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Incompressible Fluid Mechanics: Basic Framework/1
Goal: To describe flows of various fluid-like-materials exhibiting so different and so fascinating

phenomena yet share one common feature: these materials are well approximated as tncompressible.

SubGoal: To understand theoretical foundations and mathematical properties of these models.

o +divov =0
(ov): + div(pv @ v) = divT + of

di .
T-D—p— =¢ with & > 0
dt
e o density o v = (v, v2,wvs) velocity
e 1 Helmholtz free energy o f = (f1, f2, f3) external body forces
e T - D stress power o T = (Tij)?,jzl Cauchy stress
e ¢ rate of dissipation e D:=D(v):=1/2(Vv+ (Vo))

1
e Homogeneous fluids (the density is constant) = divv =tr D = 0 p = 3 tr T |pressure




Incompressible Fluid Mechanics: Basic Framework/2

Steady flows in © C R? (time discretizations lead to similar problems)

dive =0 divi(v @ v) —divS =—-Vp+f inQ
v=0 on 0N T -D=¢ with &€ > 0

Constitutive equations: Relation between the Cauchy stress T', of the form T' = —pI + S, and
the symmetric part of the velocity gradient D := D(v)

g(T,D)=0 Power-law-like Rheology (broad, accessible)
e Explicit S =pu(...)D e Implicit
— Navier-Stokes Fluids S = pu*D — Fluids with the vyield stress (Bingham,
— Power-law Fluids § = p*|D|"*D Herschel-Bulkley)
— Power-law-like Fluids S = u(|D|?) D — Fluids with activation criteria
— Fluids with shear-rate dpt viscosity — Implicit Power-law-like Fluids
— Fluids with the yield stress — Fluids with S = u(p)D

— Fluids with activation criteria — Fluids with S = u(p, | D|*) D
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Framework is sufficiently robust to model behavior of various type of fluid-like materials. Models
are frequently used in many areas of engineering and natural sciences: mechanics of colloids and
suspensions, biological fluid mechanics (blood, synovial fluid), elastohydrodynamics, ice mechanics and
glaciology, food processing



Fluids with shear-rate dependent viscosities

v(|D|?) If v = (u(zs),0,0), then |D(v)|2 = 1/2[u’|? ... shear rate.

e v(|DI*) =p*|DI"™? 1<7 <00 o v(|DI*) = u; +pi D" > 2

° power-law model o Ladyzhenskaya model (65)

o v(|D|*) \, as |D|* ~ o (Smagorinskii turbulence model: r = 3)
° shear-rate thinning fluid (r < 2)
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Fluids with the yield stress or the activation criteria/discontinuous stresses

T12 (h> N

T0 —

e threshold value for the stress to start flow

yield stress

e Bingham fluid

b
7

shear rate s o HerscheI—Bingham ﬂUId

T12 (Ii) 4

S

/ e drastic changes of the properties when certain
criterion is met

e formation and dissolution of blood

b
7

der shear rate r e chemical reactions/time scale
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Discontinuous stresses described by a maximal monotone graph
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Implicit power-law-like fluids




Fluids with pressure-dependent viscosities

v(p)

v(p) = exp(vp)
Bridgman(31): " The physics of high pressure”
Cutler, McMickle, Webb and Schiessler(58)

Johnson, Cameron(67), Johnson, Greenwood(77), Johnson, Tewaarwerk(80)

elastohydrodynamics: Szeri(98) synovial fluids

No global existence result.

e Renardy(86), local, (% — 0 as p — 00)

e Gazzola(97), Gazzola, Secchi(98): local, severe restrictions



Fluids with shear- and pressure-dependent viscosities

v(p,|DI?)

o — Moo
1+ 6| D2

Davies and Li(94), Gwynllyw, Davies and Phillips(96)

v(p, |DI*) = (1 + ) exp(vy p)

v(p, |D|?) = coi r=1 Schaeffer(87) - instabilities in granular materials

| D|

V(p, |IDI?) = (A + (1 +exp(ap) ™+ |D?)=T

Lr—1 o 40
a>0A>0 |1<r<2| 0<g< ———-A
202 — r

Q.: Is the dependence of the viscosity on the pressure admissible in continuum mechanics and
thermodynamics?
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Compressible vrs Incompressible

Compressible fluid

T=T(p,Vv) — T =T(p, D(v))
T = ao(p, 1o, Ip, 1p)I + a1(p, 1p, Ip, Ip)D + as(p, 1p, Ip, I p) D>
Ip:=trD, Ip:= % ([trD]2 _ trD2> . lp:=detD
Linearized model:
T = &o(p)I + X(p)[tr D]I 4 2u(p)D, Navier-Stokes fluid

Usually: &q(p) is —p(p) thermodynamic pressure constitutive relation for p(p) needed to close the model =— A\, u

depends on pressure

Incompressible fluid

T = —pI + a1(Ip,1p)D + as(lp, I p)D?

Drawbacks:
e p in general is not the mean normal stress

e Can &; depend on p? No, as the derivation based on the principle: Constraints do no work
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Maximization of the rate of dissipation subject to two constraints

Assume
¢ =2v(trT,|D|*)|D|? and Y = (0, p) = const

Maximizing & with respect to D on the manifold described by the constraints

(1) =T -D (2) divv =trD =20
results to
0 0
—g—AlI—)Q(T——g):O
oD oD
—
2 . 1
T=—pIl+2v(p,|D|")D with p::§trT

Viscosity: resistance between two sliding surfaces of fluids
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Implicit theories

Derivation of the model from the implicit constitutive egn

g(T,D)=0

Isotropy of the material implies

aol + 1T 4+ asD + asT? 4+ ayD* + o5(TD + DT)
+ a6(T°D + DT?) + a7(TD” + D°T) + as(T°D” + D*T?) =0

«; being a functions of
p,tr T, tr D, tr T?, tr D*, tr T, tr D, tr(T D), tr(TQD), tr(D2T), tr(DQTZ)

For incompressible fluids
1
T = 3 tr TI + v(tr T, tr D*)D
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Analysis of PDEs - Existence of (weak) solution - steady flows

e Mathematical consistency of the model (well-posedness), existence for any data in a reasonable

function space

Choice of the function spaces

To know what is the object we approximate
Q C R? open, bounded with the Lipschitz boundary 92

divv =0

—div(2u(p, |D(v)|)D(v)) + div(v @ v) = —Vp + f

in 2

v=20

on Of)

1
. dr =
|Q|/pr Po

(0) v(...) = g NSEs
(1) v(...) =v(IDJ)

(2) v(...) = v(p, | D)

(

3) discontinuous (implicit) power-law fluids

Notion of the solution: balance equations for any subset of {2 <—> weak solution <— FEM

(1)

(2)
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NSEs

dive =0 — pAv +div(v®v) = —Vp+ fin Q

Step 1. Finite-dimensional approximations: (’UN, pN) - Fixed-point iterations
Step 2. Uniform estimates: supy ||[Vo™) |5 + supy [Ip" |5 < K
Step 3. Weak compactness: Vv' — v and p” — p weakly in L?

Step 4. Nonlinearity tretaed by compact embedding: v" — w strongly in L?
Step 5. Limit in approximations as N — oo

P (Vo V) — (v @ v, V) = (", dive) + (f, ¢)

(v, p) is a solution



15

w(|D(v)|?) = p*|D(v)|""*D(v) |- Critical values for the power-law index

dive=0  — pg"div(|D(®)|" *Dw)) +div(v @ v) = —Vp+ f in Q

Energy estimates: sup ||V ||” < K - expect that v € Wol’cﬁv(Q)
e Equation for the pressure: p = (—A) tdivdiv(v ® v — p*|D(v)|" ?D(v))
3r
Whr e [3/6-") — y®wv e LB and |D()|" 2D (v) € L" with v’ := r/(r — 1)

T 3r
< -
r—17 2(3—-r)

= r >

U] ©

olfv,p e Wh thenv ®v -V € L' onlyfor'r*Z%
e Forr > % the energy equality holds, higher differentiability accessible (useful tools)

— Compactness of the quadratic nonlinearity requires W" << LZ?: holds for r > g

Analysis easier for | » > 9/5 | and more difficult for | » € (6/5,9/5) |, in both cases more difficult
than NSEs
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Results for | (| D(v)[2) = u*|D(v)|"~2D(v)

Thl (Ladyzhenskaya, Lions 1967) Let| r > 9/5 | and

f € (WJ’T(Q)B)* and po € R (D)

Then there is a weak solution (v, p) to (1)-(2) such that

/
v € Wy, (Q) and p € L (Q)

Tools: Monotone operator theory, Minty method (energy equality), compact embedding

Th2 (Frehse, Malek, Steinhauer 2003 and Diening, Malek, Steinhauer 2006) Let
and (D) hold.

r e (6/5,9/5)

Then there is a weak solution (v, p) to (1)-(2) such that

v e W, 5, (@)  andpe L¥/PUD(q)

Tools: Lipschitz approximations of Sobolev functions (strengthened version), Strictly monotone

operator, Minty method, compact embedding



Assumptions on s for | u(p,|D(v)|?)

(Al) given| r € (1,2) |there are C7 > 0 and Cy > 0 such that for all symmetric matrices B, D and all p

& |(u(p,|DI*) D]

r—2
5 (B® B) < C2(1+|D") 2 |B|”

20 r=2 9
C1(1+|D|7) 2 |B|” <

(A2) for all symmetric matrices D and all p

du(p, | D|*) D]
Op

1 Cy
0 < .
Caiv,2 C1 + C2

21“—2
<@+ |D|") 4 <~ v

The constant Cy;, 4 occurs in the problem:

For a given g € L9(Q) with zero mean value to find z € W %(2) solving

divz =g in Q, z=0o0n 9 and ||z||1,4 < Caiv.qllglls- (3)

The solvability: Bogovskij (79) or Amrouche, Girault (94).
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Results for | u(p, |D(v)]?)

Th3 (Franta, Malek, Rajagopal 2005) Let | r € (9/5,2) | and (D) hold. Assume that (A1)—(A2)
are fullfiled. Then there is a weak solution (v, p) to (1)-(2) such that

/
v € WOl,’(;.U(Q) and p € L" (Q)

Tools: Quasicompressible approximations, structure of the viscosities, solvability of equation div z = g,
strictly monotone operator theory in ID-variable, compactness for the velocity gradient, compactness
for the pressure, compact embedding

Th4 (Bulicek, Fiserova 2007) Let| r € (6/5,9/5) | and (D) holds. Assume that (A1)—(A2) are
fullfiled. Then there is a weak solution (v, p) to (1)-(2) such that

v € W()lgiv(Q) and p € LBT/(z(r_l))(Q)

Tools: Quasicompressible approximations, Lipschitz approximations of Sobolev functions (strengthened
version), structure of the viscosities, solvability of equation divz = g, strictly monotone
operator theory in D-variable, compactness for the velocity gradient, compactness for the pressure,
decomposition of the pressure, compact embedding
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Implicit Power-Law-like Fluids

Power-law index r € (1, 00), its dual 7' := 7 /(r — 1)

(S Wol’(f{iv(Q), S c LT/(Q)3X3, , P E Lf(Q) with 7 = min{r’
div(v®v +pI —S) = fin D'(Q),

(Dv(x),S(xz)) € A(x) for all x € Qqe.

3r
? 2(3—1)

(4)
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Properties of the maximal monotone graph A a.e.

(B1) (0,0) € A(x);
3%3 3%3 ¢ ¢
(B2) If (D, S) € R¥® x R¥? fulfils

(§—-8)-(D—-D)>0 forall (D,S) € A(x),

then (D, S) € A(x) (A is maximal monotone graph);
(B3) There are a non-negative m € L'(Q) and ¢ > 0 such that for all (D, S) € A(x)

S-D > —m(x)+c(ID"+|S|")  (Ais r — graph);

(B4) At least one of the following two conditions (1) and (II) happens:
(I) forall (D1, S1) and (D2, S2) € A(x) fulfilling D1 # D5 we have

(Sl — SQ) . (D1 — DQ) > 0,
(IT) for all (D1, S1) and (D3, S2) € A(x) fulfilling S1 # S2 we have

(Sl — Sg) . (D1 — DQ) > 0,

(5)
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Results for Implicit Power-law-like Fluids

Thb (Malek, Ruzicka, Shelukhin 2005) Let| » € (9/5,2) | and (D) hold. Consider Herschel-Bulkley
fluids. Then there is a weak solution (v, p, S) to (4).

Tools: Local regularity method free of involving the pressure, higher-differentiability, uniform monotone
operator properties, compact embedding

Th6 (Gwiazda, Malek, Swierczewska 2007) Let| = > 9/5 | and (D) holds. Assume that (B1)—(B4)
are fullfiled. Then there is a weak solution (v, p, S) satisfying (4).

Tools: Young measures (generalized version), energy equality, strictly monotone operator, compact
embedding

Th7 (Gwiazda, Malek, Swierczewska 2007) Let| » > 6/5 | and (D) holds. Assume that (B1)—(B4)

are fullfiled. Then there is a weak solution (v, p, S) satisfying (4).

Tools: Characterizatition of maximal monotone graphs in terms of 1-Lipschitz continuous mappings
(Francfort, Murat, Tartar), Young measures, biting lemma, Lipschitz approximations of Sobolev functions
(strengthened version), approximations of discontinuous functions, compact embedding
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Concluding Remarks

Consistent thermomechanical basis for incompressible fluids with power-law-like rheology

'Complete’ set of results concerning mathematical analysis of these models (sophisticated methods,
new tools)

Computational tests (will be presented by M. Madlik, J. Hron, M. Lanzendorfer) require numerical
analysis of the models

Hierarchy is incomplete 1: unsteady flows, full thermodynamaical setting
Hierarchy is incomplete 2: rate type fluid models

Mutual interactions (includes more realistic boundary conditions - 1/O)
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