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Some motivation

Definition 1. Let elements of T'€ R™*"™ be non negative and Te=e,
where e=(1,...,1)" € R". Then we call T the stochastic matriz.

Definition 2. A finite Markov chain is stochastic process, which moves
through finite number of states, and for which the probability of entering
a certain state depends only on the last state occupied.

Definition 3. A transient state has a non-zero probability that the
chain will never return to this state.

A reccurent(persistent) state has a zero probability that the chain will
never return to this state.

E ... matrix of all ones
e ... vector of all ones
I ... identity matrix
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To find long time behaviour of such system, we have to solve

Problem 1. We solve

T

Ter=x,etx=1



Let Q € RY*Y such that eTQ =0, diag Q <0, offdiag Q > 0, we try to
compute

u(t) =eQtu(0)

using the Implicit Euler method, then we have to solve at every step
system

u(t) =1Qu(t) +u(t — 7).
After some rearangement ve finish with system of the type

x=Tx+Db, (2)

where T' is nonnegative matrix with spectral radius less than one.



IAD method for stationary probability
vector

g:{l,...N}—{1,....,n}.

The restriction matrix R € RN xn .
Rg(’i),i =1

N

(Rx)j= >

j=1,9(j)=1

The prolongation matrix S(x) is parametrised by vector x € Y, the
nonzero elements of this matrix are
i

(S(ﬁ))i,g(i) — (Rx—)g(i) )

(@2 =200 75

Aggregated matrix : A(x)=RTS(x) .
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Lemma 4. Let T be a column stochastic matrix, let g be an aggregation
mapping and © € R such that x > 0 and R x > 0. Then aggregated
matrix A(z) is collumn stochastic. If the matriz T is irreducible and the
vector x is strictly positive, then A(x) is irreducible.

Note 5. Let us note that the strict positivity of x is essential.
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We get the matrix A(x) =

= O

1
0
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), which is reducible.



Algorithm TAD(input: T', M, W, x;,it, €, g, s output: x)
1. k:=1,21: =i
2. while ||Txp — x| > € do
3. T:=(M~1W)sx
4. A(): = RTS(%)
5. solve A(Z)z=zandelz=1
6
7

ki=k+1
cxp=295(T)z
8. end while

Convergence theory for IAD can be found in [1].

Theorem 6. Let T be a column stochastic matrix, let £ be the solution
of (1), then there exist sqgand neighborhood of  such that for any xi,;;
from this neighborhood and any s > sq the Algoritm IAD s convergent.



IAD with right hand side

we solve problem (2), i.e.
r=Tx+b

Algorithm RHS(input: T', M, W, zinit, €, g, s output: x)
1. k:=1,21: = Tinit
. while ||Tzy — x| > € do
. To= Tk

. for j=1,s do

2
3
4
5.
6. end do
7
8
9

10. k:=k+1
11. zx=S5(2)z
12. end while
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Error formula

For both previous processes we have same error formula

rp—a*=(MTW)(I = P(zr—1)T) " (I — P(zr-1))

where
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Fast convergence

Theorem 7. Let for splitting M ,W be range(M ~'W) Crange(S(Z)).
Then Algorithm IAD terminates after the first iteration.

Example 8. Let

( 0.1 0.1 0.1 0.05 0.15 0.25\
0.5 0.2 0 0.02 0.06 0.10
0.2 0.1 0.1 0.03 0.09 0.15
0.04 0.12 0.16 0.2 0.2 0.1
0.08 0.24 0.32 0.6 0.2 0.1

\0.08 0.24 0.32 0.1 0.3 0.3

and splitting I —T'=M — W be

( 09 —0.1 —0.1 0 0 0 \
—0.5 0.8 0 0 0 0
v—| —02 —01 09 0 0 0
0 0 0 0.8 —0.2 —0.1
0 0 —06 0.8 —0.1
\ 0 0o 0 -01 —03 07 )
( 0 0 0 0.05 0.15 0.25\
0 0 0 0.02 0.06 0.10
W — 0 0 0 0.03 0.09 0.15

0.04 0.12 016 0 0 0
0.08 024 032 0 0 0
\ 0.08 024 032 0 0 0 )
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Let aggregation mapping be

1—1
2—1
3—1
42
o2
6— 2

g:

/111 1 1 1INT
xo_(gagagagagag)
Xr = (0.104124,0.102577,0.084536,0.182906,0.309402,O.311111)T

~\ __ (0.4849558 0.3319149
A(2) _< 0.5150442 0.6680851 )

Z = (0.3918901,0.6081099)7
1= (0.140109,0.138029,0.113752,0.138442,0.234187,0.235481) "
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It is not true for Algorithm RHS, we need to add condition
b erange (S(z)).

Other possibility is to replace steps 8, 9, 11 by

Step 8 : A(fs—fs_l)Z:RTS(fs—fs_l)
Step 9 : solve z=A(Z)z+ R(b— Tzy)
Step 11: x,x=5(Z)z + Xk -1
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Algorithm RHS(input: T', M, W, .y, €, g, s output: x)
1. k:=1,21: = Tinis

while ||T'zy, — xk|| > € do

To= Tk

for j=1,s do

Foo=(M~YW)E;_ 1+ M~ 1b

do

Ts

A(Zs —Ts1):=RTS(Ts —Ts_1)

solve z=A(Z)z+ R(b—Txy)

k:=k+1

L =5(T)z 4+ T _1

o,

n

S
I

e N A R
@

T =

. end while

Remark

for every irreducible stochastic matrix 1" there exist

lim Tke=gz*and Tx* = z*

k— oo
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Nearly dyadic matrices

: bl = 60 sz = 420

method p=0 p=0 p=0 p=0.1 p=0.1 p=0.1 p=0.5 =0.5 p=0.5

w=0.5 | w=0.1 | w=0.01 [ w=0.5 | w=0.1 | w=0.01 [ w=0.5 =0.1 | w=0.01
power 53 224 3130 44 142 1812 55 70 915
MM 16 25 27 12 23 27 12 19 27
Vant 1 1 1 11 10 9 12 12 10
KMS 1 1 1 9 9 7 9 10 8
Jacobi 55 71 76 54 71 77 59 75 82
G.S. 41 51 54 30 42 47 29 40 45
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Conclusion

— TAD methods are best for computing of SPV

— for cyclic matrices the power method applied to all ones vector
is a reasonable choice

— structure of solution is significant

— Algorithm RHS is applicable for computing moments of Markov
chains
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