
Stability of
Krylov Subspace Spectral Methods

James V. Lambers
Department of Energy Resources Engineering

Stanford University

includes joint work with 
Patrick Guidotti and Knut Sølna, UC Irvine

Margot Gerritsen, Stanford University

Harrachov ‘07
August 23, 2007



August 23, 2007 Harrachov '07

Model Variable-coefficient Problem

where

We assume LLLL((((xxxx,,,,DDDD)))) is positive semi-definite, 

and that the coefficients are smooth
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Quick-and-dirty Solution

Let { φφφφνννν } be a set of orthonormal 2π-periodic 

functions. Then, an approximate solution is

This works if the φφφφνννν are nearly eigenfunctions, 
but if not, how can we compute 〈〈〈〈φφφφνννν, , , , eeee

----LLLL((((xxxx,,,,DDDD))))ttttffff〉〉〉〉 as 

accurately and efficiently as possible?

where

3/30



August 23, 2007 Harrachov '07

Elements of Functions of Matrices

If AAAA is NNNN ×××× NNNN and symmetric, then uuuuTTTTeeee----AtAtAtAtvvvv is 

given by a Riemann-Stieltjes integral

provided the measure αααα((((λλλλ), ), ), ), which is based on 
the spectral decomposition of AAAA, is positive and 

increasing

This is the case if vvvv = uuuu, or if vvvv is a small 

perturbation of uuuu
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The uuuu ≠≠≠≠ vvvv Case

For general uuuu and vvvv, the bilinear form uuuuTTTTeeee----AtAtAtAtvvvv
can be obtained by writing it as the difference 

quotient

where δδδδ is a small constant. Both forms lead to 
Riemann-Stieltjes integrals with positive, 

increasing measures

How can we approximate these integrals?
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Gaussian Quadrature

• These two integrals can be approximated 
using Gaussian quadrature rules (G. Golub
and G. Meurant, '94)

• The nodes and weights are obtained by 
applying the Lanczos algorithm to AAAA with 
starting vectors uuuu and v to produce v to produce v to produce v to produce TTTT, the 
tridiagonal matrix of recursion coefficients

• The nodes are the eigenvalues of TTTT, and the 
weights are the products of the first 
components of the left and right eigenvectors

• We want rules for each Fourier component
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What if AAAA is a differential operator?

• If uuuu = vvvv = eeeeω = = = = eeee
iiiiωωωωxxxx, then recursion coefficients 

ααααjjjj, ββββjjjj are functions of ωωωω
• Let AAAA = = = = LLLL((((xxxx,,,,DDDD)))) from before, with qqqq((((xxxx) = 0.) = 0.) = 0.) = 0.

The recursion coefficients for a 2-node

Gaussian rule are

where ==== AvgAvgAvgAvg ffff
• Similar formulas apply in higher dimensions
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Updating Coefficients for u ≠≠≠≠ v

To produce modified recursion coefficients
generated by rrrr0000 = u= u= u= u and rrrr0000 + δδδδvvvv:

This is particularly useful if the rrrrjjjj, ααααjjjj, ββββjjjj are 
parameterized families and vvvv is a fixed vector
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Krylov Subspace Spectral Methods

To compute Fourier components of uuuu((((xxxx,,,,ttttnnnn++++1111)))):
• Apply symmetric Lanczos algorithm to LLLL with 

starting vector eeeeiiiiωωωωxxxx

• Use fast updating to obtain modified recursion 
coefficients for starting vectors eeeeiiiiωωωωxxxx, eeeeiiiiωωωωxxxx ++++ δδδδuuuunnnn

• Approximate, by Gaussian quadrature,

• Finally,
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Why Do it This Way?

• Other, more general Krylov subspace 

methods (e.g. M. Hochbruck and C. Lubich, 

'96) use a single Krylov subspace for each 
time step, with uuuunnnn as the starting vector, to 

approximate exp(exp(exp(exp(----LtLtLtLt))))uuuunnnn

• KSS methods obtain Fourier components from 

derivatives of frequency-dependent Krylov 
subspace bases in the direction of uuuunnnn

• Thus, each component receives individual 

attention, enhancing accuracy and stability
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Properties

• They're High-Order Accurate!
Each Fourier component of uuuu((((xxxx,,,,ttttnnnn+1+1+1+1)))) is 

computed with local accuracy of OOOO((((∆∆∆∆tttt2222KKKK)))), 
where KKKK is the number of nodes in the 

Gaussian rule

• They're Explicit but Very Stable!
If pppp((((xxxx)))) is constant and qqqq((((xxxx)))) is bandlimited, then 

for K K K K = 1= 1= 1= 1, method is unconditionally stable!  

For K K K K = 2= 2= 2= 2, solution operator is bounded

independently of ∆∆∆∆tttt and NNNN
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Demonstrating Stability

Fourier, KSS methods applied to uuuutttt = = = = 
(sin((sin((sin((sin(xxxx))))uuuu))))xxxx, smooth initial data until TTTT = 5= 5= 5= 5

Contrasting Krylov subspace methods 
applied to parabolic problem on different 
grids

They do not experience the same difficulties 

with stiffness as other Krylov subspace 

methods, or the same weak instability as the 

unsmoothed Fourier method
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Properties, cont’d

• They’re efficient and scalable!
– Performance of MATLAB implementation

comparable or 
superior to that of 
built-in ODE 
solvers

– Accuracy and 
efficiency scale to 
finer grids or 
higher spatial 
dimension
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In the Limit: Derivatives of Moments!

• Each Fourier component approximates the 

Gâteaux derivative

• KKKK-node approximate solution has the form
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The Splitting Perspective

• Derivatives of nodes and weights w.r.t. δδδδ are 
Fourier components of applications of 
pseudodifferential operators applied to uuuu((((xxxx,,,,ttttnnnn))))

• KKKK-node approximate solution has form

where and each CCCCkkkk is a constant-coefficient

pseudo-differential operator, of the same 
order as LLLL((((xxxx,,,,DDDD)))), and positive semi-definite
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Simplest Splittings

• The case KKKK ==== 1111 reduces to solving the 

averaged-coefficient problem exactly, after 

applying forward Euler with the residual 

operator
• In the case KKKK ==== 2222, with pppp((((xxxx)))) constant, the 

operators VVVVkkkk are second-order, and yet the 

approximate solution operator SSSSNNNN((((∆∆∆∆tttt)))) satisfies

where BBBB is a bounded operator!
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General Splittings 

• Operators CCCCkkkk and VVVVkkkk are defined in terms of 

derivatives of nodes and weights, which 

represent pseudo-differential operators
• For each ωωωω, let TTTTωωωω be the KKKK × × × × KKKK Jacobi matrix 

output by Lanczos, with initial vector eeeeωωωω

– Derivatives of nodes: TTTTωωωω ==== QQQQΛΛΛΛωωωωQQQQ
TTTT, where nodes 

are on diagonal of ΛΛΛΛωωωω, and ΛΛΛΛωωωω’ ==== QQQQTTTTTTTTωωωω’QQQQ, where 
TTTTωωωω’    is available from fast updating algorithm

– Derivatives of weights: from solution of systems of 
form AAAAwwwwjjjj’ = b = b = b = b, where AAAA ==== ((((TTTTωωωω(1:(1:(1:(1:KKKK−−−−1,1:1,1:1,1:1,1:KKKK−−−−1)1)1)1) ---- λλλλjjjjIIII) ) ) ) 
+ + + + RRRRjjjj, for jjjj ==== 1, 1, 1, 1, …,,,, KKKK, with RRRRjjjj a rank-one matrix
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The Wave Equation

• The integrands are obtained from the spectral 

decomposition of the propagator (P. Guidotti, 

JL and K. Sølna '06):

• For each Fourier component, OOOO((((∆∆∆∆tttt4444KKKK)))) local 

accuracy!
• For KKKK = 1= 1= 1= 1, pppp((((xxxx)))) constant, qqqq((((xxxx)))) bandlimited, 

global error is 3rd order in time, and the 

method is unconditionally stable!
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Results for the Wave Equation

Comparison of 2-node KSS method with semi-

implicit 2nd-order method of H.-O. Kreiss, N. 

Petersson and J. Yström, and 4th-order explicit 

scheme of B. Gustafsson and E. Mossberg
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Discontinuous Coefficients and Data
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The Modified Perona-Malik equation

• The Perona-Malik equation is a nonlinear 
diffusion equation used for image de-noising

• It exhibits both forward and backward
diffusion, and so is ill-posed, but surprisingly 
well-behaved numerically

• A modification proposed by P. Guidotti 
weakens the nonlinearity slightly, to obtain 
well-posedness while still de-noising

• KSS methods can limit effects of backward 
diffusion by truncating recursion coefficients 
for selected frequencies
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De-Noising by Modified Perona-Malik
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Handling Discontinuities

• In progress: other bases (e.g. wavelets, multiwavelets) 

for problems with rough or discontinuous coefficients
• Ideally, trial functions should conform to the geometry 

of the symbol as much as possible

23/30

• Encouraging results: Freud 
reprojection (A. Gelb & J. 

Tanner ’06; code by A. 
Nelson) to deal with Gibbs 

phenomenon

• Improves accuracy for heat 
equation, stability for wave
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Preconditioning Through 
Homogenizing Transformations

• KSS methods are most accurate when the
coefficients are smooth, so trial functions are 
also approximate eigenfunctions

• Problem can be preconditioned by applying 
unitary similarity transformations that 
homogenize coefficients

• In 1-D, leading coefficient pppp((((xxxx)))) is easily 
homogenized by a change of independent 
variable; to make unitary, add a diagonal 
transformation
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Continuing the Process

• To homogenize qqqq((((xxxx)))), we use a transformation 
of the form LLLL1111((((xxxx,,,,DDDD)))) ==== UUUU((((xxxx,,,,DDDD))))

*LLLL((((xxxx,,,,DDDD))))UUUU((((xxxx,,,,DDDD)))):

where DDDD++++ is the pseudo-inverse of DDDD
• This introduces variable coefficients of order 

–2222, but process can be repeated
• Generalizes to higher dimensions, can be 

applied efficiently using Fast FIO algorithms 
(Candes, Demanet and Ying '06)
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Smoothing

These transformations yield an operator that is 

nearly constant-coefficient.  

The gain in accuracy is comparable to that 

achieved by deferred correction with an

analytically exact residual, which KSS methods 

naturally provide!
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In Progress: Systems of Equations

• Generalization to systems of equations is 
straightforward

• For a system of the form uuuutttt = = = = AAAA((((xxxx,,,,DDDD)u)u)u)u, 
where each entry of AAAA((((xxxx,,,,DDDD)))) is a differential 
operator, we can use trial functions vvvvjjjj ⊕⊕⊕⊕ eeeeiiiiωωωωxxxx

where vvvvjjjj is an eigenvector of AvgAvgAvgAvgxxxx AAAA((((xxxx,,,,ωωωω))))
• For systems arising from acoustics, in which 

the solution operator can be expressed in 
terms of products of entries of AAAA((((xxxx,,,,DDDD)))), order 
OOOO((((∆∆∆∆tttt4444KKKK)))) accuracy is possible

• More on this topic at ICNAAM ‘07
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Conclusions

• Krylov subspace spectral methods are 
showing more promise as their development 
progresses
– Applicability to problems with rough behavior
– Stability like that of implicit methods
– Competitive performance and scalability

• Through the splitting perspective, they 
provide an effective means of stably
extending other solution methods to variable-
coefficient problems

• Still much to do!  Especially implementation 
with other bases of trial functions
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