
Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

On a Parallel Implementation of the
One-Sided Block Jacobi SVD Algorithm

Gabriel Okša 1, Martin Bečka, 1 Marián Vajteršic 2

1Institute of Mathematics
Slovak Academy of Sciences

Bratislava, Slovakia

2Institute of Scientific Computing
University of Salzburg

Salzburg, Austria

Harrachov 2007, Czech Republic, August 19-25, 2007

Gabriel Okša: Jacobi SVD 1/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Outline

1 Problem formulation

2 One-Sided Block-Jacobi Algorithm

3 Accelerating the OSBJA

4 Parallelization strategy

5 Conclusions

Gabriel Okša: Jacobi SVD 2/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Our task

Compute in parallel the Singular Value Decomposition
(SVD) of a complex matrix A of the size m × n, m ≥ n:

A = U
(

Σ
0

)
V H .,

where U(m ×m) and V (n × n) are orthogonal and
Σ = diag(σi) with σ1 ≥ σ2 ≥ · · · ≥ σn.
Numerically stable way of computation:

one- or two-sided block-Jacobi methods;
large degree of parallelism.

Target architecture:
distributed memory machines (parallel supercomputers
and clusters) with Message Passing Interface (MPI).

Gabriel Okša: Jacobi SVD 3/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Main structure of the OSBJA

A ∈ Rm×n, m ≥ n, its block-column partitioning
A = [A1, A2, . . . , Ar ], n = (r − 1)n0 + nr , nr ≤ n0.
The OSBJA can be written as an iterative process:

A(0) = A, V (0) = In,

A(k+1) = A(k)U(k), V (k+1) = V (k)U(k), k ≥ 0, (1)

where the n × n OG matrix U(k) (block rotation):

U(k) =


I

U(k)
ii U(k)

ij
I

U(k)
ji U(k)

jj
I

 . (2)

A(k)U(k) in (1) mutually orthogonalizes the columns
between A(k)

i and A(k)
j .

Gabriel Okša: Jacobi SVD 4/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Pivot strategy

The orthogonal matrix

Û(k) =

(
U(k)

ii U(k)
ij

U(k)
ji U(k)

jj

)

of order ni + nj is called the pivot submatrix of U(k) at
step k .
At each step k of the OSBJA, the pivot pair (i , j) is
chosen according to a given pivot strategy
F : {0, 1, . . .} → Pr = {(l , m) : 1 ≤ l < m ≤ r}.
Well-known strategies: cyclic row, cyclic column.

Gabriel Okša: Jacobi SVD 5/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

3 parts of one (serial) step

Part 1: The pivot pair (i , j) is given, compute the
symmetric, positive semi-definite cross-product matrix

Â(k)
ij = [A(k)

i A(k)
j ]T [A(k)

i A(k)
j ] =

(
A(k)T

i A(k)
i A(k)T

i A(k)
j

A(k)T
j A(k)

i A(k)T
j A(k)

j .

)
Complexity: m (ni + nj)(ni + nj − 1)/2 flops. When

diagonal blocks of Â(k)
ij are diagonal, this reduces to

m (ni nj + ni + nj) flops.

Part 2: Â(k)
ij is diagonalized by its eigenvalue

decomposition:

Û(k)T Â(k)
ij Û(k) = Λ̂

(k)
ij ,

Complexity: on average 8(ni + nj)
3 flops (Hari 2005).

Gabriel Okša: Jacobi SVD 6/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

3 parts of one (serial) step (cont.)

Part 3: Û(k) defines, after its partitioning, U(k) in (2),
which is used for updates of A(k) and V (k) in (1).
Complexity: 2m(ni + nj)

2 flops.
Overall complexity: One step of the OSBJA requires:

Nflop(k) ≈ m(ninj + ni + nj) + 8(ni + nj)
3 + 2m(ni + nj)

2

= 64n3
0 + (9n2

0 + 2n0)n (if m = n = n0r)

flops.
If we can choose the block width small enough, all
computations of Part 2 can be performed in cache
since Â(k)

ij is of order only ni + nj .
The most complex computation is in Part 3 (matrix
products). How to accelerate it?

Gabriel Okša: Jacobi SVD 7/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Matrix preprocessing

Step 1: QR factorization with column pivoting followed
by the LQ factorization of the R-factor: AP = Q1R and
R = LQT

2 . The OSBJA is then applied to the L-factor.
Advantages:

1 The off-diagonal norm of the L-factor is concentrated
near the main diagonal and the Jacobi method using
special orderings can be much faster and accurate
(Hari 2005).

2 Right singular vectors can be computed a posteriori:
LV = UΣ, where UΣ is the final stage of the Jacobi
method applied to L (Drmač 1999).
V is not updated during iterations!

Then the SVD of A: A = Q1LQT
2 PT = (Q1U)Σ(PQ2V )T

(postprocessing).
Complexity: 2mn2 + 1.5n3 flops + work in the Jacobi
iterations.

Gabriel Okša: Jacobi SVD 8/16



Step 2: Special initialization of the recursion of three
matrices.
We have: L = [L1, L2, . . . , Lr ]. Compute:

1. for i = 1 : r
2. Â(0)

ii = LT
i Li ;

3. Â(0)
ii = Q(0)

ii Γ
(0)
i Q(0)T

ii ; (spectral decomposition)
4. (A(0)

i = LiQ
(0)
ii ); (not performed, just the connection)

5. end;

Initialize three block matrices with blocks of small orders
ni , nj :

B(0) = [B(0)
1 , B(0)

2 , . . . , B(0)
r ] = [L1, L2, . . . , Lr ],

Q(0) = diag(Q(0)
11 , Q(0)

22 , . . . , Q(0)
rr ),

Γ(0) = diag(Γ
(0)
1 , Γ

(0)
2 , . . . , Γ

(0)
r ) (stored as vector).

Complexity: for n = n0r about (n/4 + 8n0)n0n flops
(assuming 4 sweeps in step 3).



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Recursion k → k + 1

1. Compute the cross-product matrix:

Â(k)
ij =

(
Q(k)

ii
Q(k)

jj

)T (
B(k)T

i B(k)
i B(k)T

i B(k)
j

B(k)T
j B(k)

i B(k)T
j B(k)

j

) (
Q(k)

ii
Q(k)

jj

)

=

(
Γ

(k)
i Ã(k)

ij

Ã(k)T
ij Γ

(k)
j

)
, where Ã(k)

ij ≡ Q(k)T
ii (B(k)T

i B(k)
j )Q(k)

jj .

2. Compute the eigendecomposition: Â(k)
ij = Û(k) Λ̂

(k)
ij Û(k)T .

Copy the eigenvalues into appropriate positions of Γ(k+1).

3. Compute the CS decomposition:

Û(k) =

(
V (k)

ii
V (k)

jj

) (
C(k)

ii −S(k)
ij

S(k)
ji C(k)

jj

) (
W (k)

ii
W (k)

jj

)T

≡ V̂ (k) T̂ (k) Ŵ (k)T .
Gabriel Okša: Jacobi SVD 10/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Recursion k → k + 1 (cont.)

4. Compute new matrices B and Q:

(B(k+1)
i , B(k+1)

j ) = (B(k)
i (Q(k)

ii V (k)
ii ), B(k)

j (Q(k)
jj V (k)

jj ) T̂ (k),

Q(k+1)
ii = W (k)T

ii , Q(k+1)
jj = W (k)T

jj .

Main idea: the ‘large dimension’ m is totally eliminated from
recursion.
Matrix multiplications are of the form XY , where X is of
order n × ni or n × nj , and Y is square of order ni or nj .

Final update of Bi and Bj : special structure of T̂ (k) (rotations
of columns of length n).
Overall complexity (Hari 2005):

Nflop(k) ≈ 82n3
0 + (3n2

0 + 2n0)n.

Gabriel Okša: Jacobi SVD 11/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Stopping criterion

Let:

Â(k) = A(k)T A(k) =

 Ã(k)
11 · · · Ã(k)

1r
...

...
Ã(k)T

1r · · · Ã(k)
rr

 ,

Dk = (diag(Â(k)))1/2 = diag(‖A(k)e1‖, . . . , ‖A(k)en‖) = (Γ(k))1/2,

Â(k)
S = D−1

k Â(k)D−1
k (scaled matrix).

Two measures of convergence:

αk ≡ off(Â(k)
S ) =

√
2

2
‖Â(k)

S − I‖F,

ωk ≡ off(Â(k)) =

√√√√ r∑
j=1

r∑
t=j+1

‖Ã(k)
jt ‖2

F.

Computation of αk : ≈ n3/2 flops. Gabriel Okša: Jacobi SVD 12/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Stopping criterion (cont.)

Stopping criterion: αk ≤ n2ε.
At the end of block sweep t + 1:

ω2
(t+1)N = ω2

tN −
(t+1)N−1∑

k=tN

‖Ã(k)
i(k),j(k)‖

2
F, N = r(r − 1)/2.

Easy update of ω2, but a severe cancellation may occur.
Assuming the quadratic convergence of ω for t ≥ t0,
monitor:

νtN ≡

√√√√(t+1)N−1∑
k=tN

‖Ã(k)
i(k),j(k)‖

2
F = ωtN + O(ω2

tN), t ≥ t0.

When νtN ≤ n
√

γ
((t+1)N)
1 ε with γ

((t+1)N)
1 = max[Γ((t+1)N)],

compute α(t+1)N .
Gabriel Okša: Jacobi SVD 13/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Parallel implementation

Data layout: p processors, two block columns per
processor: r = 2p.
Preprocessing: The QRFCP and the LQF via the
ScaLAPACK’s routine PDGEQPF and PDGELQF,
respectively. Each processor computes its local
cross-product matrix and two spectral decompositions
of its diagonal blocks Â(0)

ll .
Recursion:

1 Choose some parallel block ordering (e.g., round-robin).
2 Each processor stores two block columns and matrix

blocks Bi , Bj , Qii , Qjj , and two vectors γi , γj . In the
worst case, this amount of data must be transferred
between processors at the beginning of each parallel
iteration step (= r/2 subtasks) according to the
ordering.

3 All computations are local (LAPACK), no global
communication. Gabriel Okša: Jacobi SVD 14/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Parallel implementation (cont.)

Stopping criterion: Its implementation requires the global
communication.

Update of ω2 and ν: Local computation of the squared
Frobenius norm of each nullified matrix block in each
processor, then the global sum of local squares in
PE 1, and, finally, the broadcast of an updated value to
all processors: routines MPI_ALLREDUCE,
MPI_ALLGATHER and MPI_BCAST from the
ScaLAPACK.
Computation of α: Scaling of the columns and rows of
B by the values stored in vector γ, the square of
Frobenius norm, the broadcast of new α: routines
MPI_ALLGATHERV, MPI_ALLREDUCE,
MPI_ALLGATHER, MPI_BCAST.

Gabriel Okša: Jacobi SVD 15/16



Jacobi SVD

Gabriel Okša

Problem
formulation

One-Sided
Block-Jacobi
Algorithm

Accelerating
the OSBJA

Parallelization
strategy

Conclusions

Conclusions

Matrix preprocessing: Concentration of the Frobenius
norm towards main diagonal leads to a substantial
reduction of the number Jacobi sweeps needed for the
convergence.
Working with matrix blocks: Enables to accelerate the
computation even in the serial case using a fast cache
memory.
Three-matrix recursion: Eliminates the ‘large’
dimension m, all updates can be made in a fast cache
memory.
Parallelization: Additional speed-up possible, especially
for large n (number of columns).

Gabriel Okša: Jacobi SVD 16/16


	Problem formulation
	One-Sided Block-Jacobi Algorithm
	Accelerating the OSBJA
	Parallelization strategy
	Conclusions

