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Sparse reconstruction

@ compressed sensing, compressive sampling, sparse

reconstruction, ...

@ a sparse reconstruction problem, M < N, A € CMxN

b € CM given, find
Crg([i:rllv\supp(c)\ st. Ac=b (1)
@ denote sparsity S = |supp(c)|, interesting case
ScM<N

@ structured matrices A with fast matrix-vector arithemtic



Sparse reconstruction

o basis pu rsUit princip|e, (Donoho, Stark [1989]; Candes, Romberg, Tao [2004-]; Donoho,

Tanner [2004-]; Rauhut [2005-]; Rudelson, Vershynin [2006-])
min ||c[; st. Ac=Db (2)
ceCV

o smallest number &5 such that for all ¢ € CV, supp(c) < S:

HARA
1—55§¥§1+55 (3)
c'C

Theorem. [Candes, Tao]
o if A satisfies ds + dos + 935 < 1 then (2) solves (1)
e condition (3) is satisfied with probabilty 1 — ¢ for random
matrices with Gaussian entries for

M>Cs-S-log(N/e)



Sparse reconstruction

@ general purpose schemes that solve basis pursuit (2) are slow

@ theoretical computer science, computational time sublinear in

N, (Mansour [1995]; Daubechies, Gilbert, Muthukrishnan, Strauss, Zou [2005-])

o greedy methods for random matrices with Gaussian or
Bernoulli entries, (Tropp, Gilbert [2005-])

@ connection to approximation theory, (Temlyakov [2003-]; Cohen, Dahmen,

DeVore [2006])



Nonequispaced FFT

@ trigonometric polynomials f : T — C,

N/2-1

f(X): Z ?ke—27rikx

k=—N/2
@ discrete Fourier transform - DFT (0(W?) or by FFT O(N log 1v))

N/2—1
fi= Y e WV j=_N/2 . N2-1
k=—N/2

o for a finite sampling set X C T - nonequispaced DFT (omny)

f = Af: (aj,k) — (e—2vrikxj-) e (CMXN



Nonequispaced FFT

@ fast Fourier tranform - FFT (Cooley, Tukey 1965; Frigo, Johnson 1997-)
O (N?log N)

] nonequispaced FFT (Dutt, Rokhlin 1993; Beylkin 1995-; Potts, Steidl, Tasche 1997-;

Greengard, Lee 2004; Potts, K. 2002-)
O (Nd log N + [log e|® M)

@ software NFFT3.0 (keiner, Potts, K.)

http://www.tu-chemnitz.de/~potts/nfft



Nonequispaced FFT

@ building block for

computation with curvelets, ridgelets

sparse FFTS (Gilbert, Muthukrishnan, Strauss 2005)

computation with RBF kernels (fast Gauss transform)
reconstruction schemes in computerised tomography, magnetic
resonance imaging

@ typical example from CT

phantom Fourier transform (log) polar grid



Reconstruction from samples

@ reconstruction of signals from their Fourier transform,
common practice (Shannon sampling theorem):

“sampling rate” ~ “bandwidth”  (Nyquist criteria)

o T = [—%, %) N € 2N, . € C; consider the trigonometric
polynomial
N/2—1
f:T—C, f(x)= Z fio2mikx
k=—N/2

e f can be reconstructed from M > N samples y; = f(x;)

@ conditions for d > 1 ...



Reconstruction from samples

o least squares approximation of (x;,y;) € T? x C

well conditioned if max; |x; — Xjy1]| < 1/N (Grochenig 1902)

e minimal norm interpolation of (x;,y;) € T x C
mfin Ifll2 st. f(x) =y

well conditioned if minj |x; — xj11| > 1.6 /N (otss, k. 2006)



Reconstruction from samples

o forsupport T C Iy ={-5,.... 8 —1}, S=|T| < N, we

consider sparse trigonometric polynomials

f:T—-C, f(x)= Z Free—2mikx
keT

@ (non)linear spaces of trigonometric polynomials

Nrcn,, v N(S= (J nNr
TCly:| TI<S

e reconstruct f € I1;,(S) from samples y; at nodes x; € T, i.e.,

yi=f0q)=> ke, j=0,... . M-1
kely



Reconstruction from samples

dimension N, Fourier coefficients fecN
sparsity S = | T|, support T = supp(f)
number of samples M, samples (x;,y;) € T x C

interesting case
S~M<N

nonequispaced Fourier matrix and its Tg-restriction

A= (e 2™k o motkely = (- Prldpgy .. .) € CMXN

A7, = (¢i)ket, € CMXIT

sampling a trigonometric polynomial

y = Af



Algorithms and analysis - Thresholding

Input: y € CM, maximum sparsity S € N

1: find T C Iy to the S largest inner products {|(y, ¢,)|}icy
2: solve |Arc—y|l, = min
3: (fk)keT =cC

Output: fe CN Tcly

Remark:
o we might hope that
<y7¢l> JMOI f( ) 2milx; oy f f X)eZmIXdX _ fl

e computation of the inner products by ({y, ¢,))iciy, = Ay in
O(Nlog N + M) floating point operations



Algorithms and analysis - Orthogonal Matching Pursuit

Input: y e CM, ¢ >0

s=0,rp=y, To=10
repeat
s=s+1
Ts = Ts—1 U {arg maxkeyy |[(rs—1, dy)|}
solve [|AT.ds — y[|, % min
rs=Yy— ATsds
until s =M or |rs|| <e
T = Ts- (?k)keT = ds

@ NT B W

Output: f e CN, T C Iy



Algorithms and analysis - Thresholding

Theorem 1. [Rauhut,K|]
o fix f ey, (S)

@ define its dynamic range by
_ maxker |fil
minkeT ||

@ choose sampling nodes xp, ..., xy_1 independently and
uniformly at random on T or on the grid %IN

o if for some € > 0
M > CR?-S - log(N/€)

@ then with probability at least 1 — € thresholding recovers T
and f



Algorithms and analysis - OMP

Theorem 2. [Rauhut,K|]
e fix f € M,(S), choose sampling nodes as before

@ if for some e >0
M>C-S-log(N/e),

then with probability at least 1 — € orthogonal matching
pursuit selects k; € supp(f)

Theorem 3. [Rauhut,K|]
@ choose sampling nodes as before
o if for some ¢ > 0

M > C-S? log(N/e)

then with probability at least 1 — ¢ OMP recovers every
fe H/N(S)



Algorithms and analysis- recent results

o Rauhut: If
M < C-S%/o,

then with probability exceeding 1 — ¢1/S — c2/0? there exists
an f € M, (S) on which tresholding fails. Similar result for
OMP with S iterations.

@ Needell, Vershynin: If
M>C-S-log*(N)log(1/e),

then with probability at least 1 — € a slighly more expensive
greedy method recovers every f € I, (S).

@ Donoho, Tsaig: greedy methods for basis pursuit (2).



Numerical results

fixed dimension N = 1000, fixed number of samples M = 40,
normalised Fourier coefficients |fx| =1

—OMP, QR, FFT
1 —TH, QR FFT
—BP, MOSEK, FFT

—OMMP, R, FFT
—TH, R, FFT
—BP, MOSEK, FFT |7
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Numerical results

fixed reconstruction rate 90%, fixed sparsity S
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Thresholding (|f| = 1) OMP
generalised oversampling factor M/S vs. dimension N



Numerical results - Implementation

@ fast matrix vector arithmetic with A
@ least squares solver

o QR factorisation with insert
] LSQR (uniformly bounded condition number, Rauhut)

@ available

e Random sampling of sparse trigonometric polynomials Il -
orthogonal matching pursuit versus basis pursuit.

(with Holger Rauhut, Found. Comput. Math., to appear)

o MATLAB toolbox OMP4NFFT (with Holger Rauhut)
o C subroutine library NFFT3 (with Jens Keiner, Daniel Potts)

www.tu-chemnitz.de/~skunis
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... - Matching Pursuit (Pure Greedy)

Input: y € CM, ¢ > 0, maximum number of iterations L € N

4 ks = argmaxyeiy [(rs—1, @)l
5 ke = i+ (rs—1, @y,

6: Fs =V¥s—1— <rsfla ¢ks>¢ks

7. Ts=Ts_1U{ks}

8: until s=Lor |rs]| <e

90 T=T;

Output: fech Tciy



... - Sketch of proof

o fix T C Iy, c € C°, and choose M sampling nodes
independently and uniformly at random on T or on %IN

e for k¢ T and 6 > 0 holds

M52
P ([(ATc, ¢y)| = Md) < dexp I
4flcf3 + svalclid

@ Remark: this quantifies the “quadrature rule”

(Are, ¢n) = (y. ) = Zf e

~M- / 27rikXdX:O



... - Sketch of proof

@ thresholding recovers the correct support if

mi

min (6 Arc)| > max| (¢ Are)|

e for | € T, the triangle inequality yields

M~ Yy, Arc)| = |c + M e, Ar ner )l

. -1
= min|¢j| — max[M~ e, Aryemiy)|

@ hence, thresholding succeeds if

1 .
max M~y Anvgyengp)l < minjgl/2

M=, A < min|gl/2
max|M~ i, Are)l < min|ql/
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