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Based on joint work with Beďrich Soused́ık, UCDHSC and Czech Technical

University, and Clark R. Dohrmann, Sandia

Computational Methods with Applications, Harrachov 2007

August 22, 2007

Supported by Sandia National Laboratories and
National Science Foundation Grant CNS-0325314.



A Somewhat Biased Short Overview of

Iterative Substructuring a.k.a. Nonoverlapping DD

• assemble elements into substructures, eliminate interiors =⇒ reduced

problem (Schur complement) on interface (in Sobolev space

H1/2 → H−1/2)

cond ≈ O

(
number of substructures2 * substructure size

mesh step (=element size)

)
= O

(
N2

)
O

(
H

h

)

• for parallel solution; Schur complement matrix-vector multiply = solve

substructure Dirichlet problem

• only matrix datastructures needed; condition number better in practice

than the O
(
1/h2

)
for the original problem (small N)



Early Preconditioners

• diagonal preconditioning: Gropp and Keyes 1987, “probing” the diagonal

of the Schur complement Chan and Mathew 1992 (because creating the

diagonal of the Schur complement is expensive)...

• preconditioning by solving substructure Neumann problems

(H−1/2 → H1/2) Glowinski and Wheeler 1988, Le Talleck and De Roeck

1991 (a.k.a. the Neumann-Neumann method)

• optimal substructuring methods: coarse problem: O
(
N2

)
→ const,

asymptotically optimal preconditioners H/h→ log2 (1 + H/h) (Bramble,

Pasciak, Schatz 1986+, Widlund 1987, Dryja 1988,... but all these

methods require access to mesh details and depend on details of the

Finite Element code, which makes them hard to implement in a

professional software framework



FETI and BDD

• algebraic - need only substructure 1. solvers (Neumann, Dirichlet), 2.

connectivity, 3. basis of nullspace (BDD - constant function for the

Laplacian, FETI - actual nullspace)

• both involve singular substructure problems (Neumann) and build the

coarse problem from local substructure nullspaces (in different ways) to

assure that the singular systems are consistent

• Balancing Domain Decomposition (BDD, Mandel 1993): solve the

system reduced to interfaces, interface degrees of freedom common (this

is the Neumann-Neumann with a particular coarse space)

• Finite Element Tearing and Interconnecting (FETI, Farhat and Roux

1991): enforce continuity across interfaces by Lagrange multipliers, solve

the dual system for the multipliers



FETI and BDD Developments

• Both methods require only matrix level information that is readily
available in Finite Element software (no fussing with the meshes,
coordinates, and individual elements...) and can be implemented easily
outside of the FE engine. So they became very popular and widely used.
The methods work well in 2D and 3D (solids).

• But the performance for plates/shells/biharmonic not so good. Reason:
the condition numbers depend on the energy (trace norm) of functions
with jumps across a substructure corner. In 2D, OK for H1/2 traces of
H1 functions, not H3/2 traces of H2 functions (embedding theorem).

• Fix: avoid this by increasing the coarse space and so restricting the space
where the method runs, to make sure that nothing gets torn across the
corners (BDD: LeTallec Mandel Vidrascu 1998, FETI: Farhat Mandel
1998, Farhat Mandel Tezaur 1998). Drawback: complicated, expensive -
a large coarse problem with custom basis functions



FETI-DP and BDDC

• To assure that nothing gets torn across the corners, enforce identical

values at corners from all neighboring substructures a-priori =⇒ corner

values are coarse degrees of freedom

• Continuity elsewhere at the interfaces by Lagrange multipliers as in FETI

=⇒ FETI-DP (Farhat et al 2001)

• Continuity elsewhere by common values as in BDD =⇒ BDDC

(Dohrmann 2003; independently Cros 2003, Frakagis and Papadrakakis

2003, with corner coarse degrees of freedom only)

• Additional coarse degrees of freedom (side/face averages) required in

3D for good conditioning: Farhat, Lesoinne, Pierson 2000 (algorithm

only), Dryja Windlud 2002 (with proofs)



FETI-DP and BDDC Developments

• Convergence estimate (energy norm of an averaging operator) Mandel

Dohrmann 2003

• The eigenvalues of the preconditioned FETI-DP and BDDC operators

are the same (Mandel, Dohrman, Tezaur 2005, simplified proofs: Li and

Widlund 2006, Brenner and Sung 2007)

• For large problems, coarse problem is a bottleneck=⇒three-level BDDC

(BDDC with two coarse levels) in two and three dimensions (Tu 2004,

2005).

• Here: multilevel BDDC. Theory by a new abstract multispace BDDC

formulation.



Substructuring for a Problem with H/h=4

h
H1

iΩ



BDDC Description - Example Spaces

W =
N⊗

i=1
Wi : space of block vectors, one block per substructure

U ⊂ W̃ ⊂ W
continuous across whole continuous across no continuity
substructure interfaces corners only required

fully assembled partially assembled partially assembled

Want to solve: u ∈ U : a (u, v) = 〈f, v〉 ∀v ∈ U , a (·, ·) SPD on U

a (·, ·) defined on the bigger space W



BDDC Description - Example Form and RHS

W =
N⊗

i=1
Wi : space of block vectors, one block per substructure Ωi,

w = (wi)

The bilinear form a and the right-hand side f defined by integrals over

substructures:

a(w, v) =
N∑

i=1

∫

Ωi

∇wi∇vi, 〈f, v〉 =
N∑

i=1

∫

Ωi

fivi



Abstract BDDC (Two Levels):
Variational Setting of the Problem and Algorithm Components

u ∈ U : a(u, v) = 〈f, v〉 , ∀v ∈ U

a SPD on U and positive semidefinite on W ⊃ U , 〈, 〉 is inner product

Example:
W = W1 × · · · ×WN (spaces on substructures)
U = functions continuous across interfaces

Choose preconditioner components:

space W̃ , U ⊂ W̃ ⊂W, such that a is positive definite on W̃ .
Example: functions with continuous coarse dofs, such as values at
substructure corners

projection E : W̃ → U, range E = U .
Example: averaging across substructure interfaces



Abstract BDDC Preconditioner

Given a on W ⊃ U , define A : U → U by a(v, w) = 〈Av, w〉 ∀v, w ∈ U

Choose W̃ such that U ⊂ W̃ ⊂W , and projection E : W̃ → U onto

Theorem 1 The abstract BDDC preconditioner M : U −→ U ,

M : r 7−→ u = Ew, w ∈ W̃ : a (w, z) = 〈r, Ez〉 , ∀z ∈ W̃ ,

satisfies

κ =
λmax(MA)

λmin(MA)
≤ ω = sup

w∈W̃

‖Ew‖2a
‖w‖2a

.

In implementation, W̃ is decomposed into

W̃ = W̃∆ ⊕ W̃Π

W̃∆ = functions with zero coarse dofs ⇒ local problems on substructures

W̃Π = functions given by coarse dofs & energy minimal

⇒ global coarse problem



The Coarse Problem
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A basis function from W̃Π is energy

minimal subject to given values of coarse

degrees of freedom on the substructure.

The function is discontinuous across the

interfaces between the substructures but

the values of coarse degrees of freedom

on the different substructures coincide.

The coarse problem has the same structure as the original FE problem =⇒

solve it approximately by one iteration of BDDC =⇒ three-level BDDC

Apply recursively =⇒ multi-level BDDC



Substructuring for a Three-level Model Problem

h
H1

H2

1,iΩ

2,kΩ



Abstract Multispace BDDC

Choose a space with decomposition
∑N

k=1 Vk and projections Qk as

U ⊂
∑N

k=1 Vk ⊂W, Qk : Vk → U

Vk energy orthogonal: Vk ⊥a Vℓ, k 6= ℓ,

assume ∀u ∈ U :


u =

N∑

k=1

vk, vk ∈ Vk


 =⇒ u =

N∑

k=1

Qkvk

Equivalently, assume Πk :
M⊕

j=1
Vj → Vk are a−orthogonal projections, and

I =
N∑

k=1

QkΠk on U



Abstract Multispace BDDC

Theorem 2 The abstract Multispace BDDC preconditioner M : U −→ U

defined by

M : r 7→ u, u =
N∑

k=1

Qkvk, vk ∈ Vk : a (vk, zk) = 〈r, Qkzk〉 , ∀zk ∈ Vk,

satisfies

κ =
λmax(MA)

λmin(MA)
≤ ω = max

k
sup

vk∈Vk

‖Qkvk‖
2
a

‖vk‖
2
a

.

For N = 1 we recover the abstract BDDC algorithm and condition number

bound. Proved from generalized Schwarz theory (Dryja and Widlund, 1995).

Unlike in the Schwarz theory, we decompose some large space than U .

In a sense:

1. the spaces Vk decompose the space W̃ , and

2. the projections Qk : Vk → U decompose the projection E : W̃ → U .



Algebraic View of the Abstract BDDC Preconditioner

�W

�W

U

A 1 TM E A E−= ɶ

TE

E

Aɶ

U

The same bilinear form a defines A : U → U and Ã : W̃ → W̃ ⊃ U

The preconditioner M to A is obtained by solving a problem with the same

bilinear form on the bigger space W̃ and mapping back to U via the

projection E and its transpose ET .



Algebraic View of the Abstract Multispace BDDC Preconditioner

The same bilinear form a defines A : U → U and Ãi : Vi → Vi,
∑N

i=1 Vi ⊃ U

The preconditioner M to A is obtained by solving problems with the same

bilinear form on the bigger spaces Vi and mapping back to U via the

projections Qi and their transposes QT
i .



BDDC with Interiors as Multispace BDDC

Abstract BDDC often presented on the space of discrete harmonic functions.
The original BDDC formulation had “interior correction”:

UI

P
←
⊂

U
E
←
⊂

W̃

Lemma 3 The original BDDC preconditioner is the abstract Multispace

BDDC method with N = 2 and the spaces and operators

V1 = UI , V2 = (I − P )W̃ , Q1 = I, Q2 = (I − P ) E.

The space W̃ has an a-orthogonal decomposition

W̃ = W̃∆ ⊕ W̃Π.

so the problem on W̃ splits into independent problems on W̃∆ and W̃Π.

Example:
W̃∆ = functions zero on substructure corners
W̃Π = given by values on substructure corners and energy minimal



BDDC with Interiors as Multispace BDDC

The same BDDC formulation with “interior correction” and splitting of W̃ :

UI

P
←
⊂

U
E
←
⊂

W̃

q

W̃Π ⊕ W̃∆

Lemma 4 The original BDDC preconditioner is the abstract multi-space

BDDC method with N = 3 and the spaces and operators

V1 = UI , V2 = W̃Π, V3 = (I−P )W̃∆, Q1 = I, Q2 = Q3 = (I − P ) E.

Solving on UI ⇒ independent Dirichet problems on substructures

Solving on (I − P )W̃∆ ⇒ independent constrained Neumann problems on

substructures + correction in UI

Solving on W̃Π ⇒ Global coarse problem with substructures as coarse

elements and energy minimal function as coarse shape functions.



Three-level BDDC

Coarse problem solved approximately by the BDDC preconditioner.

U
q

UI1

P1
←
⊂

U1

E1
←
⊂

W̃1

q

W̃Π1 ⊕ W̃∆1
q

UI2

P2
←
⊂

U2

E2
←
⊂

W̃2

q

W̃Π2 ⊕ W̃∆2

Lemma 5 The three-level BDDC preconditioner is the abstract Multispace

BDDC method with N = 5 and the spaces and operators

V1 = UI1, V2 = (I − P1)W̃∆1, V3 = UI2, V4 = (I − P2)W̃∆2, V5 = W̃Π2,

Q1 = I, Q2 = Q3 = (I − P1) E1, Q4 = Q5 = (I − P1) E1 (I − P2) E2.



Multilevel BDDC

Coarse problem solved by the BDDC preconditioner, recursive.

U
q

UI1

P1
←
⊂

U1

E1
←
⊂

W̃1

q

W̃Π1 ⊕ W̃∆1
q

UI2

P2
←
⊂

U2

E2
←
⊂

W̃2

q

W̃Π2 ⊕ W̃∆2
q

...
q

UIL−1

PL−1
←
⊂

UL−1

EL−1
←
⊂

W̃L−1

q

W̃ΠL−1 ⊕ W̃∆L−1



An Example of Action of Operators Ek and Pk

Hk-1

Hk

Pk
Ek

Values on this substructure and its neighbors are averaged by Ek, then

extended as “discrete harmonic” by Pk.

Basis functions on level k are given by dofs on level k & energy minimal

w.r.t. basis functions on level k − 1. Discrete harmonics on level k are given

by boundary values & energy minimal w.r.t. basis functions on level k − 1.



Multilevel BDDC

Coarse problem solved by the BDDC preconditioner, recursive.

Lemma 6 The Multilevel BDDC preconditioner is the abstract Multispace

BDDC preconditioner with N=2L-2 and

V1 = UI1, V2 = (I − P1)W̃∆1, V3 = UI2,

V4 = (I − P2)W̃∆2, V5 = UI3, ...

V2L−4 = (I − PL−2)W̃∆L−2, V2L−3 = UIL−1,,

V2L−2 = (I − PL−1)W̃L−1

Q1 = I, Q2 = Q3 = (I − P1) E1,

Q4 = Q5 = (I − P1) E1 (I − P2) E2, ...

Q2L−4 = Q2L−3 = (I − P1) E1 · · ·
(
I − PL−2

)
EL−2.

Q2L−2 = (I − P1) E1 · · ·
(
I − PL−1

)
EL−1

Recall condition number bound:

κ =
λmax(MA)

λmin(MA)
≤ ω = max

k
sup

vk∈Vk

‖Qkvk‖
2
a

‖vk‖
2
a

.



Algebraic Condition Estimate of Multilevel BDDC

Lemma 7 If

‖(I − P1)E1w1‖
2
a ≤ ω1 ‖w1‖

2
a ∀w1 ∈ W̃1,

‖(I − P2)E2w2‖
2
a ≤ ω2 ‖w2‖

2
a ∀w2 ∈ W̃2,

...
∥∥(I − PL−1)EL−1wL−1

∥∥2
a ≤ ωL−1

∥∥wL−1
∥∥2
a ∀wL−1 ∈ W̃L−1.

then the multilevel BDDC preconditioner satisfies κ ≤
∏L−1

i=1 ωi.

• All spaces are subspaces of the single space W .

• The functions (I − Pi)Eiwi are discrete harmonic functions on level i

with energy minimal extension into the interior after averaging on level i,

such that wi has continuous coarse dofs (such as values at corners) at

the decomposition level i− 1.



Condition Number Estimate with Corner Contraints

Theorem 8 The Multilevel BDDC preconditioner in 2D with corner

constraints only satisfies

κ ≤ C1

(
1 + log

H1

h

)2

C2

(
1 + log

H2

H1

)2

· · ·CL−1

(
1 + log

HL−1

HL−2

)2

.

For L = 3 we recover the estimate by Tu (2004).

This bound implies at most polylogarithmic growth of the condition number

in the ratios of mesh sizes for a fixed number of levels L

For fixed Hi/Hi−1 the growth of the condition number can be exponential in

L and this is indeed seen in numerical experiments

With additional constraints, such as side averages, the condition number will

be less but the bound is still principally the same, though possibly with

(much) smaller constants. For small enough constants, the exponential

growth of the condition number may no longer be apparent.



Numerical Examples

Multilevel BDDC implemented for the 2D Laplace eq. on a square domain:

2D Laplace equation results for Hi/Hi−1 = 8 at all levels.

L corners only corners & faces n nΓ
iter cond iter cond

2 10 2.99 7 1.33 1024 240
3 19 7.30 11 2.03 65,536 15,360
4 31 18.6 13 2.72 4,194,304 983,040
5 50 47.38 15 3.40 268,435,456 62,914,560

2D Laplace equation results for Hi/Hi−1 = 16 at all levels.

L corners only corners & faces n nΓ
iter cond iter cond

2 19 6.90 10 1.93 65,536 7936
3 23 12.62 13 2.67 1,048,576 126,976
4 43 41.43 16 3.78 268,435,456 32,505,856



2D Laplace equation results for Hi/Hi−1 = 4 at all levels.

L corners only corners & faces n nΓ
iter cond iter cond

2 9 2.20 6 1.14 256 112
3 15 4.02 8 1.51 4096 1792
4 21 7.77 10 1.88 65,536 28,672
5 30 15.2 12 2.24 1,048,576 458,752
6 42 29.7 13 2.64 16,777,216 7,340,032

2D Laplace eq. results for H1/H0 = 4, H2/H1 = 4, and varying H3/H2.
H3/H2 corners only corners & faces n nΓ

iter cond iter cond
4 21 7.77 10 1.88 65,536 28,672
8 23 10.74 11 2.23 262,144 114,688
16 25 14.54 13 2.63 1,048,576 458,752
32 28 19.10 14 3.08 4,194,304 1,835,008
64 31 24.39 14 3.57 16,777,216 7,340,032



Conclusion

• Described an algorithm for Multilevel BDDC preconditioning and derived

a condition number estimate for case of corner constraints.

• Method tested on Laplace equation in 2D. Numerical results confirm the

theory.

• The new concept of Multispace BDDC and algebraic estimate of its

condition number could be of independent interest.



Future Developments

• 3D condition number bounds + extension to linear elasticity.

• Other types of constraints - why does the condition number grow so

much less when side averages are added in 2D?

• Lower bounds.

• Extensions of the adaptive approach (Mandel, Soused́ık 2007)

to the multilevel case =⇒

solution of problems that are both very large and numerically difficult.


