Convergence Issues of Iterative Aggregation/Disaggregation

IVO MAREK

Petr Mayer

Czech Institute of Technology, School of Civil Engineering, Thakurova 7, 166 29 Praha 6, Czech Republic

August 20, 2007 Computational Algebra Harrachov

Outline

- 1. Some motivation
- 2. IAD method for stationary probability vector
- 3. IAD with right hand side
- 4. Error formula
- 5. Fast konvergence
- 6. Conclusion

Some motivation

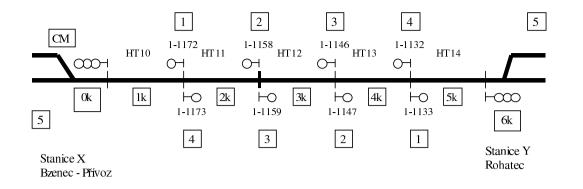
Definition 1. Let elements of $T \in \Re^{n \times n}$ be non negative and Te = e, where $e = (1, ..., 1)^T \in \Re^n$. Then we call T the stochastic matrix.

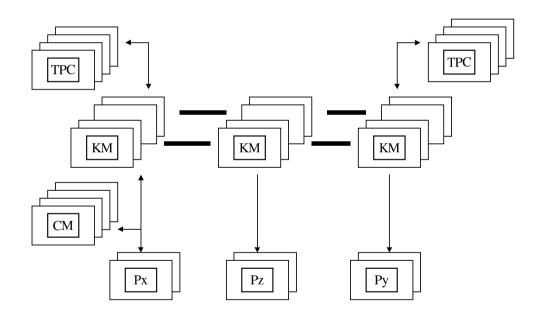
Definition 2. A finite Markov chain is stochastic process, which moves through finite number of states, and for which the probability of entering a certain state depends only on the last state occupied.

Definition 3. A transient state has a non-zero probability that the chain will never return to this state.

A reccurrent(persistent) state has a zero probability that the chain will never return to this state.

E ... matrix of all onese ... vector of all onesI ... identity matrix





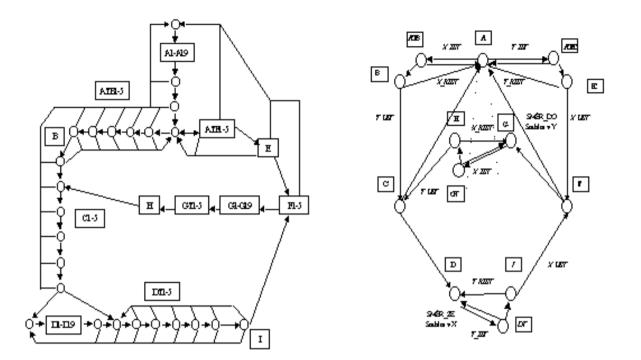


Figure 2.

To find long time behaviour of such system, we have to solve

Problem 1. We solve

$$Tx = x, e^T x = 1 \tag{1}$$

Let $Q \in \Re^{N \times N}$, such that $e^T Q = 0$, diag $Q \leq 0$, offdiag $Q \geq 0$, we try to compute

$$u(t) = e^{Qt}u(0)$$

using the Implicit Euler method, then we have to solve at every step system

$$u(t) = \tau Q u(t) + u(t - \tau).$$

After some rearangement ve finish with system of the type

$$x = Tx + b, \tag{2}$$

where T is nonnegative matrix with spectral radius less than one.

IAD method for stationary probability vector

$$g: \{1, \dots, N\} \longrightarrow \{1, \dots, n\}.$$

The restriction matrix $R \in \Re^{N \times n}$:

$$R_{g(i),i} = 1$$

$$(Rx)_j = \sum_{j=1, g(j)=i}^N x_j.$$

The prolongation matrix S(x) is parametrised by vector $x \in \Re^N$, the nonzero elements of this matrix are

$$(S(x))_{i,g(i)} = \frac{x_i}{(Rx)_{g(i)}},$$

$$(S(x)z)_i = z_{g(i)} \frac{x_i}{(Rx)_{g(i)}}.$$

Aggregated matrix : A(x) = RTS(x).

Lemma 4. Let T be a column stochastic matrix, let g be an aggregation mapping and $x \in \Re^N$ such that $x \ge 0$ and $R \ x > 0$. Then aggregated matrix A(x) is collumn stochastic. If the matrix T is irreducible and the vector x is strictly positive, then A(x) is irreducible.

Note 5. Let us note that the strict positivity of x is essential.

$$T = \begin{pmatrix} \frac{1}{3} & \frac{1}{4} & 0 & \frac{1}{4} \\ \frac{2}{3} & \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \end{pmatrix}, x = \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}, g: \begin{array}{c} 1 \mapsto 1 \\ 2 \mapsto 1 \\ \frac{1}{2} \\ 3 \mapsto 2 \\ 4 \mapsto 2 \\ \end{array}$$

We get the matrix $A(x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which is reducible.

Algorithm IAD(input: $T, M, W, x_{init}, \varepsilon, g, s$ output: x)

1. $k := 1, x_1 := x_{init}$ 2. while $||Tx_k - x_k|| > \varepsilon$ do 3. $\tilde{x} := (M^{-1}W)^s x_k$ 4. $A(\tilde{x}) := RTS(\tilde{x})$ 5. solve $A(\tilde{x})z = z$ and $e^T z = 1$ 6. k := k + 17. $x_k = S(\tilde{x})z$ 8. end while

Convergence theory for IAD can be found in [1].

Theorem 6. Let T be a column stochastic matrix, let \hat{x} be the solution of (1), then there exist s_0 and neighborhood of \hat{x} such that for any x_{init} from this neighborhood and any $s > s_0$ the Algoritm IAD is convergent.

IAD with right hand side

we solve problem (2), i.e.

$$x = Tx + b$$

Algorithm RHS(input: $T, M, W, x_{init}, \varepsilon, g, s$ output: x)

- 1. $k := 1, x_1 := x_{\text{init}}$ 2. while $||Tx_k - x_k|| > \varepsilon$ do 3. $\tilde{x_0} = x_k$ 4. for j=1,s do 5. $\tilde{x}_{i} := (M^{-1}W)\tilde{x}_{i-1} + M^{-1}b$ 6. end do 7. $\tilde{x} = \tilde{x}_s$ 8. $A(\tilde{x}) := RTS(\tilde{x})$ 9. solve $z = A(\tilde{x})z + Rb$ 10. k := k + 111. $x_k = S(\tilde{x})z$
- 12. end while

Error formula

For both previous processes we have same error formula

$$x_k - x^* = (M^{-1}W)^s (I - P(x_{k-1})T)^{-1} (I - P(x_{k-1}))$$

where

P(x) = S(x) R

Fast convergence

Theorem 7. Let for splitting M, W be range $(M^{-1}W) \subseteq \text{range}(S(\hat{x}))$. Then Algorithm IAD terminates after the first iteration.

Example 8. Let

and splitting I - T = M - W be

$$M = \begin{pmatrix} 0.9 & -0.1 & -0.1 & 0 & 0 & 0 \\ -0.5 & 0.8 & 0 & 0 & 0 & 0 \\ -0.2 & -0.1 & 0.9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & -0.2 & -0.1 \\ 0 & 0 & 0 & -0.6 & 0.8 & -0.1 \\ 0 & 0 & 0 & -0.1 & -0.3 & 0.7 \end{pmatrix}$$
$$W = \begin{pmatrix} 0 & 0 & 0 & 0.05 & 0.15 & 0.25 \\ 0 & 0 & 0 & 0.02 & 0.06 & 0.10 \\ 0 & 0 & 0 & 0.03 & 0.09 & 0.15 \\ 0.04 & 0.12 & 0.16 & 0 & 0 & 0 \\ 0.08 & 0.24 & 0.32 & 0 & 0 & 0 \end{pmatrix}$$

Let aggregation mapping be

$$\begin{array}{c} 1 \mapsto 1 \\ 2 \mapsto 1 \\ 3 \mapsto 1 \\ 4 \mapsto 2 \\ 5 \mapsto 2 \\ 6 \mapsto 2 \end{array} \\ x_0 = \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)^T \\ \tilde{x} = (0.104124, 0.102577, 0.084536, 0.182906, 0.309402, 0.311111)^T \\ A(\tilde{x}) = \left(\begin{array}{c} 0.4849558 & 0.3319149 \\ 0.5150442 & 0.6680851 \end{array}\right) \\ z = (0.3918901, 0.6081099)^T \\ x_1 = (0.140109, 0.138029, 0.113752, 0.138442, 0.234187, 0.235481)^T \end{array}$$

It is not true for Algorithm RHS, we need to add condition $b \in \operatorname{range}{(S(\hat{x}))}.$

Other possibility is to replace steps 8, 9, 11 by

Step 8 :
$$A(\tilde{x}_s - \tilde{x}_{s-1}) := RTS(\tilde{x}_s - \tilde{x}_{s-1})$$

Step 9 : solve $z = A(\tilde{x})z + R(b - Tx_k)$
Step 11: $x_k = S(\tilde{x})z + x_{k-1}$

Algorithm RHS(input: $T, M, W, x_{init}, \varepsilon, g, s$ output: x)

1.
$$k := 1, x_1 := x_{init}$$

2. while $||Tx_k - x_k|| > \varepsilon$ do
3. $\tilde{x_0} = x_k$
4. for j=1,s do
5. $\tilde{x}_j := (M^{-1}W)\tilde{x}_{j-1} + M^{-1}b$
6. end do
7. $\tilde{x} = \tilde{x}_s$
8. $A(\tilde{x}_s - \tilde{x}_{s-1}) := RTS(\tilde{x}_s - \tilde{x}_{s-1})$
9. solve $z = A(\tilde{x})z + R(b - Tx_k)$
10. $k := k + 1$
11. $x_k = S(\tilde{x})z + x_{k-1}$
12. end while

Remark

for every irreducible stochastic matrix T there exist

$$\lim_{k \to \infty} T^k e = x^* \text{ and } Tx^* = x^*$$

method	p = 0 w=0.5	$p = 0 \\ w = 0.1$	$p = 0 \\ w = 0.01$	$p\!=\!0.1 \ w\!=\!0.5$	$p = 0.1 \\ w = 0.1$	$p = 0.1 \\ w = 0.01$	$p\!=\!0.5 \ w\!=\!0.5$	$p\!=\!0.5 \ w\!=\!0.1$	$p = 0.5 \\ w = 0.01$
power	53	224	3130	44	142	1812	55	70	915
MM	16	25	27	12	23	27	12	19	27
Vant	1	1	1	11	10	9	12	12	10
KMS	1	1	1	9	9	7	9	10	8
Jacobi	55	71	76	54	71	77	59	75	82
G.S.	41	51	54	30	42	47	29	40	45

Nearly dyadic matrices: bl = 60 sz = 420

Conclusion

- IAD methods are best for computing of SPV
- for cyclic matrices the power method applied to all ones vector is a reasonable choice
- structure of solution is significant
- Algorithm RHS is applicable for computing moments of Markov chains

Bibliography

 [1] I. Marek and P. Mayer. Iterative aggregation/disaggregation methods for computing some characteristic of of markov chains. In *Large Scale Scientific Computing*, pages 68-82, 2001. Third International Conference, LSSC 2001, Sozopol, Bulgaria.