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Motivation

Biological problem: Blood flow in vessels

Solid and Fluid parts (2 domains)

Interaction of materials

Various kind of materials
(Easy to change Constitutive relations)

Full 3D setting

Usual assumptions

Incompressibility, Isotermicity
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The ALE

~X
V0

V0 Material volume
initial configuration

V(t) Material volume
actual state

x i = ~x(X i , t) deform.

V(t) Control volume

y i = ~y(X i , t) deform.

Position and velocity in coordinate system y i

~y(~X , t) = ~x(~X , t)− ~w(~X , t)

∂~y

∂t

∣∣∣∣
X

= ~vV(t)
= ~v − ∂~w

∂t

∣∣∣∣
X
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Balance laws in the ALE

Extensive quantity

Φ(t) =

∫
V0

Φ(~X , t)dV =

∫
V(t)

ϕ(~x , t)dv =

∫
V(t)

ϕ(~y , t)dvy

General balance

dΦ

dt
= Φ̇ = L(Φ) + P(Φ)

L Total flux

P Total production
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Balance laws in the ALE

The balance law in the integral form

∫
V0

∂

∂t
ΦjydV +

∫
∂V0

Φ(vk − vk
Vt

)jy
∂XK

∂yk
dAK =∫

∂V0

lk(Φ)jy
∂XK

∂yk
dAK +

∫
V0

σ(Φ)jydV.

Local balance in the ALE

∂

∂t
(jyφ) +

∂

∂XK

{[
φ(vk − vk

Vt
)− lk(Φ)

]
jy

∂XK

∂yk

}
− jyσ(Φ) = 0
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The mass balance

The total mass: m(t) =
∫
V0

%(~X , t)dV =
∫
V(t)

%(~x , t)dv

The balance

∂

∂t
(jy%) +

∂

∂XK

{[
%(vk − vk

Vt
)
]
jy

∂XK

∂yk

}
= 0

Question

Why is the ALE a generalization of the Lagrangian, Eulerian view?

Let V(t) be static

~y = ~X ,jy = 1, remains:

∂%

∂t
+

∂(%vk)

∂xk
= 0.

Let V(t) be a flow

jy = j , ~vV(t)
= ~v , remains:

∂

∂t
(j%) = 0
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Idea of the model

~u

ΓOΓI

ΓE

Ωf

Ωs

Γfs

The main idea
Ωs solid, Ωf fluid

Main unknown functions :

displacement ~uf , ~us

velocity ~v f , ~v s

Deformation
~us(~X , t) = ~x s(~X , t)− ~X
~uf (~X , t) = ~y(~X , t)− ~X

BC on Γfs × [0,T ]

no slip condition ~v f = ~v s

forces equilibrium ts~ns = −tf~nf

Deformation ~y(~X , t) = ~x(~X , t)
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Idea of the model

We can define unknowns:

~v =

{
~v s in Ωs

~v f in Ωf

~u =

{
~us in Ωs

~uf in Ωf

When we denote Ω = Ωs ∪ Ωf our new fields are

~u : Ω× [0,T ] → R3

~v : Ω× [0,T ] → R3.

The deformation gradient and its determinant

F = I +∇~u

j = detF

Martin Mádĺık Numerical simulations of FSI problems
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Model equations

How to build model equations? (i.e. mass)

Solid:
d

dt
(ρs j) = 0

Fluid:
∂

∂t

(
ρf j

)
+

∂

∂XK

{[
ρf

(
vk −

∂uk

∂t

)]
j
∂XK

∂xk

}
= 0

Grid deformation - equation for ~u

∂ui

∂t
= v i

∂uk

∂t
=

∂2uk

∂X J∂X J
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Model equations

Momentum equation

∂v i

∂t
=

1

j%s

∂PKi

∂XK

∂v i

∂t
=

∂

∂XK

{[
v i (vk − ∂uk

∂t
)− τki

]
∂XK

∂xk

}
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Constitutive relations

Solid

Ps = −jpsF−T + j%s ∂Ψ

∂F

(Neo-Hook) Ψ̂ = c1 (IC − 3)

(M-R) Ψ̂ = c1 (IC − 3) + c2 (IIC − 3)

Fluid

(Stokes law) tf = −pf I + µ (D)

(Power law) tf = −pf I + µ0

(
‖D‖2

) r−2
2

(
∇~v f +∇T~v f

)
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Constitutive relations

Solid

Ps = −jpsF−T + j%s ∂Ψ

∂F

(Neo-Hook) Ψ̂ = c1 (IC − 3)

(M-R) Ψ̂ = c1 (IC − 3) + c2 (IIC − 3)

Fluid

(Stokes law) tf = −pf I + µ (D)

(Power law) tf = −pf I + µ0

(
‖D‖2

) r−2
2

(
∇~v f +∇T~v f

)
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Classical formulation

Find ~u,~v ,ps ,pf to satisfy

∂~u

∂t
=

{
~v in Ωs

4~u in Ωf

0 =

{
d
dt (ρ

s j) in Ωs

∂
∂t (ρ

f j) + Div
(
ρf j(~v − ∂~u

∂t )F−T
)

in Ωf

∂~v

∂t
=

{
1

jρs Div PsT in Ωs

−(∇~v)(~v − ∂~u
∂t )F−T + 1

jρf Div(jtf F−T ) in Ωf
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Classical formulation

with initial conditions

~u(0) = ~0 in Ω,

~v(0) = ~v0 in Ω,

with constitutive relations

tf = −pf I + µ
(
∇~v +∇T~v

)
,

PsT = −jpsF−T + 2jF
∂W

∂C

and boundary conditions

~v = ~vI on Γf
I ,

~u = ~0 on ΓI , ΓO ,

~v = ~0 on Γs
I , Γs

O ,

∂~v

∂~n
= ~0 on Γf

O ,

ts~n = ~0 on ΓE
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The Time discretization

The time interval (0,T )

divide it into n subintervals In = [tn, tn+1]

time step kn = tn+1 − tn.

For time interval [tn, tn+1] approximate ∂f
∂t by central differences

∂f

∂t
≈ f n+1 − f n

kn

We approximate time integrals by using the Newton-Cotes
formulas, especially by the trapezoidal rule (θ = 1

2)∫ tn+1

tn

f dt ≈ (tn+1 − tn)
{
θ f (tn+1) + (1− θ) f (tn)

}

Martin Mádĺık Numerical simulations of FSI problems



Physics Math Numerical method Results Conclusions Time Solver Space

The Time discretization

The time interval (0,T )

divide it into n subintervals In = [tn, tn+1]

time step kn = tn+1 − tn.

For time interval [tn, tn+1] approximate ∂f
∂t by central differences

∂f

∂t
≈ f n+1 − f n

kn

We approximate time integrals by using the Newton-Cotes
formulas, especially by the trapezoidal rule (θ = 1

2)∫ tn+1

tn

f dt ≈ (tn+1 − tn)
{
θ f (tn+1) + (1− θ) f (tn)

}
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The nonlinear problem

Nonlinear problem on each time level

~R( ~X ) = ~0

Newton method with Quadratic Line search
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The nonlinear problem

Nonlinear problem on each time level

~R( ~X ) = ~0

Newton method with Quadratic Line search

Implementation issue

Computation of ∇ ~R( ~X ) by finite differences

∇ ~R( ~X )ei ≈
~R( ~X + δei )− ~R( ~X − δei )

2δ

Solution of linear problem
[
∇R( ~X n)

]
~sk = ~R

(
~X n

)
by DirectSolver (UMFPACK)
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Space discretization

Finite Element Method

3D Mesh Th, tetrahedrons Ki

Element choice: Stable elements [Babuška-Brezzi]

Our uniform formulation - the same element type for ~u, ~v
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FEM Details

What are the Stable alements? From the NS theory

P2P1

P+
1 P1 (Minielement)

P+
2 − P1 (Crouzeix-Raviart)
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FEM Details

What are the Stable alements? From the NS theory

P2P1

P+
1 P1 (Minielement)

P+
2 − P1 (Crouzeix-Raviart)

Definition (FE Spaces)

~Vh ={~vh ∈ [C 0(Ωh)]
3 : ~vhdKi

∈ [P2(Ki )]
3 ∀Ki ∈ Th

Ph ={p
i
∈ C 0(Ωh) : p

i
dKi
∈ P1(Ki ) ∀Ki ∈ Th}
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What are the Stable alements? From the NS theory

P2P1

P+
1 P1 (Minielement)

P+
2 − P1 (Crouzeix-Raviart)

P2 P1
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FEM Details

What are the Stable alements? From the NS theory

P2P1

P+
1 P1 (Minielement)

P+
2 − P1 (Crouzeix-Raviart)

Definition (FE Spaces)

~Vh ={~vh ∈ [C 0(Ωh)]
3 : ~vhdKi

∈ [P1(Ki )]
3 ⊕ [R(Ki )]

3 ∀Ki ∈ Th}
Ph ={p

i
∈ C 0(Ωh) : p

i
dKi
∈ P1(Ki ) ∀Ki ∈ Th}

R =span{λ1 . . . λ4} λi barycentric cooradinates
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FEM Details

What are the Stable alements? From the NS theory

P2P1

P+
1 P1 (Minielement)

P+
2 − P1 (Crouzeix-Raviart)

Definition (FE Spaces)

~Vh ={~vh ∈ [C 0(Ωh)]
3 : ~vhdKi

∈ [P+
2 (Ki )]

3;∀Ki ∈ Th}
Ph ={p

i
∈ L2

0(Ωh) : p
i
dKi
∈ P1(Ki ) ∀Ki ∈ Th}

P+
2 =P2 ⊕ span{λ1 . . . λ4} ⊕ span{λiλjλk}

Martin Mádĺık Numerical simulations of FSI problems



Physics Math Numerical method Results Conclusions Time Solver Space

FEM Details

What are the Stable alements? From the NS theory

P2P1

P+
1 P1 (Minielement)

P+
2 − P1 (Crouzeix-Raviart)

P+
2

-P1
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FEM Detail

Structure of ∇ ~R
P2P1 dofs per element 6× 10 + 4 = 64

P+
1 P1 (Minielement) 6× 5 + 4 = 34

P+
2 − P1 (Crouzeix-Raviart) 6× 15 + 4 = 94

Avv Avu Bv

Auv Auu Bu

BT
v BT

u ∅


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FEM Detail

Structure of ∇ ~R
P2P1 dofs per element 6× 10 + 4 = 64

P+
1 P1 (Minielement) 6× 5 + 4 = 34

P+
2 − P1 (Crouzeix-Raviart) 6× 15 + 4 = 94

96 elements

1158 equations
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FEM Detail

Structure of ∇ ~R
P2P1 dofs per element 6× 10 + 4 = 64

P+
1 P1 (Minielement) 6× 5 + 4 = 34

P+
2 − P1 (Crouzeix-Raviart) 6× 15 + 4 = 94

96 elements

876 equations
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FEM Detail

Structure of ∇ ~R
P2P1 dofs per element 6× 10 + 4 = 64

P+
1 P1 (Minielement) 6× 5 + 4 = 34

P+
2 − P1 (Crouzeix-Raviart) 6× 15 + 4 = 94

96 elements

3254 equations
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FEM Detail

So which one to choice? PRESSURE

Continuous pressure approximation: P2P1, P+
1 P1

Discontinuous pressure approxmation: P+
2 − P1
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Results

To obtain numerical results we wrote our own program

Program features

C/PETSc for possible parallel version

Unstructured meshes (3D)

Nonlinear-Nonstationary problems

Any equation set

FEM - predefined 7 element types

Finite differences for Jacobian matrix

up to 8th order predefined Gauss. numerical quadratures

Import modules for meshes [neutral format (Netgen)]

Export modules for Tecplot, Mayavi
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Martin Mádĺık Numerical simulations of FSI problems



Physics Math Numerical method Results Conclusions The program Current Results

Results

Lagrange deformation in solid

The deformation is in equations, no change of computational mesh.
How large can be such deformation?
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Pulsative flow

Pulsative flow in ”artery”

30932 equations, 80 time iterations, 12 hours CPU time (AMD

Opteron 248)
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Usual Resources [39.070 equations]

CPU Time

Computation of Residual vector ~R 2sec

Evaluating of ∇ ~R 49sec

Solution of linear problem 290sec

Memory

2.2 GB RAM
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Current state

Current Work

1 Examples with real-like geometries

Vessel with nonuniform material property
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Current state

Current Work

1 Examples with real-like geometries
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2 Parallel implementation

Testing our implementation, validated to serial version
Still not efective, the very first results

Appeal

There is a need for robust and fast parallel linear solver.
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Current state

Current Work

1 Examples with real-like geometries

Vessel with nonuniform material property

2 Parallel implementation

Testing our implementation, validated to serial version
Still not efective, the very first results

Appeal

There is a need for robust and fast parallel linear solver. Any ideas?
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