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Introduction: Krylov subspace methods (1)

e Methods that are based on projection onto the Krylov subspaces
Kn(A,v1) = span{vy, Avy,..., A" '}, n=1,2,...,

where A is a given square matrix and v is the initial vector.
e Must generate bases of K,,(A4,v1), n=1,2,....

e Trivial choice: vy, Avq,..., An_l’Ul.
This is computationally infeasible (recall the Power Method).



Introduction: Krylov subspace methods (1)

Methods that are based on projection onto the Krylov subspaces
Kn(A,v1) = span{vy, Avy,..., A" o}, n=1,2,...,

where A is a given square matrix and v is the initial vector.
Must generate bases of KC,,(A4,v1), n=1,2,....

Trivial choice: vy, Avy,..., A" to;.
This is computationally infeasible (recall the Power Method).

For numerical stability: Well conditioned basis.
For computational efficiency: Short recurrence.
Best of both worlds: Orthogonal basis computed by short recurrence.

First such method for Az = b:
Conjugate gradient (CG) method of Hestenes and Stiefel (1952).



Introduction: Krylov subspace methods (2)

In case the matrix A is symmetric and positive dafinite,l the

following formmlas are used in the conjugate gradient methed.

(3:1a) P, = T, = k=rAx {xﬂ arbitrary)
(3:1b) a 1r1|2
- 1 = - . .
TR The classical CG method
i of Hestenes and Stiefel
(3:1c) e P Bl Tl T 5

(US National Bureau of Standards
Preprint No. 1659, March 10, 1952)

(3:1d) ri,q = T; = a;Ap,
il
(3:1e) b 4 :
The residual vectors rg,r1,...,7n_1

are generated by a short recurrence
and form an orthogonal basis of IC,, (A, o).

(3:1£) . Piz1 = T1aa ™ bipi s




Introduction: Krylov subspace methods (3)

e CG is for symmetric positive definite A.

e (Paige and Saunders, 1975):
Short recurrence & orthogonal basis methods for symmetric A.

SIAM J. Numer. ANaL.
Vol. 12, No. 4, September 1975

SOLUTION OF SPARSE INDEFINITE SYSTEMS OF LINEAR
EQUATIONS*

C. C. PAIGEt anp M. A. SAUNDERSI

Abstract. The method of conjugate gradients for solving systems of linear equations with a sym-
metric positive definite matrix 4 is given as a logical development of the Lanczos algorithm for tn-

liummumguhig_mipmach suggestsnumerical algorithms for solving such systems when A4 1s

symmetric but indefinite JThese methods have advantages when A 1s large and sparse.




Introduction: Krylov subspace methods (4)

e By the end of the 1970s it was unknown if such methods existed
also for general unsymmetric A.

e Gene Golub posed this fundamental question at Gatlinburg VIII
(now Householder VIII) held in Oxford from July 5 to 11, 1981:

SIGNUM
NEWSLETTER

A Quarterly Publication of the ACM Special
Interest Group on Numerical Mathematics

December 1981

Volume 16

Number L

What does this mean?

It is not uncommon for speakers to pose an open
problem to their audience during their talk. What
is unprecedented is for such a proposition to be
backed by some stake money. Perhaps a new era in
numerical analysis sponsorship began at Gatlinburg
VIII when three of the participants offered prize
money for the solution of problems which they
posed during the meeting. I list the challenges
below so that you can make a bid for glory (or
cash) by solving them.

A prize of $500 has been offered by Gene Golub fo
the construction of_a 3-term conjugate gradient

like descent method’ for non-symmetric real
matrices or s proof that there can be no such




Introduction: Krylov subspace methods (5)

We want to solve Ax = b iteratively, starting from xg.

Stepn=1,2,...: Tp, = Tp_1+ On_1Pn—1,
direction vector p,_1, scalar a,,—1 (both to be determined).

Krylov subspace method:
span{pg, ..., pn_1} = Kn(A,v1) (vi=1r9g=0b— Axg).

CG-like descent method: 1/2

Error is minimized in some given inner product norm, || - || = (-,*) g -



Introduction: Krylov subspace methods (5)

We want to solve Ax = b iteratively, starting from xg.

Stepn=1,2,...: Tp, = Tp_1+ On_1Pn—1,
direction vector p,_1, scalar a,,—1 (both to be determined).

Krylov subspace method:
span{pg, ..., pn_1} = Kn(A,v1) (vi=1r9g=0b— Axg).

CG-like descent method:

Error is minimized in some given inner product norm, || - || = (-,*) g -
|z — z,|| g is minimal iff z — x,, L g span{pg,...,Pn-1}
By construction, this is satisfied ift

(* — Tp—1,DPn—1)B
(Pn—1,Pn—1)B

Op—1 = and <pn—1apj>B — 07 ] — 07 SN (2 27

i.e|po,...,Pn_1 must be a B-orthogonal basis of IC,,(A,v1).




Introduction: Krylov subspace methods (6)

e Faber and Manteuffel answered Golub’s question in 1984:

For a general matrix A there exists no CG-like descent method
(related results by Voevodin and Tyrtyshnikov in the early 1980s).

SIAM J. NUMER, ANAL. © 1984 Society for Industrial and Applied Mathematics
Vol. 21, No. 2, April 1984 011

NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF A CONJUGATE GRADIENT METHOD*

VANCE FABERT anp THOMAS MANTEUFFELT

Abstract. We characterize the class CG(s) of matrices A for which the linear system Ax=b can be
solved by an s-term conjugate gradient method. We show that, except for a few anomalies, the class CG(s)
consists of matrices A for which conjugate gradient methods are already known. These matrices are the
Hermitian matrices, A*= A, and the matrices of the form A = ¢'(dI + B), with B*=—B.

What are the details of this result?




Optimal short recurrences (1)

Notation:

o Matrix A € CN*N nonsingular.

e Matrix B € CV*¥ Hermitian positive definite (HPD),
defining the B-inner product, (z,y)p = y* Bz.

e Initial vector v; € CV.

e d=d(A,v1), the grade of v; with respect to A,

Kl(A,’Ul) C ... C Kd(A,Ul) — ICd+1(A,vl) = ... /CN(A,Ul).



Optimal short recurrences (1)

Notation:

o Matrix A € CN*N nonsingular.

e Matrix B € CV*¥ Hermitian positive definite (HPD),
defining the B-inner product, (z,y)p = y* Bz.

e Initial vector v; € CV.

e d=d(A,v1), the grade of v; with respect to A,

Kl(A,Ul) C ... C Kd(A,Ul) = ICd+1(A, ”01) = ... = /CN(A,Ul).
Our goal:
Generate a B-orthogonal basis vy, ...,vq of Ig(A,vy).

1. span{vy,...,v,} =K, (A4,v1), for n=1,...,d,
2. <’Uj,’U]<;>B :0, for j#k‘, ],k:].,,d




Optimal short recurrences (2)

e Standard way for generating the B-orthogonal basis: Arnoldi’s method.

Unt1 = Av, — th,nvm, n=1,...,d—1,
m=1
A mny ¥m .
hmn = (Avn, v >B, d=dimKn(A,v1).
<Um7vm>B

(No normalization for convenience.)



Optimal short recurrences (2)

e Standard way for generating the B-orthogonal basis: Arnoldi’s method.

Unt1 = Av, — th,nvm, n=1,...,d—1,
m=1
A mny ¥m .
hmn = (Avn, v >B, d=dimKn(A,v1).
<Um7vm>B

(No normalization for convenience.)

e Rewritten in matrix notation: AV, 1 = V;H, 41, where

Vi = v, ..., 4l Hjq1 =

hi
1

hi,d—1

ha—1,d-1

1

VBV, is diagonal, d=dim/Ky(A,v1).

matrix of size d x (d — 1)




Optimal short recurrences (3)

e The full recurrence in Arnoldi’s method,

n

VUpi1 = Av, — i AmpnVm, m=1,...,d—1,

is an optimal (s + 2)-term recurrence when

Upi1 = Av, — i Aoy nVm, m=1...,d—1.

e For s = 1: Optimal 3-term recurrence,
Un4+1 = Avn — hn,nvn — hn—l,nvn—l
e Why optimal?

1. Only one multiplication with A is performed.
2. Only the previous s + 1 vectors are required.



Optimal short recurrences (4)

largest upper triangle that is zero

Optimal (s + 2)-term recurrence:
Hg -1 s (s+ 2)-band Hessenberg

* (e.g. 3-band Hessenberg = tridiagonal)




Optimal short recurrences (4)

largest upper triangle that is zero

Optimal (s + 2)-term recurrence:
Hg -1 s (s+ 2)-band Hessenberg

* (e.g. 3-band Hessenberg = tridiagonal)

Definition (L. and Strakos, 2007)

Given A, B as above and a nonnegative integer s with s + 2 < d,in (A4).
(dmin(A) = degree of A’s minimal polynomial.)
Then A admits for B an optimal (s 4 2)-term recurrence, if

e for any v; the matrix Hy 41 is at most (s + 2)-band Hessenberg, and
o for at least one v; the matrix H; 41 is (s 4+ 2)-band Hessenberg.



Optimal short recurrences (5)

e H;, 1 is at most (s + 2)-band Hessenberg if

<Avn7 Um>B

<vm7 vm>B

hmon = =0, for n>m+s, n=1,...,d—1.

e Therefore: hy, ., =0 < 0 = (Avy,vm)B = (Un, ATup)B,
where AT = B~1A*B is the B-adjoint of A.



Optimal short recurrences (5)

Hg -1 is at most (s + 2)-band Hessenberg if

<Avn7 Um>B

<vm7 Um>B

hmon = =0, for n>m+s, n=1,...,d—1.

Therefore: hy, =0 <= 0 = (Avg,vm) = (Un, ATUn) B,
where AT = B~1A*B is the B-adjoint of A.

If AT =p,(A) for a polynomial of degree s, then AT v,, € K,,1s(A,v1).
Then forn >m+s: v, lp ATv, < hyu,=0.

Hence: If AT =p,(A), then Hy 41 is at most (s + 2)-band Hessenberg.

The condition AT = ps(A) is essential in this context.



Optimal short recurrences (6)

Definition

If AT =p,(A), where p, is a polynomial of the smallest possible degree s,
then A is called B-normal(s).

Theorem (Faber and Manteuffel, 1984)
For A, B as above, and a nonnegative integer s with s + 2 < dy,in(A):

A admits for the given B an optimal (s + 2)-term recurrence if and only if
A is B-normal(s).

e This is a (generalized) characterization of normality.

e Sufficiency is rather straightforward, necessity is not.
Key words from the proof of necessity in (Faber and Manteuffel, 1984) in-
clude: “continuous function” (analysis), “closed set of smaller dimension”
(topology), “wedge product” (multilinear algebra).

e In (Faber, L., Tichy, 2007) we give two new proofs,
both using only “elementary” tools.



Optimal short recurrences (7)

In (Faber, L., Tichy, 2007) we explain why necessity is so difficult to prove:
e Assumption: For any v,

(1) Alvy,...,vq_1] = [fvl,...,vd_l,vd],

where Hy 41 is (s + 2)-band Hessenberg. To prove: A is B-normal(s).



Optimal short recurrences (7)

In (Faber, L., Tichy, 2007) we explain why necessity is so difficult to prove:
e Assumption: For any v,

(1) Alvy,...,vq_1] = [fvl,...,vd_l,vd],

where Hy 41 is (s + 2)-band Hessenberg. To prove: A is B-normal(s).
e By construction, Avg € Kg4(A,v1), i.e. Avg = Z?Zl hj.dv;.

Adding this in (1) gives

2)  Alvr.sva-1{va) = o1, var,val Had

But we don’t know whether Hg q is (s + 2)-band Hessenberyg.



Optimal short recurrences (7)

In (Faber, L., Tichy, 2007) we explain why necessity is so difficult to prove:

e Assumption: For any v,

(1) Alvy,...,vq_1] = [fvl,...,vd_l,vd],

where Hy 41 is (s + 2)-band Hessenberg. To prove: A is B-normal(s).

e By construction, Avg € K4(A,v1), i.e. Avg = 2?21 hj.dv;.
Adding this in (1) gives

2)  Alvr.sva-1{va) = o1, var,val Had

But we don’t know whether Hg q is (s + 2)-band Hessenberyg.

e H,, is the matrix representation of A : Ky(A4,v1) = Kq(A,v1)
with respect to the orthonormal basis vy, ..., vq4.

e Problem: Prove something about the linear operator A, without complete
knowledge of the structure of its matrixz representation.



Characterization and examples (1)

e In practice A is given and we ask:
Does there exist an HPD B such that A is B-normal(s) with small s?

e Standard example: A = A* and B = I, then AT = p;(A) for p1(2) = z.



Characterization and examples (1)

In practice A is given and we ask:
Does there exist an HPD B such that A is B-normal(s) with small s?

Standard example: A = A* and B = I, then AT = p;(A) for p1(z) = 2.
More interesting example: Saddle point matrices.

Al AT ] Al — ’)/I AT
A= 2 | B=B(y)= m 2 :
[ _A2 A3 (7) AQ ’}/Ik — A3
where A1 = A1 >0, A3 = AL >0, and Ay € R**™ has full rank k.
A is a standard saddle point matrix with negated second block row.

Transformation: symmetric indefinite into nonsymmetric positive real.
Theorem (L. and Parlett, 2007)
B = BT > 0 holds if HA2H2 < (Amin(Al) — ’7) (’)/ — )\maX(AS)>7

and in this case A is B-normal(1).
(Generalization of (Fischer et al., 1998); (Benzi and Simoncini, 2006).)



Characterization and examples (2)

e In (L. and Parlett, 2007) a corresponding 3-term CG method is
constructed and analyzed. This method appears to be competitive
with MINRES:

10 T T T T T | 3

New CG method vs. MATLAB's MINRES
for a Stokes test problem from IFISS

* solid : normalized MINRES residual norms
» s0lid : normalized CG residual norms

e dashed : normalized CG error norms

| | | | | |
0 100 200 300 400 500 600



Characterization and examples (3)

General characterization:
Theorem. (L. and Strakos, 2007)
A is B-normal(s) if and only if
1. A is diagonalizable with the eigendecomposition A = WAW !, and

2. B=(WDW*)~! where D is HPD and block diagonal
with blocks corresponding to those of A, and

3. A* = ps(A) for a polynomial p,; of (smallest possible) degree s.



Characterization and examples (3)

General characterization:

Theorem. (L. and Strakos, 2007)
A is B-normal(s) if and only if
1. A is diagonalizable with the eigendecomposition A = WAW !, and

2. B=(WDW*)~! where D is HPD and block diagonal
with blocks corresponding to those of A, and

3. A* = ps(A) for a polynomial p,; of (smallest possible) degree s.

e Every A= WAW ! is B-normal(s) for some HPD B and some s,
but no optimal short recurrence in the nondiagonalizable case.

e s is the smallest degree of a polynomial p, for which ps(A) = A*.



Characterization and examples (4)

Theorem. (Faber and Manteuffel, 1984; Khavinson and Swi@tek, 2003)
1. s =1 if and only if the eigenvalues of A lie on a line in C (are collinear).

2. If the eigenvalues of A are not collinear,

the shortest optimal recurrence A may admit for any HPD B
has length at least dynin(A)/3 + 4.

—> Except for a few unimportant cases, the length of the optimal recurrence
is either 3 or dyin(A) — 1.
—| Overabundant supply of Krylov subspace methods for general A.




Characterization and examples (4)

Theorem. (Faber and Manteuffel, 1984; Khavinson and SWi@tek, 2003)
1. s =1 if and only if the eigenvalues of A lie on a line in C (are collinear).
2. If the eigenvalues of A are not collinear,

the shortest optimal recurrence A may admit for any HPD B
has length at least dynin(A)/3 + 4.

—> Except for a few unimportant cases, the length of the optimal recurrence
is either 3 or dyin(A) — 1.
—| Overabundant supply of Krylov subspace methods for general A.

Options for Ax = b in case the eigenvalues of A are not collinear:

e Orthogonality but full recurrence (GMRES).

e Short recurrence but no orthogonality (BiCG, QMR, etc.).

e “Preconditioners” P so that PA is B-normal(1) for some B,
e.g. (Concus and Golub, 1978) and (Widlund, 1978).

e Special types of recurrences (Isometric Arnoldi).




Characterization and examples (5)

o (Gragg, 1982) discovered the isometric Arnoldi process:
Orthogonal Krylov subspace bases for unitary A can be generated by a
(non-optimal) 3-term recurrence of the form

Un4+1 — Avn — 6n,1Avn—1 — ﬁn,Qvn

(stable implementation is in form of two coupled 2-term recurrences).

e This algorithm is used for solving unitary eigenvalue problems and linear
systems with shifted unitary matrices.



Characterization and examples (5)

(Gragg, 1982) discovered the isometric Arnoldi process:
Orthogonal Krylov subspace bases for unitary A can be generated by a
(non-optimal) 3-term recurrence of the form

Un4+1 — Avn — 6n,1Avn—1 — ﬁn,Qvn

(stable implementation is in form of two coupled 2-term recurrences).

This algorithm is used for solving unitary eigenvalue problems and linear
systems with shifted unitary matrices.

Generalized in (Barth and Manteuffel, 2000):

If A¥ =r(A) for r = p/q, where p and q have degrees s and t,

a B-orthogonal Krylov subspace can be generated by a (non-optimal)
recurrence of length at most ¢t + s + 2.

In case A is unitary: A* = A™! hence p(z) = 1, q(2) = 2.



Characterization and examples (5)

e Are thre any other matrices A whose adjoint AT (for some B) is a low
degree rational function in A?

e Theorem (L., 2007)
There is an HPD B such that AT = r(A) with smalldeg r = max{deg p, deg ¢}
if and only if either dpn(A) is small,
or A is diagonalizable with collinear or concyclic eigenvalues.

More precisely:
For diagonalizable A with n > 4 distinct eigenvalues that are neither collinear

nor concyclic,

ﬁ&
N
G

o}
%

D>
~



Concluding remarks

e Completely reworked the theory of short recurrences for generating or-
thogonal Krylov subspace bases; new, mathematically rigorous definitions
of all important concepts have been given.

e In particular, here we discussed:

new proofs of the fundamental theorem of Faber and Manteuffel,
a new 3-term CG method for saddle point matrices,
the existence of alternative (isometric Arnoldi style) recurrences.

e Visit http://www.math.tu-berlin.de/“liesen for the related papers:

J.L. and P. Saylor, Orthogonal Hessenberg reduction and orthogonal Krylov
subspace bases, SINUM 42 (2005).

J.L. and Z. Strakos, On optimal short recurrences for generating orthogo-
nal Krylov subspace bases, to appear in SIREV.

J.L., When s the adjoint of a matriz a low degree rational function in the
matriz?, to appear in SIMAX.

V. Faber, J.L. and P. Tichy, The Faber-Manteuffel Theorem for linear
operators, submitted.

J.L. and B. N. Parlett, On nonsymmetric saddle point matrices that allow
conjugate gradient iterations, submitted.



