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Introduction: Krylov subspace methods (1)

• Methods that are based on projection onto the Krylov subspaces

Kn(A, v1) ≡ span{v1, Av1, . . . , A
n−1v1}, n = 1, 2, . . . ,

where A is a given square matrix and v1 is the initial vector.

• Must generate bases of Kn(A, v1), n = 1, 2, . . . .

• Trivial choice: v1, Av1, . . . , A
n−1v1.

This is computationally infeasible (recall the Power Method).



Introduction: Krylov subspace methods (1)

• For numerical stability: Well conditioned basis.

• For computational efficiency: Short recurrence.

• Best of both worlds: Orthogonal basis computed by short recurrence.

• First such method for Ax = b:
Conjugate gradient (CG) method of Hestenes and Stiefel (1952).

• Methods that are based on projection onto the Krylov subspaces

Kn(A, v1) ≡ span{v1, Av1, . . . , A
n−1v1}, n = 1, 2, . . . ,

where A is a given square matrix and v1 is the initial vector.

• Must generate bases of Kn(A, v1), n = 1, 2, . . . .

• Trivial choice: v1, Av1, . . . , A
n−1v1.

This is computationally infeasible (recall the Power Method).



Introduction: Krylov subspace methods (2)

The classical CG method
of Hestenes and Stiefel
(US National Bureau of Standards 
Preprint No. 1659, March 10, 1952)

The residual vectors r0, r1, . . . , rn−1
are generated by a short recurrence
and form an orthogonal basis of Kn(A, r0).



Introduction: Krylov subspace methods (3)

• CG is for symmetric positive definite A.

• (Paige and Saunders, 1975):
Short recurrence & orthogonal basis methods for symmetric A.



Introduction: Krylov subspace methods (4)

• By the end of the 1970s it was unknown if such methods existed
also for general unsymmetric A.

• Gene Golub posed this fundamental question at Gatlinburg VIII
(now Householder VIII) held in Oxford from July 5 to 11, 1981:

What does this mean?



Introduction: Krylov subspace methods (5)
• We want to solve Ax = b iteratively, starting from x0.

• Step n = 1, 2, . . . : xn = xn−1 + αn−1pn−1,
direction vector pn−1, scalar αn−1 (both to be determined).

• Krylov subspace method:
span{p0, . . . , pn−1} = Kn(A, v1) (v1 = r0 = b − Ax0).

• CG-like descent method:
Error is minimized in some given inner product norm, ‖ · ‖B = 〈·, ·〉

1/2
B .



Introduction: Krylov subspace methods (5)
• We want to solve Ax = b iteratively, starting from x0.

• Step n = 1, 2, . . . : xn = xn−1 + αn−1pn−1,
direction vector pn−1, scalar αn−1 (both to be determined).

• Krylov subspace method:
span{p0, . . . , pn−1} = Kn(A, v1) (v1 = r0 = b − Ax0).

• CG-like descent method:
Error is minimized in some given inner product norm, ‖ · ‖B = 〈·, ·〉

1/2
B .

• ‖x − xn‖B is minimal iff x − xn ⊥B span{p0, . . . , pn−1}.

• By construction, this is satisfied iff

αn−1 =
〈x − xn−1, pn−1〉B
〈pn−1, pn−1〉B

and 〈pn−1, pj〉B = 0, j = 0, . . . , n − 2,

i.e. p0, . . . , pn−1 must be a B-orthogonal basis of Kn(A, v1).



Introduction: Krylov subspace methods (6)

What are the details of this result?

• Faber and Manteuffel answered Golub’s question in 1984:

For a general matrix A there exists no CG-like descent method
(related results by Voevodin and Tyrtyshnikov in the early 1980s).



Optimal short recurrences (1)

Notation:

• Matrix A ∈ CN×N , nonsingular.

• Matrix B ∈ CN×N , Hermitian positive definite (HPD),
defining the B-inner product, 〈x, y〉B ≡ y∗Bx.

• Initial vector v1 ∈ C
N .

• d = d(A, v1), the grade of v1 with respect to A,

K1(A, v1) ⊂ . . . ⊂ Kd(A, v1) = Kd+1(A, v1) = . . . = KN (A, v1) .



Optimal short recurrences (1)

Notation:

• Matrix A ∈ CN×N , nonsingular.

• Matrix B ∈ CN×N , Hermitian positive definite (HPD),
defining the B-inner product, 〈x, y〉B ≡ y∗Bx.

• Initial vector v1 ∈ C
N .

• d = d(A, v1), the grade of v1 with respect to A,

K1(A, v1) ⊂ . . . ⊂ Kd(A, v1) = Kd+1(A, v1) = . . . = KN (A, v1) .

Our goal:
Generate a B-orthogonal basis v1, . . . , vd of Kd(A, v1).

1. span{v1, . . . , vn} = Kn(A, v1), for n = 1, . . . , d,
2. 〈vj , vk〉B = 0, for j �= k, j, k = 1, . . . , d.



Optimal short recurrences (2)
• Standard way for generating the B-orthogonal basis: Arnoldi’s method.

vn+1 = Avn −
n

m=1

hm,nvm , n = 1, . . . , d− 1 ,

hm,n =
〈Avn, vm〉B
〈vm, vm〉B

, d = dimKN(A, v1) .

(No normalization for convenience.)



Optimal short recurrences (2)

matrix of size d× (d− 1)

• Standard way for generating the B-orthogonal basis: Arnoldi’s method.

vn+1 = Avn −
n

m=1

hm,nvm , n = 1, . . . , d− 1 ,

hm,n =
〈Avn, vm〉B
〈vm, vm〉B

, d = dimKN(A, v1) .

(No normalization for convenience.)

• Rewritten in matrix notation: AVd−1 = VdHd,d−1, where

Vd ≡ [v1, . . . , vd], Hd,d−1 ≡

h1,1 · · · h1,d−1

1
. . .

...
. . . hd−1,d−1

1

V ∗

d BVd is diagonal , d = dimKN (A, v1) .



• The full recurrence in Arnoldi’s method,

vn+1 = Avn −
n

m=1

hm,nvm , n = 1, . . . , d− 1 ,

is an optimal (s + 2)-term recurrence when

vn+1 = Avn −

n

m=n−s

hm,nvm , n = 1, . . . , d− 1 .

Optimal short recurrences (3)

• For s = 1: Optimal 3-term recurrence,

vn+1 = Avn − hn,nvn − hn−1,nvn−1

• Why optimal?
1. Only one multiplication with A is performed.
2. Only the previous s + 1 vectors are required.



Optimal short recurrences (4)
s︷ ︸︸ ︷ d− s− 2︷ ︸︸ ︷






∗ ∗ · · · ∗ 0 · · · 0

∗ ∗ ∗ · · · ∗
. . .

...
. . .

. . .
. . .

. . . 0
. . .

. . .
. . . ∗

. . .
. . .

. . .
...

. . .
. . . ∗
. . . ∗

∗






largest upper triangle that is zero

Optimal (s + 2)-term recurrence:
Hd,d−1 is (s + 2)-band Hessenberg

(e.g. 3-band Hessenberg = tridiagonal)
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Definition (L. and Strakoš, 2007)

Given A, B as above and a nonnegative integer s with s + 2 ≤ dmin(A).
(dmin(A) = degree of A’s minimal polynomial.)

Then A admits for B an optimal (s + 2)-term recurrence, if

• for any v1 the matrix Hd,d−1 is at most (s + 2)-band Hessenberg, and
• for at least one v1 the matrix Hd,d−1 is (s + 2)-band Hessenberg.

largest upper triangle that is zero

Optimal (s + 2)-term recurrence:
Hd,d−1 is (s + 2)-band Hessenberg

(e.g. 3-band Hessenberg = tridiagonal)



Optimal short recurrences (5)

• Hd,d−1 is at most (s + 2)-band Hessenberg if

hm,n =
〈Avn, vm〉B
〈vm, vm〉B

= 0 , for n > m + s , n = 1, . . . , d − 1 .

• Therefore: hm,n = 0 ⇐⇒ 0 = 〈Avn, vm〉B = 〈vn, A
+vm〉B ,

where A+ ≡ B−1A∗B is the B-adjoint of A.



Optimal short recurrences (5)

• If A+ = ps(A) for a polynomial of degree s, then A+vm ∈ Km+s(A, v1).

• Then for n > m + s: vn ⊥B A+vm ⇔ hm,n = 0.

• Hence: If A+ = ps(A), then Hd,d−1 is at most (s + 2)-band Hessenberg.

• The condition A+ = ps(A) is essential in this context.

• Hd,d−1 is at most (s + 2)-band Hessenberg if

hm,n =
〈Avn, vm〉B
〈vm, vm〉B

= 0 , for n > m + s , n = 1, . . . , d − 1 .

• Therefore: hm,n = 0 ⇐⇒ 0 = 〈Avn, vm〉B = 〈vn, A
+vm〉B ,

where A+ ≡ B−1A∗B is the B-adjoint of A.



Optimal short recurrences (6)

Definition

If A+ = ps(A), where ps is a polynomial of the smallest possible degree s,
then A is called B-normal(s).

Theorem (Faber and Manteuffel, 1984)
For A, B as above, and a nonnegative integer s with s + 2 < dmin(A):

A admits for the given B an optimal (s + 2)-term recurrence if and only if
A is B-normal(s).

• This is a (generalized) characterization of normality.

• Sufficiency is rather straightforward, necessity is not.
Key words from the proof of necessity in (Faber and Manteuffel, 1984) in-
clude: “continuous function” (analysis), “closed set of smaller dimension”
(topology), “wedge product” (multilinear algebra).

• In (Faber, L., Tichý, 2007) we give two new proofs,
both using only “elementary” tools.



Optimal short recurrences (7)

In (Faber, L., Tichý, 2007) we explain why necessity is so difficult to prove:

• Assumption: For any v1,

(1) A [v1, . . . , vd−1] = [v1, . . . , vd−1, vd]Hd,d−1,

where Hd,d−1 is (s + 2)-band Hessenberg. To prove: A is B-normal(s).



Optimal short recurrences (7)

In (Faber, L., Tichý, 2007) we explain why necessity is so difficult to prove:

• Assumption: For any v1,

(1) A [v1, . . . , vd−1] = [v1, . . . , vd−1, vd]Hd,d−1,

where Hd,d−1 is (s + 2)-band Hessenberg. To prove: A is B-normal(s).

• By construction, Avd ∈ Kd(A, v1), i.e. Avd =
d
j=1 hj,dvj.

Adding this in (1) gives

(2) A [v1, . . . , vd−1, vd] = [v1, . . . , vd−1, vd]Hd,d.

But we don’t know whether Hd,d is (s + 2)-band Hessenberg.



Optimal short recurrences (7)

In (Faber, L., Tichý, 2007) we explain why necessity is so difficult to prove:

• Assumption: For any v1,

(1) A [v1, . . . , vd−1] = [v1, . . . , vd−1, vd]Hd,d−1,

where Hd,d−1 is (s + 2)-band Hessenberg. To prove: A is B-normal(s).

• By construction, Avd ∈ Kd(A, v1), i.e. Avd =
d
j=1 hj,dvj.

Adding this in (1) gives

(2) A [v1, . . . , vd−1, vd] = [v1, . . . , vd−1, vd]Hd,d.

But we don’t know whether Hd,d is (s + 2)-band Hessenberg.

• Hd,d is the matrix representation of A : Kd(A, v1) → Kd(A, v1)
with respect to the orthonormal basis v1, . . . , vd.

• Problem: Prove something about the linear operator A, without complete
knowledge of the structure of its matrix representation.



Characterization and examples (1)

• In practice A is given and we ask:
Does there exist an HPD B such that A is B-normal(s) with small s?

• Standard example: A = A∗ and B = I, then A+ = p1(A) for p1(z) = z.



Characterization and examples (1)

• In practice A is given and we ask:
Does there exist an HPD B such that A is B-normal(s) with small s?

• Standard example: A = A∗ and B = I, then A+ = p1(A) for p1(z) = z.

• More interesting example: Saddle point matrices.

A =
A1 AT2
−A2 A3

, B = B(γ) =
A1 − γIm AT2

A2 γIk − A3
,

where A1 = AT1 > 0, A3 = AT3 ≥ 0, and A2 ∈ R
k×m has full rank k.

• A is a standard saddle point matrix with negated second block row.

• Transformation: symmetric indefinite into nonsymmetric positive real.

• Theorem (L. and Parlett, 2007)

B = BT > 0 holds if ‖A2‖
2 < (λmin(A1) − γ) (γ − λmax(A3)),

and in this case A is B-normal(1).
(Generalization of (Fischer et al., 1998); (Benzi and Simoncini, 2006).)
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Characterization and examples (2)

New CG method vs. MATLAB's MINRES 
for a Stokes test problem from IFISS
• solid : normalized MINRES residual norms
• solid : normalized CG residual norms
• dashed : normalized CG error norms

• In (L. and Parlett, 2007) a corresponding 3-term CG method is
constructed and analyzed. This method appears to be competitive
with MINRES:



Characterization and examples (3)

General characterization:

Theorem. (L. and Strakoš, 2007)
A is B-normal(s) if and only if

1. A is diagonalizable with the eigendecomposition A = WΛW−1, and

2. B = (WDW ∗)−1, where D is HPD and block diagonal
with blocks corresponding to those of Λ, and

3. Λ∗ = ps(Λ) for a polynomial ps of (smallest possible) degree s.



Characterization and examples (3)

General characterization:

Theorem. (L. and Strakoš, 2007)
A is B-normal(s) if and only if

1. A is diagonalizable with the eigendecomposition A = WΛW−1, and

2. B = (WDW ∗)−1, where D is HPD and block diagonal
with blocks corresponding to those of Λ, and

3. Λ∗ = ps(Λ) for a polynomial ps of (smallest possible) degree s.

• Every A = WΛW−1 is B-normal(s) for some HPD B and some s,
but no optimal short recurrence in the nondiagonalizable case.

• s is the smallest degree of a polynomial ps for which ps(Λ) = Λ∗.



Characterization and examples (4)

Theorem. (Faber and Manteuffel, 1984; Khavinson and Świa̧tek, 2003)

1. s = 1 if and only if the eigenvalues of A lie on a line in C (are collinear).

2. If the eigenvalues of A are not collinear,
the shortest optimal recurrence A may admit for any HPD B
has length at least dmin(A)/3 + 4.

=⇒ Except for a few unimportant cases, the length of the optimal recurrence
is either 3 or dmin(A) − 1.

=⇒ Overabundant supply of Krylov subspace methods for general A.



Characterization and examples (4)

Theorem. (Faber and Manteuffel, 1984; Khavinson and Świa̧tek, 2003)

1. s = 1 if and only if the eigenvalues of A lie on a line in C (are collinear).

2. If the eigenvalues of A are not collinear,
the shortest optimal recurrence A may admit for any HPD B
has length at least dmin(A)/3 + 4.

=⇒ Except for a few unimportant cases, the length of the optimal recurrence
is either 3 or dmin(A) − 1.

=⇒ Overabundant supply of Krylov subspace methods for general A.

Options for Ax = b in case the eigenvalues of A are not collinear:

• Orthogonality but full recurrence (GMRES).
• Short recurrence but no orthogonality (BiCG, QMR, etc.).
• “Preconditioners” P so that PA is B-normal(1) for some B,

e.g. (Concus and Golub, 1978) and (Widlund, 1978).
• Special types of recurrences (Isometric Arnoldi).



Characterization and examples (5)

• (Gragg, 1982) discovered the isometric Arnoldi process:
Orthogonal Krylov subspace bases for unitary A can be generated by a
(non-optimal) 3-term recurrence of the form

vn+1 = Avn − βn,1Avn−1 − βn,2vn

(stable implementation is in form of two coupled 2-term recurrences).

• This algorithm is used for solving unitary eigenvalue problems and linear
systems with shifted unitary matrices.



Characterization and examples (5)

• Generalized in (Barth and Manteuffel, 2000):
If A+ = r(A) for r = p/q, where p and q have degrees s and t,
a B-orthogonal Krylov subspace can be generated by a (non-optimal)
recurrence of length at most t + s + 2.

• In case A is unitary: A∗ = A−1, hence p(z) = 1, q(z) = z.

• (Gragg, 1982) discovered the isometric Arnoldi process:
Orthogonal Krylov subspace bases for unitary A can be generated by a
(non-optimal) 3-term recurrence of the form

vn+1 = Avn − βn,1Avn−1 − βn,2vn

(stable implementation is in form of two coupled 2-term recurrences).

• This algorithm is used for solving unitary eigenvalue problems and linear
systems with shifted unitary matrices.



Characterization and examples (5)

• Are thre any other matrices A whose adjoint A+ (for some B) is a low
degree rational function in A?

• Theorem (L., 2007)
There is an HPD B such that A+ = r(A) with small deg r ≡ max{deg p, deg q}
if and only if either dmin(A) is small,
or A is diagonalizable with collinear or concyclic eigenvalues.

More precisely:
For diagonalizable A with n ≥ 4 distinct eigenvalues that are neither collinear
nor concyclic,

dr(A) >
n

5
, dp(A) >

n

3
, and 1 ≤

dp(A)

dr(A)
< 5.



Concluding remarks
• Completely reworked the theory of short recurrences for generating or-

thogonal Krylov subspace bases; new, mathematically rigorous definitions
of all important concepts have been given.

• In particular, here we discussed:

new proofs of the fundamental theorem of Faber and Manteuffel,
a new 3-term CG method for saddle point matrices,
the existence of alternative (isometric Arnoldi style) recurrences.

• Visit http://www.math.tu-berlin.de/~liesen for the related papers:

J.L. and P. Saylor, Orthogonal Hessenberg reduction and orthogonal Krylov
subspace bases, SINUM 42 (2005).

J.L. and Z. Strakoš, On optimal short recurrences for generating orthogo-
nal Krylov subspace bases, to appear in SIREV.

J.L., When is the adjoint of a matrix a low degree rational function in the
matrix?, to appear in SIMAX.

V. Faber, J.L. and P. Tichý, The Faber-Manteuffel Theorem for linear
operators, submitted.

J.L. and B. N. Parlett, On nonsymmetric saddle point matrices that allow
conjugate gradient iterations, submitted.


