thedl is invertibleiff Sis invertible.




Case 3: A singular, symmetric

e a generalized inversk' satisfyingA = AATA
e an(n x p)—matrixN whose columns spagter A

Au+B'\=f — f—B'A €ImA L KerA
) 0
u=A(f—B"\) + Na N'(f—B'A)=0
& The reduced system:
Bu— g (BAiBTT BN)(A)(BATng>
~N'B 0 a —N'f
Y

BA'B'A — BNa = BAf — g

If A is positive semidefinite, then it corresponds to the algebra in FETI DDM.



Case 4: A singular, non-symmetric

e a generalized inversk'

e columns of(n x p)—matricesN, M spankerA, KerA', respectively

Au+B/\="f — f—B/X€ImA L KerA'"
0 )
u=A'(f —B/\) +Na MT(f—B/A)=0
& The reduced system:
(S S
Y

B,A'B/ A — BoNa = B,A'f — g



A B/
Theorem 2 The saddle-point matrix := < ! ) IS invertibleiff
2

B, has full row-rank )

KerA N KerB, = {0} > (NSC)

AKerB, NImB, = {0}

/

Remark:The third equality is equivalent to the MinMax condition that is well-
known in the continuous setting:

T
A
4C > 0 : min max v AU >
ucKerB,,u#£0 veKerB;,v#£0 HVHHUH




The generalized Schur complemettie matrix of the reduced system

. —B,A'B] BN
' M'™B, O

Theorem 3 The following three statements are equivalent:

e The necessary and sufficient condition (NSC) holds.
e Aisinvertible.

e S isinvertible.

Remark: The generalized Schur compleméhnts not defined uniquely.



First step of the algorithm = Schur complement reduction:

B, O A g

(2 B;)m(f)@{((& 3)(5)-(2)

u=A(f—B/A) + N«
\
How to solve theeducedsystem again with the saddle-point structure?

e matrix-vector products via Fp := (B, (AT (B 1))
e G, Gy, d, e may be assembled

i 1) Again the Schur complement reduction (the second elimination)
Ea =r with E:= G,F'G/, then A :=F '(d — G, a) and u

< (R.K., Appl. Math. 50(2005))

2) Null-space method

(Farhat, Mandel, Roux: FETI DDM, 1994)



Second step of the algorithm = Null-space method:

(65)(2)-(¢)

Two orthogonal projectorB; andP, ontoKer G; andKer G,

P, : R™ +— Keer, P. =1— GZ<GI<:G;—)_1G]§7 k= 1, 2

Property: KerP,=1ImG, <= PG, =0

e P, splits the saddle-point structure: P,FA + P,G, a = P,d
PFA=Pd, GA=¢ o:=(GG,) " (Gd— GF\)

e P, decomposed = A\j, + Agers, A €IMG,, A, EKerG,
At first: GoA=Gydp, =€ = Ap, =G, (G,G,) e
At second: PiFAk., = Pi(d — FAp,) on KerG,



Theorem 4 Let A be invertibel. The linear operatBiF: Ker G, — Ker G
is invertible.

Proof.

As both null-space&’er G; and Ker G, have the same dimension — p, it is
enough to prove tha&, F is injective.

Let u € Ker G, be such thaP,Fu = 0. ThenFu € Ker P, = Im G| and,
therefore, there i8 € R? so that

Fu=G,B8 and Gyu = 0.

(&%) (%) (5)

where the matrix is the (negative) Schur complemet that is invertible iff
A is invertibel. Thereforg: = 0.

We obtain



Algorithm PSCM

Step 1.a: AssembleG, := —N'B,, G, .= —M 'B/.
Step 1.b: Assembled := B,Alf — g, e:= —M 'f.

Step 1.c: AssembleH; := (G,G| )7}, Hy := (G,G, ).
Step 1.d: Assemble);,, := G, H,e, d :=P;(d — FAp,).
Step 1.e: Solve P;FAk,, = d on Ker G,.

Step 1.f: Assemble\ := A\j, + Ager-

Step 2: Assemblea :=H;G;(d — F\).

Step 3: Assembleu := A'(f — B]\) + Na.

e an iterativeprojectedKrylov subspace method for non-symmetric operators
can be used in Step 1.e
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Find A € R™ sothat FA=d, where d € R™.

Algorithm BiCGSTABe, A’ F,d] — A
Initialize: r® :==d — FA?, p® := r?, f* arbitrary,k := 0
While [[r¥|| > e

1 p'=Fp’

90 ay = (I‘k)TfO/(f)k)Tfo

P §i=rF—qp”

4° g .= Fd

50 wp= (@)Ts/(E)TE

6°  ANFL= AP 4 ayp® + WS

7 = g

]° ﬁkﬂ — (ak/wk><rk+1)TF0/(rk)Tfo
9°  p*t ="+ By (pF — wid)
10° k=k+1

end

(Van der Vorst, 1992)



Find X\ € KerG, sothat P,FA =d, where d € KerG,.

Algorithm ProjBiCGSTABe, \°, F, P, P,,d] — X
Initialize: A" € Ker Gy, r? :=d — P,FA?, p := r?, f arbitrary,k := 0
While |[r¥|| > €

1°  p*:=PFp*

90 Q= (rk)TFO/(ﬁk)TFO

30 & i=rF—qp”

4° § .= P,Fs*

5° wp = (8)Tg/(F)TE

6° AP = AF 4 qPopF + wiPos

7 =g &

8 Brp1 = (ap/wi) (") T/ (r*) T

9 pMli=rF 4 G (pF — wip”)

10° k=k+1

end




Formally solve P,P;FA = P,d, with A° € Ker G,.

Algorithm ProjBiCGSTABe, A’ F, P, P,,d] — X
Initialize: A\’ € Ker Gy, r® := Pod — PP FA?, p° := 1% 7%, k =0
While [[r"]| > €

1° p*:=P,PFp

90 Q= (I’k)TFO/(f)k)TfO

3P &i=rF— qp”

4o & :=P,P,FS

50wy i= (8)Te/(F)TE

6° A= AF 4+ appf + w st

TGI Sy

]° ﬁkﬂ — (ak/wk)(rkﬂ)TFO/(rk)Tfo

9° pMli=rF 4 G (pF — wip”)
10° k=k+1
end
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Consider a family of nested partitions of the fictitious donfaiwith stepsizes:
hj? 0 S] < J

e the first iterate is determined by the result from the nearest lower level

e the terminating toleranceon each level is := vh

Algorithm: Hierarchical Multigrid Scheme

Initialize: Let A?;(e? € Ker Gg)) be given.
ProjBICGSTAB YA, A%Y FO P pO g¥) 5 A©
Forj=1,...,J,

1°  prolongateAl " — A%V

»  projectlg) AU = PISLY

3 ProjBiCGSTABYAZ, AW FO) P P g — Al
end

Return:Ag,, = A&;fe)r.




Motivation

u* ... exact solution of PDE problem
u ... FEM approximation with respect to with the convergence raje

lu"—ul| < CRh?, Au=f
u® ... thek-th iteration
u" — u, Au® =f 4"

When should be iterations terminated”|| <e, =777

VAN

lu” = ull + [lu — u*]

Cw -+ A

Ch? + ||A7Y -

(C+||A T |v)h?  if €:=vh?

lu = u]|

IA IA A

Control parameter may by choosen experimentallyy ~ KC'/||A™|.



OUTLINE

Motivation: Fictitious domain method

Algorithm PSCM: Schur complement method + Null-space method

Inner solver: Projected BICGSTAB

Preconditioning: Hierarchical multigrid

Singular matrices: Poisson-like solver based on circulants

Numerical experiments



Circulant matrices and Fourier transform

ap Qap Q2
as, Qq ... Qas

A — as a9 ... Qg — (a’ Ta) T2a’ 00 o ,Tn—la)
Qp Ap—1 3]

XA = (DXO, DX1, DXQ, SR DXn_1> = DX

Lamma: Let A be circulant. Then
A = X 'DX,

whereX is the DFT matrix and = diag(a),a = Xa,a = A(;, 1).



Multiplying procedure: A'v:= X' (D' (Xv)) ... Moore-Penrose

0° d:=fft(a)

1° v:==fft(v)

2° vi=v.xd! O(2nlog, n)
32 Alv:= ifft(v)

Multiplying procedures: N, N'v (and Ma, M'v)

As AN = 0, the matrixN may be formed by eigenvectors corresponding to zero
eigenvalues.

.
| — DD = diag(1,1,1,0,...,0) = X '=(N,Y), xl('\\'(>

Therefore we can define the operationind(a) = ( (g ) € R”
1° V4 :=ind(a) 1° v:=ifft(v)

O(nl
2°  Na = 1ifft(vy) 2° NTv:=ind(v) } (nlog, n)



Kronecker product of matrices A, € R"=""=, A & R"v*"

a1 Ar ..oaf, A,
A, QA = : : ;
Un 1Az - ah o, A
Lemma 1: (A, ®A,)B,®B,) = A,B,®A,B,
(Ax ® Ay)T - Aj; & A;r/
N = N, ®N,

Lemma2: (A, ® A,V =vec(A,VA ), whereV =vec ' (v).

Vi
V = (Vl, . 7Vny) - R X"y — VeC(V) —
Vi,

Y

€ R™"™



Kronecker product and circulant matriced_et A, A, be circulant then:

A=AQ,+,0A,
—1 —1 —1 —1
= X,'D.X, ® X, 'X, + X,'X, ® X, 'D,X,

= (X;' X (D, @1, +1,®D,) (X, ® X,)
— X7 'DX

with
X = X, ®X, (DFT matrix in 2D)

D=D,®Il,+1,®D, (diagonal matrix)

whereX,, X, are the DFT matriced, = diag(X,a,), D, = diag(X,a,) and
a, = A.(:,1),a, = A,(:, 1), respectively.



Multiplying procedure: A'v := X' (D (Xv))

OO

-
.
=
e
.

o

= vec (V)

= fft(V)

= fft(V')'

.= vec !(Dlvec(V))
= ifft(V)
=ifft(V')'

A'v = vec(V)

< <K<K <K KL<

Number of arithmetic operations::

.= fft(a,), d, = fft(a,)

O(2n(logy n, + logy n,) + n) = O(nlog,n), n=mn.n,

Multiplying procedures: Na, N'v, Ma, M "v

analogous
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CONCLUSIONS

e The method for solving hon-symmetric sadddle-point systems with singu
lar diagonal blocks was presented. It combines the Schur complement re
duction with the null-space method.

e |t can be understood as a generalization of the algebraic description of FE
DDM for non-symmetric and possibly indefinite cases.

e In connection with FDM, it presents the highly efficient solver for solving
separable PDE problems. The fast implementation based on the Poisso
like solver is "matrix free” as the stiffness matrix is not needed to be formed
explicitly.
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