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Abstract

The intention of this work is to present, in the per-
spective of numerical results, one of the recent
generalisations of the Navier-Stokes model of fluid
motion. The main aim is to follow the theoretical
results achieved in [4] and to study the capabilities
of the constitutive model, for which we can prove
theoreticaly that there exists a solution.

Governing equations

An homogeneous incompressible lubricant fills the
domain. The steady motion is described by the fol-
lowing equations (density ρ is a constant):

divvvv = 0 in Ω (1)

ρ[∇vvv]vvv = divTTT in Ω. (2)

The bearing wall is held fixed, while the journal
rotates along its own axis; the no-slip Dirichlet
boundary conditions complete the system (1)-(2):

vvv0 = 000 onΓB ⊂ ∂Ω (the outer circle), (3)
vvv0 = v0τττ onΓJ ⊂ ∂Ω (the inner circle), (4)

where v0 = ωRJ is given. We fix the pressure by
setting the condition

1

|Ω0|

∫
Ω0

p dx = p0, Ω0 ⊂ Ω. (5)

The Cauchy stress tensor TTT we consider in
the form

TTT = −pIII + 2ν(p, |DDD|2)DDD, (6)

where |DDD|2 = trDDD2, and DDD = 1
2(∇vvv + (∇vvv)T ). For

a Newtonian fluid, one sets a constant viscosity

ν = ν0, (7)

leading to Navier-Stokes equations. When dealing
with huge pressures, the viscosity should depend
on the pressure. Based on experiments, the fol-
lowing pressure-thickening model is often used:

ν = ν0e
αp. (8)

Based on our theoretical results, we propose a
model which is, withal, shear-thinning

ν = ν0(ν1 + e−qαp̄ + ν2|DDD|2)
r−2
2 . (9)

Here p̄ = max{p, p−}, with p− a given constant.

Existence of the solution

The mathematical results concerning the fluids
with pressure dependent viscosities are rare; spe-
cially, there is no existence theory applicable to our
problem when using the model (8).
There are recent results which includes the
model (9). In [4] the existence of a weak solution
to the system (1)-(5) is established. These results
strongly use the shear-thinning properties of the
model. For details see [2, 6].

Journal bearings

In their simplest form, a journal and its bearing
consist of two eccentric, rigid, cylinders. The bear-
ing is held stationary while the journal rotates at
an angular velocity ω.
A continuous fluid film separates the solid sur-
faces. The film is generated and maintained by
the viscous drag of the surfaces as they are slid-
ing relative to one another.
As an approximation, we reduce the motion
to the plane perpendicular to the axial direc-
tion, considering the 2D geometry in Figure 1.

Figure 1:
Journal bearing geometry

Figure 2:
FEM meshes

The domain is an eccentric annular ring, the radii
of circles being RB and RJ and the distance be-
tween their centres being e. Defining the ra-
dial clearance C = RB −RJ we denote ε = e/C,
ε ∈ 〈0, 1〉 the eccentricity ratio.

Discretisation

We use standard Galerkin FEM, with quadrilateral
mesh (velocities being in Q2 and pressures in P1

on each element). The system of nonlinear alge-
braic equations is solved by Newton iterations with
damping, the Jacobian matrix being approximated
by finite differences and the application of its in-
verse being performed by UMFPACKsolver.
The discretisation is made on concentric annulus
with RJ = 0.5 and RB = 1.0, and the equations are
transformed to obtain solution for given parame-
ters RB, RJ and ε, see Figure 2.
Our setting is:

RB = 31.29 mm
RJ = 31.25 mm
ω = 250 rad/s

ρ = 820 kg/m3

ν0 = 0.05 Pa.s

In the numerical experiments below, we confront
the model (9) with the model (8). See also [3, 5]
for a similar study.

Numerical experiments

First we examine the exponential model (8), with
different values of parameter α, see Figure 3:

α = 0.0, α = 10−7, α = 2× 10−7

(See [1] for values determined by experiments.)

Figure 3: Reaction force and max. viscosities for model (8)

The graphs for α > 0 cease due to the fact, that
we were no more able to find a numerical solution
for higher ε.
For α = 2 × 10−7 we compare the previous results
with the model (9), where we set

r = 3/2 and q = 4 (it holds (e−qαp̄)
r−2
2 = eαp̄)

and where

ν1 =10−10 ν2 =10−8, ν2 =10−10, ν2 =10−12

see the magnitudes of reacting forces on Figure 4.

Figure 4: Reacting force magnitude for model (8)
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