
SVM

May 2007

DOE-PI

Dianne P. O’Leary

c©2007

1

Speeding the Training of Support Vector Machines

and Solution of Quadratic Programs

Dianne P. O’Leary

Computer Science Dept. and
Institute for Advanced Computer Studies

University of Maryland

Jin Hyuk Jung

Computer Science Dept.

André Tits

Dept. of Electrical and Computer Engineering and
Institute for Systems Research

Work supported by the U.S. Department of Energy.

2

The Plan

• Introduction to SVMs

• Our algorithm

• Convergence results

• Examples

3

a d = +1 (yes)
d = -1 (no)�

What is an SVM?

SVM

4

SVM

wTa – >0?
a d = +1 (yes)

d = -1 (no)�

What’s inside the SVM?

5

a d = +1 (yes)
d = -1 (no)

SVM �
wTa – >0?

How is an SVM “trained”?

w,

a1, d1
…

am, dm

IPM for
Quadratic Programming

wTa – >0?

SVM

6

The problem: training an SVM

Given: A set of sample data points ai, in sample space S, with labels
di = ±1, i = 1, . . . , m.

Find: A hyperplane {x : 〈w,x〉 − γ = 0}, such that

sign(〈w,ai〉 − γ) = di,

or, ideally,
di(〈w,ai〉 − γ) ≥ 1.

7

Which hyperplane is best?

We want to maximize the separation margin 1/‖w‖.

8

Generalization 1

We might map a more general separator to a hyperplane through some
transformation Φ:

For simplicity, we will assume that this mapping has already been done.

9

Generalization 2

If there is no separating hyperplane, we might want to balance maximizing
the separation margin with a penalty for misclassifying data by putting it
on the wrong side of the hyperplane. This is the soft-margin SVM.

• We introduce slack variables y ≥ 0 and relax the constraints
di(〈w,ai〉 − γ) ≥ 1 to

di(〈w,ai〉 − γ) ≥ 1 − yi.

• Instead of minimizing ‖w‖, we solve

min
w,γ,y

1

2
‖w‖2

2
+ τeTy

for some τ > 0, subject to the relaxed constraints.

10

Jargon

Classifier 〈w,x〉 − γ = 0: black line
Boundary hyperplanes: dashed lines
2 × separation margin: length of arrow
Support vectors: On-Boundary (yellow) and Off-Boundary (green)
Non-SV: blue

Key point: The classifier is the same, regardless
of the presence or absence of the blue points.

11

Summary

• The process of determining w and γ is called training the machine.

• After training, given a new data point x, we simply calculate
sign(〈w,x〉 − γ) to classify it as in either the positive or negative group.

• This process is thought of as a machine – called the support vector
machine (SVM).

• We will see that training the machine involves solving a convex
quadratic programming problem whose number of variables is the
dimension n of the sample space and whose number of constraints is
the number m of sample points – typically very large.

12

Primal and dual

Primal problem:

minw,γ,y
1

2
‖w‖2

2
+ τeTy

s.t. D(Aw − eγ) + y ≥ e,

y ≥ 0,

Dual problem:

maxv −1

2
vTHv + eTv

s.t. eTDv = 0,

0 ≤ v ≤ τe,

where H = DAATD ∈ R
m×m is a symmetric and positive semidefinite

matrix with
hij = didj〈ai, aj〉.

13

Support vectors

Support vectors (SVs) are the patterns that contribute to defining the
classifier.

They are associated with nonzero vi.

vi si yi

Support vector (0, τ] 0 [0,∞)
On-Boundary SV (0, τ) 0 0
Off-Boundary SV τ 0 (0,∞)

Nonsupport vector 0 (0,∞) 0

• vi: dual variable (Lagrange multiplier for relaxed constraints).

• si: slack variable for primal inequality constraints.

• yi: slack variable in relaxed constraints.

14

Solving the SVM problem

Apply standard optimization machinery:

• Write down the optimality conditions for the primal/dual formulation
using the Lagrange multipliers. This is a system of nonlinear equations.

• Apply a (Mehotra-style predictor-corrector) interior point method (IPM)
to solve the nonlinear equations by tracing out a path from a given
starting point to the solution.

15

The optimality conditions

w − ATDv = 0,

dTv = 0

τe − v − u = 0,

DAw − γd + y − e − s = 0,

Sv = σµe,

Yu = σµe,

s,u, v, y ≥ 0.

for σ = 0.

Interior point method (IPM): Let 0 < σ < 1 be a centering parameter and
let

µ =
sTv + yTu

2m
.

Follow the path traced as µ → 0, σ = 1.

16

A step of the IPM

At each step of the IPM, the next point on the path is computed using a
variant of Newton’s method applied to the system of equations.

This gives a linear system for the search direction:
















I −ATD

dT

−I −I

DA −I I −d

S V

Y U

































∆w

∆v

∆u

∆s

∆y

∆γ

















=

















−(w − ATDv)

−dTv

−(τe − v − u)
−(DAw − γd + y − e − s)

−Sv

−Yu

















By block elimination, we can reduce this system to

M ∆w = some vector

(sometimes called the normal equations).

17

The matrix for the normal equations

M ∆w = some vector

M = I + ATDΩ−1DA − d̄d̄T

dTΩ−1d
.

Here, D and Ω are diagonal, d̄ = ATDΩ−1d, and

ω−1

i =
viui

sivi + yiui
.

Given ∆w, we can easily find the other components of the direction.

18

Two variants of the IPM algorithm

• In affine scaling algorithms, σ = 0. Newton’s method then aims to solve
the optimality conditions for the optimization problem.

Disadvantage: We might not be in the domain of fast convergence for
Newton.

• In predictor-corrector algorithms, the affine scaling step is used to
compute a corrector step with σ > 0. This step draws us back toward
the path.

Advantage: Superlinear convergence can be proved.

19

Examining M = I + ATDΩ−1DA − d̄d̄T

dTΩ−1d
.

Most expensive calculation: Forming M.

Our approach is to modify Newton’s method by using an approximation to
the middle and last terms. We’ll discuss the middle one; the third is similar.

The middle term is

ATDΩ−1DA =
m

∑

i=1

1

ωi
aia

T
i ,

ω−1

i =
viui

sivi + yiui
.

Note that ω−1

i is well-behaved except for on-boundary support vectors,
since in that case si → 0 and yi → 0.

20

Our idea:

We only include terms corresponding to constraints we hypothesize are
active at the optimal solution.

We could

• ignore the value of di.

• balance the number of positive and negative patterns included.

The number of terms is constrained to be

• at least qL, which is the minimum of n and the number of ω−1 values
greater than θ

√
µ, for some parameter θ.

• at most qU , which is a fixed fraction of m.

21

Some related work

• Use of approximations to M in LP-IPMs dates back to Karmarkar
(1984), and adaptive inclusion of terms was studied, for example, by
Wang and O’Leary (2000).

• Osuna, Freund, and Girosi (1997) proposed solving a sequence of CQPs,
building up patterns as new candidates for support vectors are identified.

• Joachims (1998) and Platt(1999) used variants related to Osuna et al.

• Ferris and Munson (2002) focused on efficient solution of normal
equations.

• Gertz and Griffin (2005) used preconditioned cg, with a preconditioner
based on neglecting terms in M.

22

Convergence analysis for Predictor-Corrector Algorithm

All of our convergence results are derived from a general convergence
analysis for adaptive constraint reduction for convex quadratic
programming (since our problem is a special case).

23

Assumptions:

• N (AQ) ∩N (H) = {0} for all index sets Q with |Q| ≥ number of
active constraints at the solution. (Automatic for SVM training.)

• We start at a point that satisfies the inequality constraints in the primal.

• The solution set is nonempty and bounded.

• The gradients of the active constraints at any primal feasible point are
linearly independent.

Theorem: The algorithm converges to a solution point.

24

Additional Assumptions:

• The solution set contains just one point.

• Strict complementarity holds at the solution, meaning that s∗ + v∗ > 0

and y∗ + u∗ > 0.

Theorem: The convergence rate is q-quadratic.

25

Test problems

Provided by Josh Griffin (SANDIA)

Problem n Patterns (+,−) SV (+,−) In-bound SVs (+,−)
mushroom 276 (4208,3916) (1146,1139) (31,21)

isolet 617 (300,7497) (74,112) (74,112)
waveform 861 (1692,3308) (633,638) (110,118)

letter-recog 153 (789,19211) (266,277) (10,30)

26

Algorithm variants

We used the reduced predictor-corrector algorithm, with constraints chosen
in one of the following ways:

• One-sided distance: Use all points on the wrong side of the boundary
planes and all points close to the boundary planes.

• Distance: Use all points close to the boundary planes.

• Ω: Use all points with large values of ω−1

i .

We used a balanced selection, choosing approximately equal numbers of
positive and negative examples.

We compared with no reduction, using all of the terms in forming M.

27

mushroom isolet waveform letter
0

5

10

15

20

25

30

35

40
Time

T
im

e
(s

ec
)

Problem

No reduction
One−sided distance
Distance
 Ωe

28

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

T
im

e
(s

ec
)

q
U

/m

letter/ distance

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

q
U

/m

Ite
ra

tio
ns

letter/ distance

Adaptive balanced
Adaptive
Nonadaptive balanced
Nonadaptive

29

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations

of

 p
at

te
rn

s
us

ed

mushroom/Adaptive Balanced CR/ distance

q
U

 = 100%

q
U

 = 80%

q
U

 = 60%

q
U

 = 45%

0 5 10 15 20
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

µ

mushroom/Adaptive Balanced CR/ distance

No reduction
q

U
 = 100%

q
U

 = 80%

q
U

 = 60%

q
U

 = 45%

30

Comparison with other software

Problem Type LibSVM SVMLight Matlab Ours
mushroom Polynomial 5.8 52.2 1280.7
mushroom Mapping(Linear) 30.7 60.2 710.1 4.2

isolet Linear 6.5 30.8 323.9 20.1
waveform Polynomial 2.9 23.5 8404.1
waveform Mapping(Linear) 33.0 85.8 1361.8 16.2

letter Polynomial 2.8 55.8 2831.2
letter Mapping(Linear) 11.6 45.9 287.4 13.5

• LibSVM, by Chih-Chung Chang and Chih-Jen Lin, uses a variant of
SMO (by Platt), implemented in C

• SVMLight, by Joachims, implemented in C

• Matlab’s program is a variant of SMO.

• Our program is implemented in Matlab, so a speed-up may be
possible if converted to C.

31

How our algorithm works

To visualize the iteration, we constructed a toy problem with

• n = 2,

• a mapping Φ corresponding to an ellipsoidal separator.

We now show snapshots of the patterns that contribute to M as the IPM
iteration proceeds.

32

Iteration: 2, # of obs: 1727

33

Iteration: 5, # of obs: 1440

34

Iteration: 8, # of obs: 1026

35

Iteration: 11, # of obs: 376

36

Iteration: 14, # of obs: 170

37

Iteration: 17, # of obs: 42

38

Iteration: 20, # of obs: 4

39

Iteration: 23, # of obs: 4

40

An extension

Recall that the matrix in the dual problem is H = DAATD, and A is
m × n with m >> n.

The elements of K ≡ A A T are

kij = aT
i aj,

and our adaptive reduction is efficient because we approximate the term
ATΩ−1A in the formation of M, which is only n × n.

Often we want a kernel function more general than the inner product, so
that

kij = k(ai, aj).

This would make M m × m.

Efficiency is retained if we can approximate K≈LLT where L has rank
much less than m. This is often the case, and pivoted Cholesky algorithms
have been used in the literature to compute L.

41

Conclusions

• We have succeeded in significantly improving the training of SVMs that
have large numbers of training points.

• Similar techniques apply to general CQP problems with a large number
of constraints.

• Savings is primarily in later iterations. Future work will focus on using
clustering of patterns (e.g., Boley and Cao (2004)) to reduce work in
early iterations.

42

