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Sparse reconstruction

compressed sensing, compressive sampling, sparse
reconstruction, ...

a sparse reconstruction problem, M � N, A ∈ CM×N ,
b ∈ CM given, find

min
c∈CN

|supp(c)| s.t. Ac = b (1)

denote sparsity S = |supp(c)|, interesting case

S ≈ M � N

structured matrices A with fast matrix-vector arithemtic



Sparse reconstruction

basis pursuit principle, (Donoho, Stark [1989]; Candes, Romberg, Tao [2004-]; Donoho,

Tanner [2004-]; Rauhut [2005-]; Rudelson, Vershynin [2006-])

min
c∈CN

‖c‖1 s.t. Ac = b (2)

smallest number δS such that for all c ∈ CN , supp(c) ≤ S :

1− δS ≤
càAàAc

càc
≤ 1 + δS (3)

Theorem. [Candes, Tao]

if A satisfies δS + δ2S + δ3S < 1 then (2) solves (1)

condition (3) is satisfied with probabilty 1− ε for random
matrices with Gaussian entries for

M ≥ Cδ · S · log(N/ε)



Sparse reconstruction

general purpose schemes that solve basis pursuit (2) are slow

theoretical computer science, computational time sublinear in
N, (Mansour [1995]; Daubechies, Gilbert, Muthukrishnan, Strauss, Zou [2005-])

greedy methods for random matrices with Gaussian or
Bernoulli entries, (Tropp, Gilbert [2005-])

connection to approximation theory, (Temlyakov [2003-]; Cohen, Dahmen,

DeVore [2006])



Nonequispaced FFT

trigonometric polynomials f : T → C,

f (x) =

N/2−1∑
k=−N/2

f̂ke−2πikx

discrete Fourier transform - DFT (O(N2) or by FFT O(N log N))

fj =

N/2−1∑
k=−N/2

f̂ke−2πikj/N , j = −N/2, . . . ,N/2− 1

for a finite sampling set X ⊂ T - nonequispaced DFT (O(MN))

f = Af̂, (aj ,k) =
(
e−2πikxj

)
∈ CM×N



Nonequispaced FFT

fast Fourier tranform - FFT (Cooley, Tukey 1965; Frigo, Johnson 1997-)

O
(
Nd log N

)
nonequispaced FFT (Dutt, Rokhlin 1993; Beylkin 1995-; Potts, Steidl, Tasche 1997-;

Greengard, Lee 2004; Potts, K. 2002-)

O
(
Nd log N + |log ε|d M

)
software NFFT3.0 (Keiner, Potts, K.)

http://www.tu-chemnitz.de/∼potts/nfft



Nonequispaced FFT

building block for

computation with curvelets, ridgelets
sparse FFTs (Gilbert, Muthukrishnan, Strauss 2005)

computation with RBF kernels (fast Gauss transform)
reconstruction schemes in computerised tomography, magnetic
resonance imaging

typical example from CT

phantom Fourier transform (log) polar grid



Reconstruction from samples

reconstruction of signals from their Fourier transform,
common practice (Shannon sampling theorem):

“sampling rate”∼“bandwidth” (Nyquist criteria)

T = [−1
2 , 1

2), N ∈ 2N, f̂k ∈ C; consider the trigonometric
polynomial

f : T → C, f (x) =

N/2−1∑
k=−N/2

f̂ke−2πikx

f can be reconstructed from M ≥ N samples yj = f (xj)

conditions for d > 1 ...



Reconstruction from samples

least squares approximation of (xj , yj) ∈ Td × C

min
f

M−1∑
j=0

|f (xj)− yj |2

well conditioned if maxj |xj − xj+1| < 1/N (Gröchenig 1992)

minimal norm interpolation of (xj , yj) ∈ Td × C

min
f
‖f ‖2 s.t. f (xj) = yj

well conditioned if minj |xj − xj+1| > 1.6/N (Potts, K. 2006)



Reconstruction from samples

for support T ⊂ IN = {−N
2 , . . . , N

2 − 1}, S = |T | � N, we
consider sparse trigonometric polynomials

f : T → C, f (x) =
∑
k∈T

f̂ke−2πikx

(non)linear spaces of trigonometric polynomials

ΠT ⊂ ΠIN , vs. ΠIN (S) =
⋃

T⊂IN :|T |≤S

ΠT

reconstruct f ∈ ΠIN (S) from samples yj at nodes xj ∈ T, i.e.,

yj = f (xj) =
∑
k∈IN

f̂ke−2πikxj , j = 0, . . . ,M − 1



Reconstruction from samples

dimension N, Fourier coefficients f̂ ∈ CN

sparsity S = |T |, support T = supp(̂f)

number of samples M, samples (xj , yj) ∈ T× C
interesting case

S ∼ M � N

nonequispaced Fourier matrix and its Ts -restriction

A = (e−2πikxj )j=0,...,M−1;k∈IN = (. . .φk |φk+1 . . .) ∈ CM×N

ATs = (φk)k∈Ts ∈ CM×|Ts |

sampling a trigonometric polynomial

y = Af̂



Algorithms and analysis - Thresholding

Input: y ∈ CM , maximum sparsity S ∈ N

1: find T ⊂ IN to the S largest inner products {|〈y,φl〉|}l∈IN

2: solve ‖ATc− y‖2
c→ min

3: (f̂k)k∈T = c

Output: f̂ ∈ CN , T ⊂ IN

Remark:

we might hope that
M−1〈y,φl〉 = M−1

∑M−1
j=0 f (xj)e2πilxj ≈

∫
T f (x)e2πilxdx = f̂l

computation of the inner products by (〈y,φl〉)l∈IN = Aày in
O(N log N + M) floating point operations



Algorithms and analysis - Orthogonal Matching Pursuit

Input: y ∈ CM , ε > 0

1: s = 0, r0 = y , T0 = ∅
2: repeat
3: s = s + 1
4: Ts = Ts−1 ∪ {arg maxk∈IN |〈rs−1,φk〉|}
5: solve ‖ATsds − y‖2

ds→ min
6: rs = y − ATsds

7: until s = M or ‖rs‖ ≤ ε
8: T = Ts , (f̂k)k∈T = ds

Output: f̂ ∈ CN , T ⊂ IN



Algorithms and analysis - Thresholding

Theorem 1. [Rauhut,K.]

fix f ∈ ΠIN (S)

define its dynamic range by

R =
maxk∈T |f̂k |
mink∈T |f̂k |

choose sampling nodes x0, . . . , xM−1 independently and
uniformly at random on T or on the grid 1

N IN

if for some ε > 0

M ≥ CR2 · S · log(N/ε)

then with probability at least 1− ε thresholding recovers T
and f̂



Algorithms and analysis - OMP

Theorem 2. [Rauhut,K.]

fix f ∈ ΠIN (S), choose sampling nodes as before

if for some ε > 0

M ≥ C · S · log(N/ε),

then with probability at least 1− ε orthogonal matching
pursuit selects k1 ∈ supp(̂f)

Theorem 3. [Rauhut,K.]

choose sampling nodes as before

if for some ε > 0

M ≥ C · S2 · log(N/ε)

then with probability at least 1− ε OMP recovers every
f ∈ ΠIN (S)



Algorithms and analysis- recent results

Rauhut: If
M ≤ C · S2/σ,

then with probability exceeding 1− c1/S − c2/σ2 there exists
an f ∈ ΠIN (S) on which tresholding fails. Similar result for
OMP with S iterations.

Needell, Vershynin: If

M ≥ C · S · log∗(N) log(1/ε),

then with probability at least 1− ε a slighly more expensive
greedy method recovers every f ∈ ΠIN (S).

Donoho, Tsaig: greedy methods for basis pursuit (2).



Numerical results

fixed dimension N = 1000, fixed number of samples M = 40,
normalised Fourier coefficients |f̂k | = 1

reconstruction rate vs. sparsity S computation time vs. sparsity S



Numerical results

fixed reconstruction rate 90%, fixed sparsity S

Thresholding (|f̂k | = 1) OMP
generalised oversampling factor M/S vs. dimension N



Numerical results - Implementation

fast matrix vector arithmetic with A

least squares solver

QR factorisation with insert
LSQR (uniformly bounded condition number, Rauhut)

available

Random sampling of sparse trigonometric polynomials II -
orthogonal matching pursuit versus basis pursuit.
(with Holger Rauhut, Found. Comput. Math., to appear)

MATLAB toolbox OMP4NFFT (with Holger Rauhut)

C subroutine library NFFT3 (with Jens Keiner, Daniel Potts)

www.tu-chemnitz.de/∼skunis

http://www.tu-chemnitz.de/~skunis


... - Matching Pursuit (Pure Greedy)

Input: y ∈ CM , ε > 0, maximum number of iterations L ∈ N

1: s = 0, r0 = y, T0 = ∅, f̂ = 0
2: repeat
3: s = s + 1
4: ks = arg maxk∈IN |〈rs−1,φk〉|
5: f̂ks = f̂ks + 〈rs−1,φks

〉
6: rs = rs−1 − 〈rs−1,φks

〉φks

7: Ts = Ts−1 ∪ {ks}
8: until s = L or ‖rs‖ ≤ ε
9: T = Ts

Output: f̂ ∈ CN , T ⊂ IN



... - Sketch of proof

fix T ⊂ IN , c ∈ CS , and choose M sampling nodes
independently and uniformly at random on T or on 1

N IN

for k /∈ T and δ > 0 holds

P (|〈ATc,φk〉| ≥ Mδ) ≤ 4 exp

(
− Mδ2

4‖c‖2
2 + 4

3
√

2
‖c‖1δ

)

Remark: this quantifies the“quadrature rule”

〈ATc,φk〉 = 〈y,φk〉 =
M−1∑
j=0

f (xj)e2πikxj

≈ M ·
∫

T
f (x)e2πikxdx = 0



... - Sketch of proof

thresholding recovers the correct support if

min
j∈T

|〈φj ,ATc〉| > max
k /∈T

|〈φk ,ATc〉|

for l ∈ T , the triangle inequality yields

|M−1〈φl ,ATc〉| = |cl + M−1〈φl ,AT\{l}cT\{l}〉|
≥ min

j∈T
|cj | −max

j∈T
|M−1〈φj ,AT\{j}cT\{j}〉|

hence, thresholding succeeds if

max
j∈T

|M−1〈φj ,AT\{j}cT\{j}〉| < min
j∈T

|cj |/2

max
k /∈T

|M−1〈φk ,ATc〉| < min
j∈T

|cj |/2
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