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Some motivation

Definition 1. Let elements of T ∈ℜn×n be non negative and T e = e,
where e = (1,� , 1)

T
∈ℜn. Then we call T the stochastic matrix.

Definition 2. A finite Markov chain is stochastic process, which moves
through finite number of states, and for which the probability of entering
a certain state depends only on the last state occupied.

Definition 3. A transient state has a non-zero probability that the
chain will never return to this state.
A reccurent(persistent) state has a zero probability that the chain will
never return to this state.

E ... matrix of all ones
e ... vector of all ones
I ... identity matrix
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Figure 1.
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Figure 2.

To find long time behaviour of such system, we have to solve

Problem 1. We solve

T x = x, eTx = 1 (1)
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Let Q ∈ℜN×N, such that eTQ = 0, diag Q 6 0, offdiag Q > 0, we try to
compute

u(t) = eQtu(0)

using the Implicit Euler method, then we have to solve at every step
system

u(t) = τQ u(t)+ u(t− τ).

After some rearangement ve finish with system of the type

x = T x + b, (2)

where T is nonnegative matrix with spectral radius less than one.
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IAD method for stationary probability
vector

g : {1,� , N }� {1,� , n}.

The restriction matrix R∈ℜN×n :

Rg(i),i = 1

(R x)j =
∑

j=1,g(j)=i

N

xj.

The prolongation matrix S(x) is parametrised by vector x ∈ ℜN, the
nonzero elements of this matrix are

(S(x))
i,g(i)

=
xi

(R x)g(i)
,

(S(x)z)
i
= zg(i)

xi

(R x)g(i)
.

Aggregated matrix : A(x)= R T S(x) .
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Lemma 4. Let T be a column stochastic matrix, let g be an aggregation
mapping and x ∈ ℜN such that x > 0 and R x > 0. Then aggregated
matrix A(x) is collumn stochastic. If the matrix T is irreducible and the
vector x is strictly positive, then A(x) is irreducible.

Note 5. Let us note that the strict positivity of x is essential.
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, g:

1� 1
2� 1
3� 2
4� 2

.

We get the matrix A(x) =
(

1 0
0 1

)

, which is reducible.
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Algorithm IAD(input: T , M , W , xin it, ε, g, s output: x)

1. k: = 1, x1: = xin it

2. while ‖T xk − xk‖> ε do

3. x̃: = (M−1W )sxk

4. A(x̃): = R T S(x̃)

5. solve A(x̃)z = z and eTz =1

6. k4 k + 1

7. xk = S(x̃)z

8. end while

Convergence theory for IAD can be found in [1].

Theorem 6. Let T be a column stochastic matrix, let x̂ be the solution
of ( 1), then there exist s0 and neighborhood of x̂ such that for any xin it

from this neighborhood and any s>s0 the Algoritm IAD is convergent.
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IAD with right hand side

we solve problem (2), i.e.

x = T x + b

Algorithm RHS(input: T , M , W , xin it, ε, g, s output: x)

1. k: = 1, x1: = xin it

2. while ‖T xk − xk‖> ε do

3. x0̃ = xk

4. for j=1,s do

5. x̃j: = (M−1W )x̃j−1 + M−1b

6. end do

7. x̃ = x̃s

8. A(x̃): = R T S(x̃)

9. solve z = A(x̃)z + R b

10. k4 k + 1

11. xk = S(x̃)z

12. end while

10



Error formula

For both previous processes we have same error formula

xk −x∗ = (M−1W )s(I −P (xk−1)T )−1(I −P (xk−1))

where

P (x) = S(x) R
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Fast convergence

Theorem 7. Let for splitting M,W be range(M−1W )⊆ range(S(x̂)).
Then Algorithm IAD terminates after the first iteration.

Example 8. Let

T =

















0.1 0.1 0.1 0.05 0.15 0.25
0.5 0.2 0 0.02 0.06 0.10
0.2 0.1 0.1 0.03 0.09 0.15
0.04 0.12 0.16 0.2 0.2 0.1
0.08 0.24 0.32 0.6 0.2 0.1
0.08 0.24 0.32 0.1 0.3 0.3

















and splitting I −T = M −W be

M =

















0.9 − 0.1 − 0.1 0 0 0

− 0.5 0.8 0 0 0 0

− 0.2 − 0.1 0.9 0 0 0

0 0 0 0.8 − 0.2 − 0.1
0 0 0 − 0.6 0.8 − 0.1
0 0 0 − 0.1 − 0.3 0.7

















W =

















0 0 0 0.05 0.15 0.25
0 0 0 0.02 0.06 0.10
0 0 0 0.03 0.09 0.15

0.04 0.12 0.16 0 0 0

0.08 0.24 0.32 0 0 0

0.08 0.24 0.32 0 0 0
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Let aggregation mapping be

g:

1� 1

2� 1

3� 1

4� 2

5� 2

6� 2

x0 = (
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
)T

x̃ = (0.104124, 0.102577, 0.084536, 0.182906, 0 .309402, 0.311111)
T

A(x̃) =
(

0.4849558 0.3319149
0.5150442 0.6680851

)

z = (0.3918901, 0 .6081099)T

x1 = (0.140109, 0.138029 , 0.113752, 0.138442, 0.234187, 0.235481)
T
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It is not true for Algorithm RHS, we need to add condition

b∈ range (S(x̂)).

Other possibility is to replace steps 8, 9, 11 by

Step 8 : A(x̃s − x̃s−1): = R T S(x̃s − x̃s−1)
Step 9 : solve z = A(x̃)z + R( b−T xk)
Step 11: xk = S(x̃)z + xk−1
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Algorithm RHS(input: T , M , W , xin it, ε, g, s output: x)

1. k: = 1, x1: = xin it

2. while ‖T xk − xk‖> ε do

3. x0̃ = xk

4. for j=1,s do

5. x̃j: = (M−1W )x̃j−1 + M−1b

6. end do

7. x̃ = x̃s

8. A(x̃s − x̃s−1): = R T S(x̃s − x̃s−1)

9. solve z = A(x̃)z + R( b−T xk)

10. k4 k + 1

11. xk = S(x̃)z + xk−1

12. end while

Remark
for every irreducible stochastic matrix T there exist

lim
k→∞

T ke = x∗ and T x∗ = x∗
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Nearly dyadic matrices: bl = 60 sz = 420

method
p=0

w=0.5
p=0

w=0.1
p=0

w=0.01
p=0.1
w=0.5

p=0.1
w=0.1

p=0.1
w=0.01

p=0.5
w=0.5

p=0.5
w=0.1

p=0.5
w=0.01

power 53 224 3130 44 142 1812 55 70 915

MM 16 25 27 12 23 27 12 19 27

Vant 1 1 1 11 10 9 12 12 10

KMS 1 1 1 9 9 7 9 10 8

Jacobi 55 71 76 54 71 77 59 75 82

G.S. 41 51 54 30 42 47 29 40 45
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Conclusion

− IAD methods are best for computing of SPV

− for cyclic matrices the power method applied to all ones vector
is a reasonable choice

− structure of solution is significant

− Algorithm RHS is applicable for computing moments of Markov
chains
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