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Incompressible Fluid Mechanics: Basic Framework/1
Goal: To describe flows of various fluid-like-materials exhibiting so different and so fascinating

phenomena yet share one common feature: these materials are well approximated as incompressible.

SubGoal: To understand theoretical foundations and mathematical properties of these models.

̺t + div ̺v = 0

(̺v)t + div(̺v ⊗ v) = div T + ̺f

T · D − ρ
dψ

dt
= ξ with ξ ≥ 0

• ̺ density

• ψ Helmholtz free energy

• T · D stress power

• ξ rate of dissipation

• v = (v1, v2, v3) velocity

• f = (f1, f2, f3) external body forces

• T = (Tij)
3
i,j=1 Cauchy stress

• D := D(v) := 1/2(∇v + (∇v)T )

• Homogeneous fluids (the density is constant) =⇒ div v = tr D = 0 p :=
1

3
tr T pressure
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Incompressible Fluid Mechanics: Basic Framework/2

Steady flows in Ω ⊂ R
3 (time discretizations lead to similar problems)

div v = 0 div(v ⊗ v) − div S = −∇p+ f in Ω

v = 0 on ∂Ω T · D = ξ with ξ ≥ 0

Constitutive equations: Relation between the Cauchy stress T , of the form T = −pI + S, and

the symmetric part of the velocity gradient D := D(v)

g(T ,D) = 0 Power-law-like Rheology (broad, accessible)

• Explicit S = µ(. . . )D

– Navier-Stokes Fluids S = µ∗D

– Power-law Fluids S = µ∗|D|r−2D

– Power-law-like Fluids S = µ(|D|2)D

– Fluids with shear-rate dpt viscosity

– Fluids with the yield stress

– Fluids with activation criteria

• Implicit

– Fluids with the yield stress (Bingham,

Herschel-Bulkley)

– Fluids with activation criteria

– Implicit Power-law-like Fluids

– Fluids with S = µ(p)D

– Fluids with S = µ(p, |D|2)D
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Framework is sufficiently robust to model behavior of various type of fluid-like materials. Models

are frequently used in many areas of engineering and natural sciences: mechanics of colloids and

suspensions, biological fluid mechanics (blood, synovial fluid), elastohydrodynamics, ice mechanics and

glaciology, food processing
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Fluids with shear-rate dependent viscosities

ν(|D|
2
) If v = (u(x2), 0, 0), then |D(v)|2 = 1/2|u′|2 ... shear rate.

• ν(|D|2) = µ∗|D|r−2 1 < r < ∞

• power-law model

• ν(|D|2) ց as |D|2 ր

• shear-rate thinning fluid (r < 2)

• ν(|D|2) = µ∗
0 + µ∗

1|D|r−2 r > 2

• Ladyzhenskaya model (65)

• (Smagorinskii turbulence model: r = 3)



5

Fluids with the yield stress or the activation criteria/discontinuous stresses

• threshold value for the stress to start flow

• Bingham fluid

• Herschel-Bingham fluid

• drastic changes of the properties when certain

criterion is met

• formation and dissolution of blood

• chemical reactions/time scale
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Discontinuous stresses described by a maximal monotone graph

T1

T2
T

Tmax

shear rate shear rate

T12
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Implicit power-law-like fluids
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S

K=|u’(r)|
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Fluids with pressure-dependent viscosities

ν(p)

ν(p) = exp(γp)

Bridgman(31): ”The physics of high pressure”

Cutler, McMickle, Webb and Schiessler(58)

Johnson, Cameron(67), Johnson, Greenwood(77), Johnson, Tewaarwerk(80)

elastohydrodynamics: Szeri(98) synovial fluids

No global existence result.

• Renardy(86), local, (ν(p)p → 0 as p → ∞)

• Gazzola(97), Gazzola, Secchi(98): local, severe restrictions
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Fluids with shear- and pressure-dependent viscosities

ν(p, |D|
2
)

ν(p, |D|
2
) = (η∞ +

η0 − η∞

1 + δ|D|2−r
) exp(γ p)

Davies and Li(94), Gwynllyw, Davies and Phillips(96)

ν(p, |D|
2
) = c0

p

|D|
r = 1 Schaeffer(87) - instabilities in granular materials

ν(p, |D|
2
) = (A+ (1 + exp(αp))

−q
+ |D|

2
)
r−2
2

α > 0, A > 0 1 ≤ r < 2 0 ≤ q ≤
1

2α

r − 1

2 − r
A

(2−r)/2

Q.: Is the dependence of the viscosity on the pressure admissible in continuum mechanics and

thermodynamics?
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Compressible vrs Incompressible

Compressible fluid

T = T (ρ,∇v) =⇒ T = T (ρ,D(v))

T = α0(ρ, ID, IID, IIID)I + α1(ρ, ID, IID, IIID)D + α2(ρ, ID, IID, IIID)D
2

ID := tr D, IID :=
1

2

�
[tr D]

2
− tr D

2

�
, IIID := det D

Linearized model:

T = α̂0(ρ)I + λ(ρ)[tr D]I + 2µ(ρ)D, Navier-Stokes fluid

Usually: α̂0(ρ) is −p(ρ) thermodynamic pressure constitutive relation for p(ρ) needed to close the model =⇒ λ, µ

depends on pressure

Incompressible fluid

T = −pI + α̂1(IID, IIID)D + α̂2(IID, IIID)D
2

Drawbacks:

• p in general is not the mean normal stress

• Can α̂i depend on p? No, as the derivation based on the principle: Constraints do no work
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Maximization of the rate of dissipation subject to two constraints

Assume

ξ = 2 ν(tr T , |D|
2
)|D|

2
and ψ = ψ(θ, ρ) = const

Maximizing ξ with respect to D on the manifold described by the constraints

(1) ξ = T · D (2) div v = tr D = 0

results to

∂ξ

∂D
− λ1I − λ2(T −

∂ξ

∂D
) = 0

=⇒

T = −pI + 2 ν(p, |D|
2
)D with p :=

1

3
tr T

Viscosity: resistance between two sliding surfaces of fluids
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Implicit theories

Derivation of the model from the implicit constitutive eqn

g(T ,D) = 0

Isotropy of the material implies

α0I + α1T + α2D + α3T
2
+ α4D

2
+ α5(T D + DT )

+ α6(T
2
D + DT

2
) + α7(T D

2
+ D

2
T ) + α8(T

2
D

2
+ D

2
T

2
) = 0

αi being a functions of

ρ, tr T , tr D, tr T
2
, tr D

2
, tr T

3
, tr D

3
, tr(T D), tr(T

2
D), tr(D

2
T ), tr(D

2
T

2
)

For incompressible fluids

T =
1

3
tr T I + ν(tr T , tr D

2
)D
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Analysis of PDEs - Existence of (weak) solution - steady flows

• Mathematical consistency of the model (well-posedness), existence for any data in a reasonable

function space

• Notion of the solution: balance equations for any subset of Ω ⇐⇒ weak solution ⇐⇒ FEM

• Choice of the function spaces

• To know what is the object we approximate

• Ω ⊂ R
3 open, bounded with the Lipschitz boundary ∂Ω

div v = 0

− div(2ν(p, |D(v)|
2
)D(v)) + div(v ⊗ v) = −∇p+ f

in Ω (1)

v = 0 on ∂Ω
1

|Ω|

Z
Ω

pdx = p0 (2)

(0) ν(...) = ν0 NSEs

(1) ν(...) = ν(|D|2)

(2) ν(...) = ν(p, |D|2)

(3) discontinuous (implicit) power-law fluids
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NSEs

div v = 0 − µ
∗
∆v + div(v ⊗ v) = −∇p+ f in Ω

Step 1. Finite-dimensional approximations: (vN , pN) - Fixed-point iterations

Step 2. Uniform estimates: supN ‖∇vN)‖2
2 + supN ‖pN‖2

2 ≤ K

Step 3. Weak compactness: ∇vN → v and pN → p weakly in L2

Step 4. Nonlinearity tretaed by compact embedding: vN → v strongly in L2

Step 5. Limit in approximations as N → ∞

µ
∗
(∇v

N
,∇ϕ) − (v

N
⊗ v

N
,∇ϕ) = (p

N
, div ϕ) + 〈f ,ϕ〉 ∀ϕ

(v, p) is a solution
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µ(|D(v)|2) = µ
∗|D(v)|r−2

D(v) - Critical values for the power-law index

div v = 0 − µ
∗
div(|D(v)|

r−2
D(v)) + div(v ⊗ v) = −∇p+ f in Ω

Energy estimates: supN ‖∇vN‖rr ≤ K - expect that v ∈ W 1,r
0,div(Ω)

• Equation for the pressure: p = (−∆)−1 div div(v ⊗ v − µ∗|D(v)|r−2D(v))

W 1,r →֒ L3r/(3−r) =⇒ v ⊗ v ∈ L
3r

2(3−r) and |D(v)|r−2D(v) ∈ Lr
′
with r′ := r/(r− 1)

r

r − 1
≤

3r

2(3 − r)
⇐⇒ r ≥

9

5

• If v,ϕ ∈ W 1,r then v ⊗ v · ∇ϕ ∈ L1 only for r ≥ 9
5

• For r ≥ 9
5 the energy equality holds, higher differentiability accessible (useful tools)

– Compactness of the quadratic nonlinearity requires W 1,r →֒→֒ L2: holds for r ≥ 6
5

Analysis easier for r ≥ 9/5 and more difficult for r ∈ (6/5, 9/5) , in both cases more difficult

than NSEs
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Results for µ(|D(v)|2) = µ
∗|D(v)|r−2

D(v)

Th1 (Ladyzhenskaya, Lions 1967) Let r ≥ 9/5 and

f ∈

�
W

1,r
0 (Ω)

3

�∗

and p0 ∈ R (D)

Then there is a weak solution (v, p) to (1)-(2) such that

v ∈ W
1,r
0,div(Ω) and p ∈ L

r′
(Ω)

Tools: Monotone operator theory, Minty method (energy equality), compact embedding

Th2 (Frehse, Malek, Steinhauer 2003 and Diening, Malek, Steinhauer 2006) Let r ∈ (6/5, 9/5)

and (D) hold.

Then there is a weak solution (v, p) to (1)-(2) such that

v ∈ W
1,r
0,div(Ω) and p ∈ L

3r/(2(r−1))
(Ω)

Tools: Lipschitz approximations of Sobolev functions (strengthened version), Strictly monotone

operator, Minty method, compact embedding
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Assumptions on µ’s for µ(p, |D(v)|2)

(A1) given r ∈ (1, 2) there are C1 > 0 and C2 > 0 such that for all symmetric matrices B, D and all p

C1(1 + |D|
2
)
r−2
2 |B|

2
≤
∂

h
(µ(p, |D|2)D

i
∂D

· (B ⊗ B) ≤ C2(1 + |D|
2
)
r−2
2 |B|

2

(A2) for all symmetric matrices D and all p�����∂[µ(p, |D|2)D]

∂p

����� ≤ γ0(1 + |D|
2
)
r−2
4 ≤ γ0 γ0 <

1

Cdiv,2

C1

C1 + C2
.

The constant Cdiv,q occurs in the problem:

For a given g ∈ Lq(Ω) with zero mean value to find z ∈ W 1,q
0 (Ω) solving

div z = g in Ω, z = 0 on ∂Ω and ‖z‖1,q ≤ Cdiv,q‖g‖q. (3)

The solvability: Bogovskij (79) or Amrouche, Girault (94).
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Results for µ(p, |D(v)|2)

Th3 (Franta, Malek, Rajagopal 2005) Let r ∈ (9/5, 2) and (D) hold. Assume that (A1)–(A2)

are fullfiled. Then there is a weak solution (v, p) to (1)-(2) such that

v ∈ W
1,r
0,div(Ω) and p ∈ L

r′
(Ω)

Tools: Quasicompressible approximations, structure of the viscosities, solvability of equation div z = g,

strictly monotone operator theory in D-variable, compactness for the velocity gradient, compactness

for the pressure, compact embedding

Th4 (Buĺıcek, Fǐserová 2007) Let r ∈ (6/5, 9/5) and (D) holds. Assume that (A1)–(A2) are

fullfiled. Then there is a weak solution (v, p) to (1)-(2) such that

v ∈ W
1,r
0,div(Ω) and p ∈ L

3r/(2(r−1))
(Ω)

Tools: Quasicompressible approximations, Lipschitz approximations of Sobolev functions (strengthened

version), structure of the viscosities, solvability of equation div z = g, strictly monotone

operator theory in D-variable, compactness for the velocity gradient, compactness for the pressure,

decomposition of the pressure, compact embedding
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Implicit Power-Law-like Fluids

Power-law index r ∈ (1,∞), its dual r′ := r/(r − 1)

v ∈ W 1,r
0,div(Ω), S ∈ Lr

′
(Ω)3×3, , p ∈ Lr̃(Ω) with r̃ = min{r′, 3r

2(3−r)}

div (v ⊗ v + pI − S) = f in D′(Ω),

(Dv(x),S(x)) ∈ A(x) for all x ∈ Ωa.e.

(4)
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Properties of the maximal monotone graph A a.e.

(B1) (0, 0) ∈ A(x);

(B2) If (D,S) ∈ R
3×3
sym × R

3×3
sym fulfils

(S̄ − S) · (D̄ − D) ≥ 0 for all (D̄, S̄) ∈ A(x),

then (D,S) ∈ A(x) (A is maximal monotone graph);

(B3) There are a non-negative m ∈ L1(Ω) and c > 0 such that for all (D,S) ∈ A(x)

S · D ≥ −m(x) + c(|D|
r
+ |S|

r′
) (A is r − graph); (5)

(B4) At least one of the following two conditions (I) and (II) happens:

(I) for all (D1,S1) and (D2,S2) ∈ A(x) fulfilling D1 6= D2 we have

(S1 − S2) · (D1 − D2) > 0,

(II) for all (D1,S1) and (D2,S2) ∈ A(x) fulfilling S1 6= S2 we have

(S1 − S2) · (D1 − D2) > 0,
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Results for Implicit Power-law-like Fluids

Th5 (Malek, Ruzicka, Shelukhin 2005) Let r ∈ (9/5, 2) and (D) hold. Consider Herschel-Bulkley

fluids. Then there is a weak solution (v, p,S) to (4).

Tools: Local regularity method free of involving the pressure, higher-differentiability, uniform monotone

operator properties, compact embedding

Th6 (Gwiazda, Malek, Swierczewska 2007) Let r ≥ 9/5 and (D) holds. Assume that (B1)–(B4)

are fullfiled. Then there is a weak solution (v, p,S) satisfying (4).

Tools: Young measures (generalized version), energy equality, strictly monotone operator, compact

embedding

Th7 (Gwiazda, Malek, Swierczewska 2007) Let r > 6/5 and (D) holds. Assume that (B1)–(B4)

are fullfiled. Then there is a weak solution (v, p,S) satisfying (4).

Tools: Characterizatition of maximal monotone graphs in terms of 1-Lipschitz continuous mappings

(Francfort, Murat, Tartar), Young measures, biting lemma, Lipschitz approximations of Sobolev functions

(strengthened version), approximations of discontinuous functions, compact embedding
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Concluding Remarks

• Consistent thermomechanical basis for incompressible fluids with power-law-like rheology

• ’Complete’ set of results concerning mathematical analysis of these models (sophisticated methods,

new tools)

• Computational tests (will be presented by M. Mádĺık, J. Hron, M. Lanzendörfer) require numerical

analysis of the models

• Hierarchy is incomplete 1: unsteady flows, full thermodynamical setting

• Hierarchy is incomplete 2: rate type fluid models

• Mutual interactions (includes more realistic boundary conditions - I/O)
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5. M. Franta, J. Málek and K.R. Rajagopal: Existence of Weak Solutions for the Dirichlet Problem

for the Steady Flows of Fluids with Shear Dependent Viscosities, Proc. London Royal Soc. A:

Math. Phys. Engnr. Sci. 461, 651–670 2005
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