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Ax = b

A is sparse and symmetric positive definite; condition
number of A is huge, due to large jumps in the coefficients

Applications:

I reservoir simulations
I porous media flow
I elasticity
I more
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Deflated CG

Nicolaides 1987, Mansfield 1988, 1990, Kolotilina 1998,
Vuik, Segal, and Meijerink 1999, Morgan 1995, Saad,
Yeung, Erhel, and Guyomarch 2000, Frank and Vuik

2001, Blaheta 2006

Deflation and restarted GMRES

Morgan 1995, Erhel, Burrage, and Pohl 1996, Chapman
and Saad 1997, Eiermann, Ernst, and Schneider 2000,

Morgan 2002

Clemens et al. 2003,2004, de Sturler et al. 2006,
Aksoylu, H. Klie, and M.F. Wheeler 2007
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Deflation with eigenvectors

Aui = λiui Z = [u1, . . . ,ur ] uT
i uj = δij

P = I − AZ (Z T AZ )−1Z T , Z ∈ Rn×r ,

spectrum(PA) = {0, . . . ,0, λr+1, . . . λn}
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Deflation with general vectors

Z = [z1, . . . , zr ] rankZ = r E = Z T AZ

P = I − AZE−1Z T , Z ∈ Rn×r ,

PAZ = 0

spectrum(PA) = {0, . . . ,0, µr+1, . . . µn}
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Deflation for linear systems

Z ∈ Rn×r Z = [z1, . . . , zr ] rankZ = r

Ax = b P = I − AZE−1Z T

We have: x = (I − PT )x + PT x Compute both!

1. (I − PT )x = Z (Z T AZ )−1Z T b

2. Solve PAx̃ = Pb preconditioner M−1:
M−1PAx̃ = M−1Pb

3. Build PT x̃ = PT x
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Another Deflation Variant (Kolotilina; Saad et al.)

Choose a random vector, x̄ ,

start CG with x0 := Z (Z T AZ )−1Z T b + PT x̄

for the system

PT M−1Ax = PT M−1b,
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Deflation
M−1 preconditioner, ILU Z appro. eigenvectors
ZE−1Z T

Domain decomposition
M−1 add. Schwarz Z grid transfer operator
ZE−1Z T coarse grid correction

Multigrid
M−1 smoother Z grid transfer operator
ZE−1Z T coarse grid correction
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Additive coarse grid corrections

Z T : Rn → Rr : restriction Z : Rr → Rn : prolongation

Z T AZ Galerkin product
Z (Z T AZ )−1Z T Coarse Grid Correction

Preconditioner

Pad = M−1 + Z (Z T AZ )−1Z T

Bramble, Pasciak and Schatz 1986, Dryja and Widlund
1990
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Comparison: Deflation vs. additive coarse
grid correction

M−1P = M−1 −M−1AZE−1Z T

Pad = M−1 + ZE−1Z T

Theorem
Nabben, Vuik 04
For all Z with rankZ = r we have:

λn(M−1PA) ≤ λn(PadA)

λr+1(M
−1PA) ≥ λ1(PadA)

Thus:

condeff (M
−1PA) ≤ cond(PadA)
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abstract Balancing Neumann-Neumann
preconditioner
Mandel 1993, Dryja and Widlund 1995, Mandel and
Brezina 1996

M−1 Neumann-Neumann preconditioner

PB = (I − ZE−1Z T A)M−1(I − AZE−1Z T ) + ZE−1Z T ,

E = Z T AZ , Z ∈ Rn×r

P = I − AZE−1Z T ,

PB = PT M−1P + ZE−1Z T .
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Deflation and abstract balancing
preconditioner

Theorem
Nabben, Vuik 06

I condeff (M−1PA) ≤ cond(PBA)

I
spectrum(M−1PA) = {0, . . . ,0, µr+1, . . . , µn}

spectrum(PBA) = {1, . . . ,1, µr+1, . . . , µn}
I For x̃0,D = x0,B ‖x − xk ,D‖A ≤ ‖x − xk ,B‖A.

I x̃0,D = x̄ and x0,B = ZE−1Z T b + PT x̄ then

xk ,D = xk ,B.
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Implementation of the Balancing
preconditioner
Solve Ax = b
Take x0,B = ZE−1Z T b + PT x̄

Then the balancing preconditioner PT M−1P + ZE−1Z T

can be implemented with the use of

PT M−1

only.

Mandel 93, Toselli, Widlund 04.

Motivation: Save of work per iteration
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Our more detailed analysis shows

I better effective condition number
I better clustering
I better A-norm of the error
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Remarks from others

I Balancing is robust w.r.t. inexact solves, deflation not.
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Comparison of Projection methods

Deflation, Variant 1

M−1P

Deflation, Variant 2

PT M−1
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Balancing method

PT M−1P + ZE−1Z T

Reduced balancing method, Variant 1

PT M−1P

Reduced balancing method, Variant 2

PT M−1
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Adapted Deflation, Variant 1

M−1P + ZE−1Z T

Multigrid: results from non-symmetric multigrid
first coarse grid correction, then smoothing

Adapted Deflation, Variant 2

PT M−1 + ZE−1Z T

Multigrid: results from non-symmetric multigrid
first smoothing, then coarse grid correction
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Name Method Operator
PREC Traditional Preconditioned CG M−1

AD Additive Coarse Grid Correc. M−1 + Q
DEF1 Deflation Variant 1 M−1P
DEF2 Deflation Variant 2 PT M−1

A-DEF1 Adapted Deflation Variant 1 M−1P + Q
A-DEF2 Adapted Deflation Variant 2 PT M−1 + Q
BNN Abstract Balancing PT M−1P + Q
R-BNN1 Reduced Balancing Variant 1 PT M−1P
R-BNN2 Reduced Balancing Variant 2 PT M−1

Q = ZE−1Z T = Z (Z T AZ )−1Z T
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Method Vstart M1 M2 M3 Vend

PREC x̄ M−1 I I xj+1

AD x̄ M−1 + Q I I xj+1

DEF1 x̄ M−1 I P Qb + PT xj+1

DEF2 Qb + PT x̄ M−1 PT I xj+1

A-DEF1 x̄ M−1P + Q I I xj+1

A-DEF2 Qb + PT x̄ PT M−1 + Q I I xj+1

BNN x̄ PT M−1P + Q I I xj+1

R-BNN1 Qb + PT x̄ PT M−1P I I xj+1

R-BNN2 Qb + PT x̄ PT M−1 I I xj+1
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I Select random x̄ and Vstart,M1,M2,M3,Vend from
Table

I x0 := Vstart, r0 := b − Ax0

I z0 := M1r0, p0 := M2z0

I FOR j := 0,1, . . . , until convergence
I wj := M3Apj
I αj := (rj , zj)/(pj ,wj)
I xj+1 := xj + αjpj
I rj+1 := rj − αjwj
I zj+1 := M1rj+1
I βj := (rj+1, zj+1)/(rj , zj)
I pj+1 := M2zj+1 + βjpj

I ENDFOR
I xit := Vend
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Theorem
Tang, Nabben, Vuik, Erlangga 07
The spectrum of the systems preconditioned by
DEF1, DEF2, R-BNN1 or R-BNN2 is given by

{0, . . . ,0, µr+1, . . . , µn}.

The spectrum of the systems preconditioned by
A-DEF1, A-DEF2, BNN is given by

{1, . . . ,1, µr+1, . . . , µn}.
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Theorem
Tang, Nabben, Vuik, Erlangga 07
With starting vector x0 = Qb + PT x̄
BNN, DEF2, A-DEF2, R-BNN1 and R-BNN2, are identical
in exact arithmetic.

Lemma
Suppose that x0 = Qb + PT x̄ is used as starting vector.

I Qrj+1 = 0;
I Prj+1 = rj+1,

for all j = 0,1,2, . . ..
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We consider the Poisson equation with a discontinuous
coefficient,

−∇ ·
(

1
ρ(x)

∇p(x)

)
= 0, x = (x , y) ∈ Ω = (0,1)2, (1)

where ρ and p denote the piecewise-constant density and
fluid pressure, respectively. The contrast, ε = 10−6, is
fixed, which is the jump between the high and low density.

Geometry of the porous media problem with r = 5 layers
having a fixed density ρ. The number of deflation vectors
and layers is equal.
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Experiment using Inaccurate Coarse Solves

Ẽ−1 := (I + ψR)E−1(I + ψR), ψ > 0, (2)

where R ∈ Rr×r is a symmetric random matrix with
elements from the interval [−0.5,0.5]

ψ = 10−12 ψ = 10−8

Exact errors in the A−norm for the test problem with
n = 292, r = 5 and Ẽ−1.
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Experiment using Inaccurate Coarse Solves

Comparison of DEF1 and DEF2

DEF1 : M−1P DEF2 : PT M−1 (Saad et al.)

ψ = 10−8
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Experiment using Inaccurate Coarse Solves

Comparison of DEF1 and R-BNN2

DEF1 : M−1P R-BNN2 : PT M−1 (Widlund et al.)

ψ = 10−4
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Experiment using Inaccurate Coarse Solves

Comparison of A-DEF2 and R-BNN2

A-DEF2 : PT M−1 + Q R-BNN2 : PT M−1

ψ = 10−8
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Experiment using Perturbed Starting Vectors

Wstart := γy0 + Vstart, γ ≥ 0,

where y0 is a random vector with elements from the
interval [−0.5,0.5].

γ = 10−6 γ = 100

Exact errors in the A−norm for the test problem with
n = 292, r = 52 and perturbed starting vectors.
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Conclusion of the experiments

PT M−1 + Q with starting vector x0 = Qb + PT x̄

is robust w.r.t. inexact coarse grid solves
is robust w.r.t. perturbed starting vector
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Conclusion
I We gave a comparison of projection methods

derived from deflation, domain decomposition and
multigrid methods

I We proved a number of theoretical comparisons and
performed a number of experiments

I If one want to choose between deflation variants,
DEF1 seems to be better

I Optimal implementation of BNN is as sensitive as
deflation w.r.t. inexact solves

I PT M−1 + Q is a robust deflation variant
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More: Non-symmetric Problems
I Erlangga, Nabben 06:

Z T → Y T E → Y T AZ

PD = I − AZE−1Y T

PT
D → QD = I − ZE−1Y T A

PB = QDM−1PD + ZE−1Y T

‖M−1(b − Auk ,D)‖2 ≤ ‖M−1(b − Auk ,B)‖2.
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Non-symmetric Problems
I Erlangga, Nabben 07a:

Multilevel Deflation; Multilevel Projection Krylov
method

PN = PD + λZE−1Y T

outer and inner iterations: FGMRES
I Erlangga, Nabben 07b:

Multilevel Projection Krylov Method for the Helmholtz
equation

http://www.math.tu-berlin.de/˜nabben
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