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Introduction

The Stein Rosenberg Theorem:

Theorem [Stein, P. and Rosenberg R. L., 1948] Let

the Jacobi matrix B ≡ L + U be a nonnegative n × n
matrix with zero diagonal entries, and let L1 be the

Gauss-Seidel matrix. Then one and only one of the

following mutually exclusive relations is valid:

(i) ρ(B) = ρ(L1) = 0.

(ii) 0 < ρ(L1) < ρ(B) < 1.

(iii) ρ(B) = ρ(L1) = 1.

(iv) 1 < ρ(B) < ρ(L1). •
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The Aim

The aim of this paper is:

to extend and generalize the Stein-Rosenberg

Theorem for nonnegative splittings.

to give an outline of the extension and

generalization of the Stein-Rosenberg Theorem to

the Perron-Frobenius splittings.
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Definitions

A ∈ R
n×n has the Perron-Frobenius (PF) property if

ρ(A) ∈ σ(A) and there exists a nonnegative

eigenvector corresponding to ρ(A).

A ∈ R
n×n has the strong Perron-Frobenius property

if, in addition,

ρ(A) > |λ| for all λ ∈ σ(A), λ 6= ρ(A)
and the corresponding eigenvector is positive.

D. Noutsos, On Perron-Frobenius property of matrices having

some negative entries. LAA, LAA, 412 (2006) 132–153.
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Definitions of Splittings

A splitting A = M − N is called:

M -splitting if M is an M -matrix and N ≥ 0,

Regular splitting if M−1 ≥ 0 and N ≥ 0,

Weak regular of 1st type if M−1 ≥ 0 and M−1N ≥ 0,

Weak regular of 2nd type if M−1 ≥ 0 and NM−1 ≥ 0,

Nonnegative of 1st type if M−1N ≥ 0,

Nonnegative of 2nd type if NM−1 ≥ 0,

Perron-Frobenius of 1st type if M−1N has the PF property,

Perron-Frobenius of 2nd type if NM−1 has the PF property,
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The Stein-Rosenberg Theorem on Nonnnegative Splittings

Theorem 1 Let A = M1 − N1 = M2 − N2 be both

nonnegative splittings, (M−1
i Ni ≥ 0, i = 1, 2) and

M−1
1 N1 ≥ M−1

1 N2 ≥ 0, M−1
1 N1 6= M−1

1 N2, M−1
1 N2 6= 0.

Then exactly one of the statements holds:

(i) 0 ≤ ρ(M−1
2 N2) ≤ ρ(M−1

1 N1) < 1

(ii) ρ(M−1
2 N2) = ρ(M−1

1 N1) = 1

(iii) ρ(M−1
2 N2) ≥ ρ(M−1

1 N1) > 1. •
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Characterization of the inequalities

Theorem 2 Let A = M1 − N1 = M2 − N2 be both

nonnegative splittings, (M−1
i Ni ≥ 0, i = 1, 2) and

M−1
1 N1 ≥ M−1

1 N2 ≥ 0, M−1
1 N1 6= M−1

1 N2, M−1
1 N2 6= 0.

Assume that the matrices M−1
1 N1, T = M−1

1 (N1 − N2) and

F = M−1
1 N2 are up to a permutation of the form

M−1
1 N1 =





P11 0

P21 0



 , T =





T11 0

T21 0



 , F =





F11 0

F21 0





with P11, T11 and F11 being k × k matrices (k ≤ n), P11

irreducible and T11, F11 6= 0.
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Then, exactly one of the statements holds:

(i) 0 < ρ(M−1
2 N2) < ρ(M−1

1 N1) < 1

(ii) ρ(M−1
2 N2) = ρ(M−1

1 N1) = 1

(iii) ρ(M−1
2 N2) > ρ(M−1

1 N1) > 1.

If T11 = 0, the second inequality of (i) and the first one of (iii)

become equalities, while if F11 = 0, the first inequality of (i)

becomes equality. •

Analogous theorem holds for nonnegative splittings of the second

type.
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3
< 1.

On Stein-Rosenberg type theorems for nonnegative splittings – p. 13/24



Example 2
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2
N2) = 1.5842 > ρ(M−1

1
N1) = 1.5316 > 1.
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Example 3
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Assumptions of Theorem 2 hold true except that

T11 6= 0. We have T11 = 0, while P11 = 1. So, equality

of the spectral radii is confirmed

ρ(M−1

1
N1) = ρ(M−1

2
N2) = 1

7
< 1,
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Theorem 3 Let A = M1 − N1 = M2 − N2 be both

nonnegative splittings, (M−1
i Ni ≥ 0, i = 1, 2) and

M−1
2 N1 ≥ M−1

2 N2 ≥ 0, M−1
2 N1 6= M−1

2 N2, M−1
2 N2 6= 0.

Assume that the matrices M−1
2 N2, T = M−1

2 (N1 − N2) and

F = M−1
2 N1 are up to a permutation of the form

M−1
2 N2 =





P11 0

P21 0



 , T =





T11 0

T21 0



 , F =





F11 0

F21 0





with P11, T11 and F11 being k × k matrices (k ≤ n), P11

irreducible and T11, F11 6= 0.
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Then, exactly one of the statements holds:

(i) 0 < ρ(M−1
2 N2) < ρ(M−1

1 N1) < 1

(ii) ρ(M−1
2 N2) = ρ(M−1

1 N1) = 1

(iii) ρ(M−1
2 N2) > ρ(M−1

1 N1) > 1.

If T11 = 0, the second inequality of (i) and the first one of (iii)

become equalities, while if P11 = 0, the first inequality of (i)

becomes equality. •

Analogous theorem holds for nonnegative splittings of the second

type.
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Example 1, 2, 3
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Theorem 4 If the assumptions of Theorem 2 hold, then the

assumptions of Theorem 3 hold also.

So, Theorem 3 is stronger than Theorem 2.

Proof:

T ′ = M−1
2 (N1 − N2) = (M1 − N1 + N2)

−1(N1 − N2)

=
(

I − M−1
1 (N1 − N2)

)

−1
M−1

1 (N1 − N2)

= (I − T )−1T ≥ 0,

since T ≥ 0 and (I − T )−1T = T + T 2 + T 3 + · · · ≥ 0. •
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Example 4
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Further Extension

Theorem 5 Let A = M1 − N1 = M2 − N2 be both

nonnegative splittings, (M−1
i Ni ≥ 0, i = 1, 2) with x1, x2 being

the right Perron eigenvectors, respectively, and

M−1
1 N1x2 ≥ M−1

1 N2x2 ≥ 0, M−1
1 N1x2 6= M−1

1 N2x2 6= 0.

Assume that the matrices M−1
1 N1, T = M−1

1 (N1 − N2) and

F = M−1
1 N2 are up to a permutation of the form

M−1
1 N1 =





P11 0

P21 0



 , T =





T11 0

T21 0



 , F =





F11 0

F21 0





with P11, T11 and F11 being k × k matrices (k ≤ n), P11

irreducible and T11, F11 6= 0.
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Then, exactly one of the statements holds:

(i) 0 < ρ(M−1
2 N2) < ρ(M−1

1 N1) < 1

(ii) ρ(M−1
2 N2) = ρ(M−1

1 N1) = 1

(iii) ρ(M−1
2 N2) > ρ(M−1

1 N1) > 1.

If T11 = 0, the second inequality of (i) and the first one of (iii)

become equalities, while if F11 = 0, the first inequality of (i)

becomes equality. •
Observe that Theorem 5 works on Example 4. Although

T = M−1(N1 − N2) is not a nonnegative matrix,

Tx2 =

0

B
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0.0337 0 0.0787
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C
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> 0

.
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Work in Progress: Extension to the Perron-Frobenius Splittings

Theorem 6 Let A = M1 − N1 = M2 − N2 be both

Perron-Frobenius splittings of the first kind, with

(ρ1, x1), (ρ2, x2) being the Perron-Frobenius eigenpairs

(M−1
i Nixi = ρixi ≥ 0, i = 1, 2) and

M−1
1 N1x2 ≥ M−1

1 N2x2 ≥ 0, M−1
1 N1x2 6= M−1

1 N2x2 6= 0.

Then exactly one of the statements holds:

(i) 0 ≤ ρ(M−1
2 N2) ≤ ρ(M−1

1 N1) < 1

(ii) ρ(M−1
2 N2) = ρ(M−1

1 N1) = 1

(iii) ρ(M−1
2 N2) ≥ ρ(M−1

1 N1) > 1. •
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for your

A t t e n t i o n !
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