Numerical Simulations of 3D Fluid-Structure interacion

Martin Mádlík

Mathematical Institute of Charles University

Computational Methods with Applications Harrachov August 21 2007

> Supervisor: František Maršík Thermo-mechanical Institute CAS

Outline

- 2 Mathematical formulation
- 3 Numerical method

Motivation

Biological problem: Blood flow in vessels

- Solid and Fluid parts (2 domains)
- Interaction of materials
- Various kind of materials (Easy to change Constitutive relations)
- Full 3D setting

Usual assumptions

Incompressibility, Isotermicity

The ALE

- V₀ Material volume *initial configuration*
- $\mathcal{V}_{(t)}$ Material volume actual state
- $x^i = \vec{x}(X^i, t)$ deform.
- $V_{(t)}$ Control volume $y^i = \vec{y}(X^i, t)$ deform.

Position and velocity in coordinate system y^i

$$\begin{split} \vec{y}(\vec{X},t) &= \vec{x}(\vec{X},t) - \vec{w}(\vec{X},t) \\ \left. \frac{\partial \vec{y}}{\partial t} \right|_{X} &= \vec{v}_{V(t)} = \vec{v} - \frac{\partial \vec{w}}{\partial t} \right|_{X} \end{split}$$

The ALE

- V₀ Material volume *initial configuration*
- $\mathcal{V}_{(t)}$ Material volume actual state
- $x^i = \vec{x}(X^i, t)$ deform.
- $V_{(t)}$ Control volume $y^i = \vec{y}(X^i, t)$ deform.

Position and velocity in coordinate system y'

$$\begin{split} \vec{y}(\vec{X},t) &= \vec{x}(\vec{X},t) - \vec{w}(\vec{X},t) \\ \frac{\partial \vec{y}}{\partial t}\Big|_{X} &= \vec{v}_{V_{(t)}} = \vec{v} - \frac{\partial \vec{w}}{\partial t}\Big|_{X} \end{split}$$

The ALE

- V₀ Material volume *initial configuration*
- $\mathcal{V}_{(t)}$ Material volume actual state
- $x^i = \vec{x}(X^i, t)$ deform.

• $V_{(t)}$ Control volume $y^i = \vec{y}(X^i, t)$ deform.

Position and velocity in coordinate system y^i

$$\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t) - \vec{w}(\vec{X},t)$$
$$\frac{\partial \vec{y}}{\partial t}\Big|_{X} = \vec{v}_{V_{(t)}} = \vec{v} - \frac{\partial \vec{w}}{\partial t}\Big|_{X}$$

The ALE

- V₀ Material volume *initial configuration*
- $\mathcal{V}_{(t)}$ Material volume actual state
- $x^i = \vec{x}(X^i, t)$ deform.
- $V_{(t)}$ Control volume $y^i = \vec{y}(X^i, t)$ deform.

Position and velocity in coordinate system y^i

$$\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t) - \vec{w}(\vec{X},t)$$
$$\frac{\partial \vec{y}}{\partial t}\Big|_{X} = \vec{v}_{V_{(t)}} = \vec{v} - \frac{\partial \vec{w}}{\partial t}\Big|_{X}$$

The ALE

- V₀ Material volume *initial configuration*
- $\mathcal{V}_{(t)}$ Material volume actual state
- $x^i = \vec{x}(X^i, t)$ deform.
- $V_{(t)}$ Control volume $y^i = \vec{y}(X^i, t)$ deform.

Position and velocity in coordinate system y^i

$$egin{aligned} ec{y}(ec{X},t) &= ec{x}(ec{X},t) - ec{w}(ec{X},t) \ rac{\partial ec{y}}{\partial t} \Big|_X &= ec{v}_{V_{(t)}} = ec{v} - rac{\partial ec{w}}{\partial t} \Big|_X \end{aligned}$$

Extensive quantity

$$\Phi(t) = \int_{\mathcal{V}_0} \Phi(ec{X},t) d\mathcal{V} = \int_{\mathcal{V}_{(t)}} \varphi(ec{x},t) dv = \int_{V_{(t)}} \varphi(ec{y},t) dv_y$$

General balance

$$\frac{d\Phi}{dt} = \dot{\Phi} = \mathcal{L}(\Phi) + \mathcal{P}(\Phi)$$

- \mathcal{L} Total flux
- \mathcal{P} Total production

Extensive quantity

$$\Phi(t) = \int_{\mathcal{V}_0} \Phi(ec{X},t) d\mathcal{V} = \int_{\mathcal{V}_{(t)}} arphi(ec{x},t) dv = \int_{V_{(t)}} arphi(ec{y},t) dv_y$$

General balance

$$rac{d\Phi}{dt} = \dot{\Phi} = \mathcal{L}(\Phi) + \mathcal{P}(\Phi)$$

- $\bullet \ \mathcal{L}$ Total flux
- $\bullet \ \mathcal{P}$ Total production

The balance law in the integral form

$$\int_{\mathcal{V}_0} \frac{\partial}{\partial t} \Phi j_y d\mathcal{V} + \int_{\partial \mathcal{V}_0} \Phi (v^k - v_{V_t}^k) j_y \frac{\partial X^K}{\partial y^k} dA_K = \int_{\partial \mathcal{V}_0} I^k (\Phi) j_y \frac{\partial X^K}{\partial y^k} dA_K + \int_{\mathcal{V}_0} \sigma(\Phi) j_y d\mathcal{V}.$$

Local balance in the ALE

$$\frac{\partial}{\partial t}(j_{y}\phi) + \frac{\partial}{\partial X^{K}} \left\{ \left[\phi(v^{k} - v_{V_{t}}^{k}) - l^{k}(\Phi) \right] j_{y} \frac{\partial X^{K}}{\partial y^{k}} \right\} - j_{y}\sigma(\Phi) = 0$$

The balance law in the integral form

$$\int_{\mathcal{V}_0} \frac{\partial}{\partial t} \Phi j_y d\mathcal{V} + \int_{\partial \mathcal{V}_0} \Phi (v^k - v_{V_t}^k) j_y \frac{\partial X^K}{\partial y^k} dA_K = \int_{\partial \mathcal{V}_0} I^k (\Phi) j_y \frac{\partial X^K}{\partial y^k} dA_K + \int_{\mathcal{V}_0} \sigma(\Phi) j_y d\mathcal{V}.$$

Local balance in the ALE

$$\frac{\partial}{\partial t}(j_{y}\phi) + \frac{\partial}{\partial X^{K}} \left\{ \left[\phi(v^{k} - v_{V_{t}}^{k}) - l^{k}(\Phi) \right] j_{y} \frac{\partial X^{K}}{\partial y^{k}} \right\} - j_{y}\sigma(\Phi) = 0$$

The total mass:
$$m(t)=\int_{\mathcal{V}_0}arrho(ec{X},t)d\mathcal{V}=\int_{\mathcal{V}_{(t)}}arrho(ec{x},t)dv$$

The balance

$$\frac{\partial}{\partial t}(j_{y}\varrho) + \frac{\partial}{\partial X^{K}} \left\{ \left[\varrho(v^{k} - v_{V_{t}}^{k}) \right] j_{y} \frac{\partial X^{K}}{\partial y^{k}} \right\} = 0$$

Question

Why is the ALE a generalization of the Lagrangian, Eulerian view?

Let $V_{(t)}$ be static

```
\vec{y} = \vec{X}, j_y = 1, remains:
```

$$\frac{\partial \varrho}{\partial t} + \frac{\partial (\varrho v^k)}{\partial x^k} = 0.$$

The total mass:
$$m(t)=\int_{\mathcal{V}_0}arrho(ec{X},t)d\mathcal{V}=\int_{\mathcal{V}_{(t)}}arrho(ec{x},t)dv$$

The balance

$$\frac{\partial}{\partial t}(j_{y}\varrho) + \frac{\partial}{\partial X^{K}} \left\{ \left[\varrho(v^{k} - v_{V_{t}}^{k}) \right] j_{y} \frac{\partial X^{K}}{\partial y^{k}} \right\} = 0$$

Question

Why is the ALE a generalization of the Lagrangian, Eulerian view?

Let $V_{(t)}$ be static

 $\vec{y} = \vec{X}, j_y = 1$, remains:

$$\frac{\partial \varrho}{\partial t} + \frac{\partial (\varrho v^k)}{\partial x^k} = 0.$$

The total mass:
$$\mathit{m}(t) = \int_{\mathcal{V}_0} arrho(ec{X},t) d\mathcal{V} = \int_{\mathcal{V}_{(t)}} arrho(ec{x},t) dv$$

The balance

$$\frac{\partial}{\partial t}(j_{y}\varrho) + \frac{\partial}{\partial X^{K}} \left\{ \left[\varrho(v^{k} - v_{V_{t}}^{k}) \right] j_{y} \frac{\partial X^{K}}{\partial y^{k}} \right\} = 0$$

Question

Why is the ALE a generalization of the Lagrangian, Eulerian view?

Let $V_{(t)}$ be static

 $\vec{y} = \vec{X}, j_y = 1$, remains:

$$\frac{\partial \varrho}{\partial t} + \frac{\partial (\varrho v^k)}{\partial x^k} = 0.$$

The total mass:
$$m(t)=\int_{\mathcal{V}_0}arrho(ec{X},t)d\mathcal{V}=\int_{\mathcal{V}_{(t)}}arrho(ec{x},t)dv$$

The balance

$$\frac{\partial}{\partial t}(j_{y}\varrho) + \frac{\partial}{\partial X^{K}} \left\{ \left[\varrho(v^{k} - v_{V_{t}}^{k}) \right] j_{y} \frac{\partial X^{K}}{\partial y^{k}} \right\} = 0$$

Question

Why is the ALE a generalization of the Lagrangian, Eulerian view?

Let $V_{(t)}$ be static $\vec{y} = \vec{X}, j_y = 1$, remains: $\frac{\partial \varrho}{\partial t} + \frac{\partial (\varrho v^k)}{\partial x^k} = 0.$

Let $V_{(t)}$ be a flow

$$j_y = j$$
, $\vec{v}_{V_{(t)}} = \vec{v}$, remains:

$$\frac{\partial}{\partial t}(j\varrho) = 0$$

The total mass:
$$\mathit{m}(t) = \int_{\mathcal{V}_0} arrho(ec{X},t) d\mathcal{V} = \int_{\mathcal{V}_{(t)}} arrho(ec{x},t) dv$$

The balance

$$\frac{\partial}{\partial t}(j_{y}\varrho) + \frac{\partial}{\partial X^{K}} \left\{ \left[\varrho(v^{k} - v_{V_{t}}^{k}) \right] j_{y} \frac{\partial X^{K}}{\partial y^{k}} \right\} = 0$$

Question

Why is the ALE a generalization of the Lagrangian, Eulerian view?

Let
$$V_{(t)}$$
 be static
 $\vec{y} = \vec{X}, j_y = 1$, remains:
 $\frac{\partial \varrho}{\partial t} + \frac{\partial (\varrho v^k)}{\partial x^k} = 0.$

Let
$$V_{(t)}$$
 be a flow
 $j_y = j, \ \vec{v}_{V_{(t)}} = \vec{v}, \text{ remains:}$
 $\frac{\partial}{\partial t}(j\varrho) = 0$

The main idea

- Ω^s solid, Ω^f fluid
- Main unknown functions :
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}
- Deformation
 - $\vec{u}^{s}(\vec{X},t) = \vec{x}^{s}(\vec{X},t) \vec{X}$ $\vec{u}^{f}(\vec{X},t) = \vec{y}(\vec{X},t) \vec{X}$

- BC on $\Gamma^{fs} \times [0, T]$
 - no slip condition $\vec{v}^f = \vec{v}^s$
 - forces equilibrium $\mathbf{t}^s \vec{n}^s = -\mathbf{t}^f \vec{n}^f$
 - Deformation $\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t)$

The main idea • Ω^s solid, Ω^f fluid

- Main un lun aun fun ation
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}^s
- Deformation

$$\vec{u}^{s}(\vec{X},t) = \vec{x}^{s}(\vec{X},t) - \vec{X}$$

$$\vec{u}^{f}(\vec{X},t) = \vec{y}(\vec{X},t) - \vec{X}$$

- BC on $\Gamma^{fs} \times [0, T]$
 - no slip condition $\vec{v}^f = \vec{v}^s$
 - forces equilibrium $\mathbf{t}^s \vec{n}^s = -\mathbf{t}^f \vec{n}^f$
 - Deformation $\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t)$

- Ω^s solid, Ω^f fluid
- Main unknown functions :
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}^s
- Deformation $\vec{u}^{s}(\vec{X},t) = \vec{x}^{s}(\vec{X},t) - \vec{X}$ $\vec{u}^{f}(\vec{X},t) = \vec{y}(\vec{X},t) - \vec{X}$

- BC on $\Gamma^{fs} \times [0, T]$
 - no slip condition $\vec{v}^f = \vec{v}^s$
 - forces equilibrium $\mathbf{t}^s \vec{n}^s = -\mathbf{t}^f \vec{n}^f$
 - Deformation $\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t)$

 $\Gamma_{I} \xrightarrow{\Gamma_{E}} \Gamma_{O}$

- The main idea
 - Ω^s solid, Ω^f fluid
 - Main unknown functions :
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}^s
 - Deformation

$$ec{u}^{s}(ec{X},t) = ec{x}^{s}(ec{X},t) - ec{X} \ ec{u}^{f}(ec{X},t) = ec{y}(ec{X},t) - ec{X}$$

- no slip condition $\vec{v}^f = \vec{v}^s$
- forces equilibrium $\mathbf{t}^s \vec{n}^s = -\mathbf{t}^f \vec{n}^f$
- Deformation $\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t)$

The main idea

- Ω^s solid, Ω^f fluid
- Main unknown functions :
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}^s
- Deformation

$$ec{u}^{s}(ec{X},t) = ec{x}^{s}(ec{X},t) - ec{X} \ ec{u}^{f}(ec{X},t) = ec{y}(ec{X},t) - ec{X}$$

- no slip condition $\vec{v}^f = \vec{v}^s$
- forces equilibrium $\mathbf{t}^{s}\vec{n}^{s} = -\mathbf{t}^{f}\vec{n}^{f}$
- Deformation $\vec{y}(\vec{X}, t) = \vec{x}(\vec{X}, t)$

The main idea

- Ω^s solid, Ω^f fluid
- Main unknown functions :
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}^s
- Deformation

$$ec{u}^{s}(ec{X},t) = ec{x}^{s}(ec{X},t) - ec{X} \ ec{u}^{f}(ec{X},t) = ec{y}(ec{X},t) - ec{X}$$

 $\Gamma_{I} \qquad \qquad \Gamma_{I} \qquad \qquad \Gamma_{O} \qquad \Gamma_{O} \qquad \qquad \Gamma_{O} \qquad \qquad \Gamma_{O} \qquad \qquad \Gamma_{O} \qquad \Gamma_{O}$

- no slip condition $\vec{v}^f = \vec{v}^s$
- forces equilibrium $\mathbf{t}^{s}\vec{n}^{s} = -\mathbf{t}^{f}\vec{n}^{f}$
- Deformation $\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t)$

The main idea

- Ω^s solid, Ω^f fluid
- Main unknown functions :
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}^s
- Deformation

$$ec{u}^{s}(ec{X},t) = ec{x}^{s}(ec{X},t) - ec{X} \ ec{u}^{f}(ec{X},t) = ec{y}(ec{X},t) - ec{X}$$

- BC on $\Gamma^{fs} \times [0, T]$
 - no slip condition $\vec{v}^f = \vec{v}^s$
 - forces equilibrium $\mathbf{t}^{s}\vec{n}^{s} = -\mathbf{t}^{f}\vec{n}^{f}$
 - Deformation $\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t)$

The main idea

- Ω^s solid, Ω^f fluid
- Main unknown functions :
 - displacement \vec{u}^f , \vec{u}^s
 - velocity \vec{v}^f , \vec{v}^s
- Deformation

$$ec{u}^{s}(ec{X},t) = ec{x}^{s}(ec{X},t) - ec{X} \ ec{u}^{f}(ec{X},t) = ec{y}(ec{X},t) - ec{X}$$

 $\Gamma_{I} \qquad \Gamma_{I} \qquad \Gamma_{O} \qquad \Gamma_{O$

- no slip condition $\vec{v}^f = \vec{v}^s$
- forces equilibrium $\mathbf{t}^{s}\vec{n}^{s} = -\mathbf{t}^{f}\vec{n}^{f}$
- Deformation $\vec{y}(\vec{X},t) = \vec{x}(\vec{X},t)$

We can define unknowns:

$$ec{v} = \left\{ egin{array}{ccc} ec{v}^s & ext{in } \Omega^s \ ec{v}^f & ext{in } \Omega^f \ ec{u}^s & ext{in } \Omega^s \ ec{u}^f & ec{u}^f & ext{in } \Omega^f \end{array}
ight.$$

When we denote $\Omega = \Omega^s \cup \Omega^f$ our new fields are $\vec{u} : \Omega \times [0, T] \to \mathbb{R}^3$ $\vec{v} : \Omega \times [0, T] \to \mathbb{R}^3$.

The deformation gradient and its determinant

$$\mathbf{F} = \mathbf{I} + \nabla \vec{u}$$
$$j = \det \mathbf{F}$$

We can define unknowns:

$$\vec{v} = \begin{cases} \vec{v}^s & \text{in } \Omega^s \\ \vec{v}^f & \text{in } \Omega^f \end{cases}$$
$$\vec{u} = \begin{cases} \vec{u}^s & \text{in } \Omega^s \\ \vec{u}^f & \text{in } \Omega^f \end{cases}$$

When we denote $\Omega = \Omega^s \cup \Omega^f$ our new fields are $\vec{u} : \Omega \times [0, T] \to \mathbb{R}^3$ $\vec{v} : \Omega \times [0, T] \to \mathbb{R}^3$.

The deformation gradient and its determinant

$$\mathbf{F} = \mathbf{I} + \nabla \vec{u}$$
$$j = \det \mathbf{F}$$

We can define unknowns:

$$\vec{v} = \begin{cases} \vec{v}^s & \text{in } \Omega^s \\ \vec{v}^f & \text{in } \Omega^f \end{cases}$$
$$\vec{u} = \begin{cases} \vec{u}^s & \text{in } \Omega^s \\ \vec{u}^f & \text{in } \Omega^f \end{cases}$$

When we denote $\Omega = \Omega^s \cup \Omega^f$ our new fields are $\vec{u} : \Omega \times [0, T] \to \mathbb{R}^3$ $\vec{v} : \Omega \times [0, T] \to \mathbb{R}^3$.

The deformation gradient and its determinant

$$\mathbf{F} = \mathbf{I} + \nabla \vec{u}$$
$$j = \det \mathbf{F}$$

How to build model equations? (i.e. mass)

Solid:
$$\frac{d}{dt}(\rho^{s}j) = 0$$

Fluid: $\frac{\partial}{\partial t}(\rho^{f}j) + \frac{\partial}{\partial X^{K}}\left\{\left[\rho^{f}\left(v_{k} - \frac{\partial u^{k}}{\partial t}\right)\right]j\frac{\partial X^{K}}{\partial x^{k}}\right\} = 0$

How to build model equations? (i.e. mass)

Solid:
$$\frac{d}{dt}(\rho^s j) = 0$$

Fluid:
$$\frac{\partial}{\partial t} \left(\rho^f j \right) + \frac{\partial}{\partial X^K} \left\{ \left[\rho^f \left(v_k - \frac{\partial u^k}{\partial t} \right) \right] j \frac{\partial X^k}{\partial x^k} \right\} = 0$$

How to build model equations? (i.e. mass)

Solid:
$$\frac{d}{dt}(\rho^s j) = 0$$

Fluid:
$$\frac{\partial}{\partial t} \left(\rho^f j \right) + \frac{\partial}{\partial X^K} \left\{ \left[\rho^f \left(v_k - \frac{\partial u^k}{\partial t} \right) \right] j \frac{\partial X^K}{\partial x^k} \right\} = 0$$

Grid deformation - equation for \vec{u}

Martin Mádlík Numerical simulations of FSI problems

avK)

Model equations

How to build model equations? (i.e. mass)

Solid:
$$\frac{d}{dt}(\rho^s j) = 0$$

Fluid:
$$\frac{\partial}{\partial t} \left(\rho^{f} j \right) + \frac{\partial}{\partial X^{K}} \left\{ \left[\rho^{f} \left(v_{k} - \frac{\partial u}{\partial t} \right) \right] j \frac{\partial x}{\partial x^{k}} \right\} = 0$$

Fluid:

How to build model equations? (i.e. mass)

Solid:
$$\frac{d}{dt}(\rho^{s}j) = 0$$

 $\frac{\partial}{\partial t}(\rho^{f}j) + \frac{\partial}{\partial X^{K}}\left\{\left[\rho^{f}\left(v_{k} - \frac{\partial u^{k}}{\partial t}\right)\right]j\frac{\partial X^{K}}{\partial x^{k}}\right\} = 0$

$$\frac{\partial u^i}{\partial t} = v^i$$

$$\frac{\partial u^k}{\partial t} = \frac{\partial^2 u^k}{\partial X^J \partial X^J}$$

= 0

Model equations

Flu

How to build model equations? (i.e. mass)

Solid:
$$\frac{d}{dt}(\rho^s j) = 0$$

id: $\frac{\partial}{\partial t}(\rho^f j) + \frac{\partial}{\partial X^K} \left\{ \left[\rho^f \left(v_k - \frac{\partial u^k}{\partial t} \right) \right] j \frac{\partial X^K}{\partial x^k} \right\}$

$$\frac{\partial u^{i}}{\partial t} = v^{i} \qquad \qquad \frac{\partial u^{k}}{\partial t} = \frac{\partial^{2} u^{k}}{\partial X^{J} \partial X^{J}}$$

Momentum equation

$$\begin{aligned} \frac{\partial v^{i}}{\partial t} &= \frac{1}{j\varrho^{s}} \frac{\partial \mathbf{P}^{Ki}}{\partial X^{K}} \\ \frac{\partial v^{i}}{\partial t} &= \frac{\partial}{\partial X^{K}} \left\{ \left[v^{i} (v^{k} - \frac{\partial u^{k}}{\partial t}) - \tau^{ki} \right] \frac{\partial X^{K}}{\partial x^{k}} \right\} \end{aligned}$$

Constitutive relations

Solid

$$\mathbf{P}^{s} = -j\rho^{s}\mathbf{F}^{-T} + j\varrho^{s}\frac{\partial\Psi}{\partial\mathbf{F}}$$

(Neo-Hook)
$$\hat{\Psi} = c_1 (I_C - 3)$$

(M-R) $\hat{\Psi} = c_1 (I_C - 3) + c_2 (II_C - 3)$

Fluid
Solid

$$\mathbf{P}^{s} = -j\rho^{s}\mathbf{F}^{-T} + j\varrho^{s}\frac{\partial\Psi}{\partial\mathbf{F}}$$

(Neo-Hook)
$$\hat{\Psi} = c_1 (I_C - 3)$$

(M-R) $\hat{\Psi} = c_1 (I_C - 3) + c_2 (II_C - 3)$

Fluid

 $(\text{Stokes law}) : t^{\ell} = -p^{\ell} I + \mu(D)$ $(\text{Power law}) : t^{\ell} = -p^{\ell} I + \mu_0 (\|D\|^2)^{\frac{\ell-2}{2}} (\nabla v^{\ell} + \nabla^{\ell} v^{\ell})$

Solid

$$\mathbf{P}^{s} = -j\rho^{s}\mathbf{F}^{-T} + j\varrho^{s}\frac{\partial\Psi}{\partial\mathbf{F}}$$

(Neo-Hook)
$$\hat{\Psi} = c_1 (I_C - 3)$$

(M-R) $\hat{\Psi} = c_1 (I_C - 3) + c_2 (II_C - 3)$

Fluid

 $\begin{array}{l} (\mathsf{Stokes law}) \quad \mathsf{t}^{f} = -\rho^{f} \mathsf{I} + \mu(D) \\ (\mathsf{Power law}) \quad \mathsf{t}^{f} = -\rho^{f} \mathsf{I} + \mu_{0} \left(\|D\|^{2} \right)^{\frac{r-2}{2}} \left(\nabla \vec{v}^{f} + \nabla^{T} \vec{v}^{f} \right) \\ \end{array}$

Solid

$$\mathbf{P}^{s} = -j\rho^{s}\mathbf{F}^{-T} + j\varrho^{s}\frac{\partial\Psi}{\partial\mathbf{F}}$$

(Neo-Hook)
$$\hat{\Psi} = c_1 (I_C - 3)$$

(M-R) $\hat{\Psi} = c_1 (I_C - 3) + c_2 (II_C - 3)$

Fluid

(Stokes law)
$$\mathbf{t}^{f} = -p^{f}\mathbf{I} + \mu(D)$$

(Power law) $\mathbf{t}^{f} = -p^{f}\mathbf{I} + \mu_{0}\left(\|D\|^{2}\right)^{\frac{r-2}{2}}\left(\nabla\vec{v}^{f} + \nabla^{T}\vec{v}^{f}\right)$

Solid

$$\mathbf{P}^{s} = -j\rho^{s}\mathbf{F}^{-T} + j\varrho^{s}\frac{\partial\Psi}{\partial\mathbf{F}}$$

(Neo-Hook)
$$\hat{\Psi} = c_1 (I_C - 3)$$

(M-R) $\hat{\Psi} = c_1 (I_C - 3) + c_2 (II_C - 3)$

Fluid

(Stokes law)
$$\mathbf{t}^{f} = -p^{f}\mathbf{I} + \mu(D)$$

(Power law) $\mathbf{t}^{f} = -p^{f}\mathbf{I} + \mu_{0}\left(\|D\|^{2}\right)^{\frac{r-2}{2}}\left(\nabla\vec{v}^{f} + \nabla^{T}\vec{v}^{f}\right)$

Solid

$$\mathbf{P}^{s} = -j\rho^{s}\mathbf{F}^{-T} + j\varrho^{s}\frac{\partial\Psi}{\partial\mathbf{F}}$$

(Neo-Hook)
$$\hat{\Psi} = c_1 (I_C - 3)$$

(M-R) $\hat{\Psi} = c_1 (I_C - 3) + c_2 (II_C - 3)$

Fluid

(Stokes law)
$$\mathbf{t}^{f} = -p^{f}\mathbf{I} + \mu(D)$$

(Power law) $\mathbf{t}^{f} = -p^{f}\mathbf{I} + \mu_{0}\left(\|D\|^{2}\right)^{\frac{r-2}{2}}\left(\nabla\vec{v}^{f} + \nabla^{T}\vec{v}^{f}\right)$

Classical formulation

Find $\vec{u}, \vec{v}, p^s, p^f$ to satisfy

$$\begin{split} \frac{\partial \vec{u}}{\partial t} &= \begin{cases} \vec{v} & \text{in } \Omega^{s} \\ \triangle \vec{u} & \text{in } \Omega^{f} \end{cases} \\ 0 &= \begin{cases} \frac{d}{dt} (\rho^{s} j) & \text{in } \Omega^{s} \\ \frac{\partial}{\partial t} (\rho^{f} j) + \mathsf{Div} \left(\rho^{f} j (\vec{v} - \frac{\partial \vec{u}}{\partial t}) \mathbf{F}^{-T} \right) & \text{in } \Omega^{f} \end{cases} \\ \frac{\partial \vec{v}}{\partial t} &= \begin{cases} \frac{1}{j \rho^{s}} \mathsf{Div} \, \mathbf{P}^{sT} & \text{in } \Omega^{s} \\ -(\nabla \vec{v}) (\vec{v} - \frac{\partial \vec{u}}{\partial t}) \mathbf{F}^{-T} + \frac{1}{j \rho^{f}} \mathsf{Div} (j \mathbf{t}^{f} \mathbf{F}^{-T}) & \text{in } \Omega^{f} \end{cases} \end{split}$$

Classical formulation

Find $\vec{u}, \vec{v}, \rho^{s}, p^{f}$ to satisfy $\frac{\partial \vec{u}}{\partial t} = \begin{cases} \vec{v} & \text{in } \Omega^{s} \\ \bigtriangleup \vec{u} & \text{in } \Omega^{f} \end{cases}$ $0 = \begin{cases} \frac{d}{dt}(\rho^{s}j) & \text{in } \Omega^{s} \\ \frac{\partial}{\partial t}(\rho^{f}j) + \text{Div}\left(\rho^{f}j(\vec{v} - \frac{\partial \vec{u}}{\partial t})\mathbf{F}^{-T}\right) & \text{in } \Omega^{f} \end{cases}$ $\frac{\partial \vec{v}}{\partial t} = \begin{cases} \frac{1}{j\rho^{s}} \text{Div } \mathbf{P}^{sT} & \text{in } \Omega^{s} \\ -(\nabla \vec{v})(\vec{v} - \frac{\partial \vec{u}}{\partial t})\mathbf{F}^{-T} + \frac{1}{j\rho^{f}} \text{Div}(j\mathbf{t}^{f}\mathbf{F}^{-T}) & \text{in } \Omega^{f} \end{cases}$

Classical formulation

with initial conditions

$$ec{u}(0) = ec{0}$$
 in Ω ,
 $ec{v}(0) = ec{v}_0$ in Ω ,

with constitutive relations

$$\mathbf{t}^{f} = -\rho^{f}\mathbf{I} + \mu \left(\nabla \vec{v} + \nabla^{T} \vec{v}\right),$$
$$\mathbf{P}^{sT} = -j\rho^{s}\mathbf{F}^{-T} + 2j\mathbf{F}\frac{\partial W}{\partial \mathbf{C}}$$

and boundary conditions

 $\vec{v} = \vec{v}_{I} \quad \text{on } \Gamma_{I}^{f},$ $\vec{u} = \vec{0} \quad \text{on } \Gamma_{I}, \Gamma_{O},$ $\vec{v} = \vec{0} \quad \text{on } \Gamma_{I}^{s}, \Gamma_{O}^{s},$ $\frac{\partial \vec{v}}{\partial \vec{n}} = \vec{0} \quad \text{on } \Gamma_{O}^{f},$ $\mathbf{t}^{s} \vec{n} = \vec{0} \quad \text{on } \Gamma_{E}$

The Time discretization

The time interval (0, T)

• divide it into *n* subintervals $I_n = [t^n, t^{n+1}]$

• time step
$$k_n = t^{n+1} - t^n$$
.

For time interval $[t^n, t^{n+1}]$ approximate $\frac{\partial f}{\partial t}$ by central differences

$$\frac{\partial f}{\partial t} \approx \frac{f^{n+1} - f^n}{k_n}$$

$$\int_{t^n}^{t^{n+1}} f \, \mathrm{dt} \approx (t^{n+1} - t^n) \left\{ \theta \, f(t^{n+1}) + (1 - \theta) \, f(t^n) \right\}$$

The Time discretization

The time interval (0, T)

• divide it into *n* subintervals $I_n = [t^n, t^{n+1}]$

• time step
$$k_n = t^{n+1} - t^n$$

For time interval $[t^n, t^{n+1}]$ approximate $\frac{\partial f}{\partial t}$ by central differences

$$\frac{\partial f}{\partial t} \approx \frac{f^{n+1} - f^n}{k_n}$$

$$\int_{t^n}^{t^{n+1}} f \, \mathrm{dt} \approx (t^{n+1} - t^n) \left\{ \theta \, f(t^{n+1}) + (1 - \theta) \, f(t^n) \right\}$$

The Time discretization

The time interval (0, T)

• divide it into *n* subintervals $I_n = [t^n, t^{n+1}]$

• time step
$$k_n = t^{n+1} - t^n$$

For time interval $[t^n, t^{n+1}]$ approximate $\frac{\partial f}{\partial t}$ by central differences

$$\frac{\partial f}{\partial t} \approx \frac{f^{n+1} - f^n}{k_n}$$

$$\int_{t^n}^{t^{n+1}} f \, dt \approx (t^{n+1} - t^n) \left\{ \theta \, f(t^{n+1}) + (1 - \theta) \, f(t^n) \right\}$$

The Time discretization

The time interval (0, T)

• divide it into *n* subintervals $I_n = [t^n, t^{n+1}]$

• time step
$$k_n = t^{n+1} - t^n$$

For time interval $[t^n, t^{n+1}]$ approximate $\frac{\partial f}{\partial t}$ by central differences

$$\frac{\partial f}{\partial t} \approx \frac{f^{n+1} - f^n}{k_n}$$

$$\int_{t^n}^{t^{n+1}} f \operatorname{dt} pprox (t^{n+1}-t^n) \left\{ heta \, f(t^{n+1}) + (1- heta) \, f(t^n)
ight\}$$

The nonlinear problem

Nonlinear problem on each time level

$$\vec{\mathcal{R}}(\vec{\mathcal{X}}) = \vec{0}$$

Newton method with Quadratic Line search

The nonlinear problem

Nonlinear problem on each time level

$$\vec{\mathcal{R}}(\vec{\mathcal{X}}) = \vec{0}$$

Newton method with Quadratic Line search

Implementation issue

• Computation of $\nabla \vec{\mathcal{R}}(\vec{\mathcal{X}})$ by finite differences

$$abla ec{\mathcal{R}}(ec{\mathcal{X}}) e_i pprox rac{ec{\mathcal{R}}(ec{\mathcal{X}} + \delta e_i) - ec{\mathcal{R}}(ec{\mathcal{X}} - \delta e_i)}{2\delta}$$

• Solution of linear problem $\left[\nabla \mathcal{R}(\vec{\mathcal{X}}^n)\right] \vec{s}_k = \vec{\mathcal{R}}\left(\vec{\mathcal{X}}^n\right)$ by DirectSolver (UMFPACK)

The nonlinear problem

Nonlinear problem on each time level

$$\vec{\mathcal{R}}(\vec{\mathcal{X}}) = \vec{0}$$

Newton method with Quadratic Line search

Implementation issue

• Computation of $\nabla \vec{\mathcal{R}}(\vec{\mathcal{X}})$ by finite differences

$$abla ec{\mathcal{R}}(ec{\mathcal{X}}) e_i pprox rac{ec{\mathcal{R}}(ec{\mathcal{X}}+\delta e_i) - ec{\mathcal{R}}(ec{\mathcal{X}}-\delta e_i)}{2\delta}$$

• Solution of linear problem $\left[\nabla \mathcal{R}(\vec{\mathcal{X}}^n)\right] \vec{s}_k = \vec{\mathcal{R}}\left(\vec{\mathcal{X}}^n\right)$ by DirectSolver (UMFPACK)

The nonlinear problem

Nonlinear problem on each time level

$$\vec{\mathcal{R}}(\vec{\mathcal{X}}) = \vec{0}$$

Newton method with Quadratic Line search

Implementation issue

• Computation of $\nabla \vec{\mathcal{R}}(\vec{\mathcal{X}})$ by finite differences

$$abla ec{\mathcal{R}}(ec{\mathcal{X}}) e_i pprox rac{ec{\mathcal{R}}(ec{\mathcal{X}}+\delta e_i) - ec{\mathcal{R}}(ec{\mathcal{X}}-\delta e_i)}{2\delta}$$

• Solution of linear problem $\left[\nabla \mathcal{R}(\vec{\mathcal{X}}^n)\right] \vec{s}_k = \vec{\mathcal{R}}\left(\vec{\mathcal{X}}^n\right)$ by DirectSolver (UMFPACK)

Space discretization

- Finite Element Method
- 3D Mesh T_h , tetrahedrons K_i
- Element choice: Stable elements [Babuška-Brezzi]
- Our uniform formulation the same element type for \vec{u} , \vec{v}

Space discretization

- Finite Element Method
- 3D Mesh T_h , tetrahedrons K_i
- Element choice: Stable elements [Babuška-Brezzi]
- Our uniform formulation the same element type for \vec{u} , \vec{v}

Space discretization

- Finite Element Method
- 3D Mesh T_h , tetrahedrons K_i
- Element choice: Stable elements [Babuška-Brezzi]
- Our uniform formulation the same element type for \vec{u} , \vec{v}

What are the Stable alements?

From the NS theory

- $\bullet P_2P_1$
- $P_1^+P_1$ (Minielement)
- $P_2^+ P_1$ (Crouzeix-Raviart)

Definition (FE Spaces)

$$\vec{V}_h = \{ \underline{\vec{v}}_h \in [C^0(\Omega_h)]^3 : \underline{\vec{v}}_h | \mathcal{K}_i \in [P_2(\mathcal{K}_i)]^3 \forall \mathcal{K}_i \in \mathcal{T}_h \\ P_h = \{ \underline{p}_i \in C^0(\Omega_h) : \underline{p}_i | \mathcal{K}_i \in P_1(\mathcal{K}_i) \quad \forall \mathcal{K}_i \in \mathcal{T}_h \}$$

Definition (FE Spaces)

$$\vec{V}_{h} = \{ \vec{\underline{v}}_{h} \in [C^{0}(\Omega_{h})]^{3} : \vec{\underline{v}}_{h} |_{K_{i}} \in [P_{1}(K_{i})]^{3} \oplus [R(K_{i})]^{3} \forall K_{i} \in \mathcal{T}_{h} \}$$

$$P_{h} = \{ \underline{p}_{i} \in C^{0}(\Omega_{h}) : \underline{p}_{i} |_{K_{i}} \in P_{1}(K_{i}) \quad \forall K_{i} \in \mathcal{T}_{h} \}$$

$$R = span\{\lambda_{1} \dots \lambda_{4}\} \quad \lambda_{i} \text{ barycentric cooradinates}$$

From the NS theory

FEM Details

What are the Stable alements?

- P_2P_1
- $P_1^+ P_1$ (Minielement)
- $P_2^+ P_1$ (Crouzeix-Raviart)

Definition (FE Spaces)

$$\vec{V}_{h} = \{ \underline{\vec{v}}_{h} \in [C^{0}(\Omega_{h})]^{3} : \underline{\vec{v}}_{h} |_{K_{i}} \in [P_{2}^{+}(K_{i})]^{3}; \forall K_{i} \in \mathcal{T}_{h} \}$$
$$P_{h} = \{ \underline{p}_{i} \in L_{0}^{2}(\Omega_{h}) : \underline{p}_{i} |_{K_{i}} \in P_{1}(K_{i}) \quad \forall K_{i} \in \mathcal{T}_{h} \}$$
$$P_{2}^{+} = P_{2} \oplus span\{\lambda_{1} \dots \lambda_{4}\} \oplus span\{\lambda_{i}\lambda_{j}\lambda_{k}\}$$

From the NS theory

FEM Details

What are the Stable alements?

- P_2P_1
- $P_1^+P_1$ (Minielement)
- $P_2^+ P_1$ (Crouzeix-Raviart)

FEM Detail

Structure of $\nabla \vec{\mathcal{R}}$

• P_2P_1 dofs per element $6 \times 10 + 4 = 64$ • $P_1^+P_1$ (Minielement) $6 \times 5 + 4 = 34$ • $P_2^+ - P_1$ (Crouzeix-Raviart) $6 \times 15 + 4 = 94$

$$\begin{pmatrix} A_{vv} & A_{vu} & B_v \\ A_{uv} & A_{uu} & B_u \\ B_v^T & B_u^T & \emptyset \end{pmatrix}$$

FEM Detail

- 96 elements
- 1158 equations

- 96 elements
- 876 equations

- 96 elements
- 3254 equations

So which one to choice? PRESSURE

- Continuous pressure approximation: P_2P_1 , $P_1^+P_1$
- Discontinuous pressure approxmation: $P_2^+ P_1$

So which one to choice? PRESSURE

- Continuous pressure approximation: P_2P_1 , $P_1^+P_1$
- Discontinuous pressure approxmation: $P_2^+ P_1$

So which one to choice? PRESSURE

- Continuous pressure approximation: P_2P_1 , $P_1^+P_1$
- Discontinuous pressure approxmation: $P_2^+ P_1$

Results

To obtain numerical results we wrote our own program

Program features

- C/PETSc for possible parallel version
- Unstructured meshes (3D)
- Nonlinear-Nonstationary problems
- Any equation set
- FEM predefined 7 element types
- Finite differences for Jacobian matrix
- up to 8th order predefined Gauss. numerical quadratures
- Import modules for meshes [neutral format (Netgen)]
- Export modules for Tecplot, Mayavi

Results

To obtain numerical results we wrote our own program

Program features

- C/PETSc for possible parallel version
- Unstructured meshes (3D)
- Nonlinear-Nonstationary problems
- Any equation set
- FEM predefined 7 element types
- Finite differences for Jacobian matrix
- up to 8th order predefined Gauss. numerical quadratures
- Import modules for meshes [neutral format (Netgen)]
- Export modules for Tecplot, Mayavi

Results

Lagrange deformation in solid

The deformation is in equations, no change of computational mesh. How large can be such deformation?

Pulsative flow

Pulsative flow in "artery"

 30932 equations, 80 time iterations, 12 hours CPU time (AMD Opteron 248)
Pulsative flow

Pulsative flow in "artery"

 30932 equations, 80 time iterations, 12 hours CPU time (AMD Opteron 248)

Pulsative flow

Pulsative flow in "artery"

 30932 equations, 80 time iterations, 12 hours CPU time (AMD Opteron 248)

Usual Resources [39.070 equations]

CPU Time

- \bullet Computation of Residual vector $\vec{\mathcal{R}}$ 2sec
- Evaluating of $\nabla \vec{\mathcal{R}}$ 49sec
- Solution of linear problem 290sec

Memory

• 2.2 GB RAM

Usual Resources [39.070 equations]

CPU Time

- Computation of Residual vector $\vec{\mathcal{R}}$ 2sec
- Evaluating of $\nabla \vec{\mathcal{R}}$ 49sec
- Solution of linear problem 290sec

Memory

• 2.2 GB RAM

Current Work

Examples with real-like geometries

• Vessel with nonuniform material property

Current Work

- Examples with real-like geometries
 - Vessel with nonuniform material property

Current Work

- Examples with real-like geometries
 - Vessel with nonuniform material property

Current Work

- Examples with real-like geometries
 - Vessel with nonuniform material property
- 2 Parallel implementation
 - Testing our implementation, validated to serial version
 - Still not efective, the very first results

Appeal

There is a need for robust and fast parallel linear solver.

Current Work

- Examples with real-like geometries
 - Vessel with nonuniform material property
- 2 Parallel implementation
 - Testing our implementation, validated to serial version
 - Still not efective, the very first results

Appeal

There is a need for robust and fast parallel linear solver.

Current Work

- Examples with real-like geometries
 - Vessel with nonuniform material property
- 2 Parallel implementation
 - Testing our implementation, validated to serial version
 - Still not efective, the very first results

Appeal

There is a need for robust and fast parallel linear solver. Any ideas?