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Our main result
Theorem:LetX , Y be subspaces ofCn having the
same dimensionk, with orthonormal bases given by
the columns of the matricesX andY respectively. Let
A ∈ C

n×n be Hermitian,X beA-invariant and let
θ ≡ θ(X ,Y) denote the vector of principal angles
between the subspacesX andY. Then

|λ(XHAX)−λ(Y HAY )| ≺w spr(A)(sin2 θ+
sin4 θ

2
).
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Our main result
Theorem:LetX , Y be subspaces ofCn having the
same dimensionk, with orthonormal bases given by
the columns of the matricesX andY respectively. Let
A ∈ C

n×n be Hermitian,X beA-invariant and let
θ ≡ θ(X ,Y) denote the vector of principal angles
between the subspacesX andY. Then

|λ(XHAX)−λ(Y HAY )| ≺w spr(A)(sin2 θ+
sin4 θ

2
).

Moreover, if theA-invariant subspaceX corresponds
to the set ofk largest or smallest eigenvalues ofA then

|λ(XHAX) − λ(Y HAY )| ≺w spr(A) sin2 θ.
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Basic notation
Hermitian matrix A = AH ∈ C

n×n

Eigenvalues λ1(A) ≥ . . . ≥ λn(A)

spr(A) ≡ λ1(A) − λn(A)

Singular values σ1(B) ≥ σ2(B) ≥ . . . ≥ 0

‖B‖ ≡ σ1(B)
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Angles
Acute angle between vectorsx and y:

xHx = yHy = 1

�
�

�
�

�
�

�
�

�
��

x

- ± y
�θ(x, y)

cos θ(x, y) = |xHy| = σ(xHy)
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Eigenvalue approximation
Assume xHx = yHy = 1

Eigenvector x, i.e. Ax = x.xHAx

y an approximation to x

Rayleigh quotient yHAy ≈ xHAx accuracy?
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Eigenvalue approximation
Assume xHx = yHy = 1

Eigenvector x, i.e. Ax = x.xHAx

y an approximation to x

Rayleigh quotient yHAy ≈ xHAx accuracy?

Classicala priori result: ?Axel Ruhe 1976?

|xHAx − yHAy| ≤ spr(A). sin2 θ(x, y)

sin2 θ(x, y) = 1 − cos2 θ(x, y) = 1 − |xHy|2.
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Eigenvalue approximation
Assume xHx = yHy = 1

Eigenvector x, i.e. Ax = x.xHAx

y an approximation to x

Rayleigh quotient yHAy ≈ xHAx accuracy?

Classicala priori result: ?Axel Ruhe 1976?

|xHAx − yHAy| ≤ spr(A). sin2 θ(x, y)

Generalize this to subspacesX and Y ?
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Vector notation

λ(A) ≡





λ1(A)

·

λn(A)



, σ(B) ≡





σ1(B)

σ2(B)

·



,

λ(A) = λ
↓(A), σ(B) = σ

↓(B),

λ
↓ elements ordered “downwards”,

λ
↑ elements ordered “upwards”.
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Angles between subspaces
XHX = Y HY = Ik

X = Range(X), Y = Range(Y )

θ(X ,Y) vectorof angles between X & Y

θ(X ,Y) = θ
↓(X ,Y) = [θ1(X ,Y), . . . , θk(X ,Y)]T
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Angles between subspaces
XHX = Y HY = Ik

X = Range(X), Y = Range(Y )

θ(X ,Y) vectorof angles between X & Y

θ(X ,Y) = θ
↓(X ,Y) = [θ1(X ,Y), . . . , θk(X ,Y)]T

These angles are related to singular values:

cos θ(X ,Y) ≡ σ
↑(XHY )

= [σk(X
HY ), . . . , σ1(X

HY )]T
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Eigenproblem for A = AH ∈ C
n×n

Assume X,Y ∈ C
n×k, XHX = Y HY = Ik

Subspaces X = Range(X), Y = Range(Y )

Invariant subspace X , i.e. AX = X.XHAX
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Eigenproblem for A = AH ∈ C
n×n

Assume X,Y ∈ C
n×k, XHX = Y HY = Ik

Subspaces X = Range(X), Y = Range(Y )

Invariant subspace X , i.e. AX = X.XHAX

Problem: Y some approximation to X ,

“Ritz values” λ(Y HAY ),

Bound d ≡ |λ(XHAX) − λ(Y HAY )| ?
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Eigenproblem for A = AH ∈ C
n×n

Assume X,Y ∈ C
n×k, XHX = Y HY = Ik

Subspaces X = Range(X), Y = Range(Y )

Invariant subspace X , i.e. AX = X.XHAX

Problem: Y some approximation to X ,

“Ritz values” λ(Y HAY ),

Bound d ≡ |λ(XHAX) − λ(Y HAY )| ?

d↓ ≤ spr(A) sin2 θ(X ,Y) is false!
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Majorization (weak and strong)
A comparison relation between real vectors.

Harrachov 2007 – p. 15/36



Majorization (weak and strong)
A comparison relation between real vectors.

Majorization inequalities appear naturally, e.g., when
describing thespectrum, or singular valuesof sums
and products of matrices.
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Majorization (weak and strong)
A comparison relation between real vectors.

Majorization inequalities appear naturally, e.g., when
describing thespectrum, or singular valuesof sums
and products of matrices.

A well developed theoretical field applied
extensively in Matrix Analysis, e.g.

Marshall & Olkin 1979, (revised Nov 2007?)
Horn & Johnson 1991,
Bhatia 1997.
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Majorization (weak and strong)
A comparison relation between real vectors.

Majorization inequalities appear naturally, e.g., when
describing thespectrum, or singular valuesof sums
and products of matrices.

A well developed theoretical field applied
extensively in Matrix Analysis, e.g.

Marshall & Olkin 1979, (revised Nov 2007?)
Horn & Johnson 1991,
Bhatia 1997.

It has recently been used in
the analysis of numerical algorithms.
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Majorization
y ∈ R

n is weakly majorized byx ∈ R
n,

written y ≺w x,

iff

y↓
1

≤ x↓
1

y↓
1
+ y↓

2
≤ x↓

1
+ x↓

2

· · · ≤ · · ·

y↓
1
+ · · · + y↓

n
≤ x↓

1
+ · · · + x↓

n
.
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Majorization
y ∈ R

n is weakly majorized byx ∈ R
n,

written y ≺w x,

iff

y↓
1

≤ x↓
1

y↓
1
+ y↓

2
≤ x↓

1
+ x↓

2

· · · ≤ · · ·

y↓
1
+ · · · + y↓

n
≤ x↓

1
+ · · · + x↓

n
.

y ∈ R
n is strongly majorized byx ∈ R

n,
written y ≺ x, if also

∑

n

i=1
yi =

∑

n

i=1
xi.
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Geometry of majorization
The linear inequalities of weak and strong
majorization define convex sets inRn .
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Geometry of majorization
The linear inequalities of weak and strong
majorization define convex sets inRn .

For a fixedx ∈ R
n, the set of ally ∈ R

n satisfying
y ≺ x is the convex hull of allPx , whereP runs
over the permutation matrices.
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Geometry of majorization
The linear inequalities of weak and strong
majorization define convex sets inRn .

For a fixedx ∈ R
n, the set of ally ∈ R

n satisfying
y ≺ x is the convex hull of allPx , whereP runs
over the permutation matrices.

The set of ally ∈ R
n satisfyingy ≺w x is an

unbounded convex set. However ifx andy are
positive vectors, then we also obtain a convex
polygon.
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Classical majorization results
Theorem (Shur):Let A ∈ R

n×n be Hermitian.
Thendiag(A) ≺ λ(A).
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Classical majorization results
Theorem (Shur):Let A ∈ R

n×n be Hermitian.
Thendiag(A) ≺ λ(A).

Theorem (Lidskii):Let A,B ∈ R
n×n be Hermitian.

Thenλ(A) − λ(B) ≺ λ(A − B).
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Classical majorization results
Theorem (Shur):Let A ∈ R

n×n be Hermitian.
Thendiag(A) ≺ λ(A).

Theorem (Lidskii):Let A,B ∈ R
n×n be Hermitian.

Thenλ(A) − λ(B) ≺ λ(A − B).

Theorem (Ky-Fan):Let A,B ∈ R
n×n.

Thenσ(A + B) ≺w σ(A) + σ(B).

Harrachov 2007 – p. 26/36



Our main result again
Theorem:LetX , Y be subspaces ofCn having the
same dimensionk, with orthonormal bases given by
the columns of the matricesX andY respectively. Let
A ∈ C

n×n be Hermitian,X beA-invariant and let
θ ≡ θ(X ,Y) denote the vector of principal angles
between the subspacesX andY. Then

|λ(XHAX)−λ(Y HAY )| ≺w spr(A)(sin2 θ+
sin4 θ

2
).

Moreover, if theA-invariant subspaceX corresponds
to the set ofk largest or smallest eigenvalues ofA then

|λ(XHAX) − λ(Y HAY )| ≺w spr(A) sin2 θ.
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Motivation
Study the convergence of numerical methods which
use Ritz approximations for the symmetric
(Hermitian) eigenvalue problem
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Motivation
Study the convergence of numerical methods which
use Ritz approximations for the symmetric
(Hermitian) eigenvalue problem, e.g.

• Lanczosalgorithm 1950
• block Lanczosalgorithm (Golub& Underwood,

1977 )
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a priori bounds
Our bound depends on the unknownθ(X ,Y),
and so is ana priori result:

• it can help our understanding, and
• suggest relative performance of algorithms.
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a priori bounds
Our bound depends on the unknownθ(X ,Y),
and so is ana priori result:

• it can help our understanding, and
• suggest relative performance of algorithms.

Threea priori approaches for the (sym.) EVP:

• Classical: angles between eigen-vectors
and Ritz vectors.

• Saad: angles between eigen-vectors and
the trial (Krylov) subspaceY.

• AKPP: angles between the invariant
subspaceX , and Y.

Harrachov 2007 – p. 31/36



Questions
• Can we remove thesin4 θ(X ,Y)/2 term

from our general bound?
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Questions
• Can we remove thesin4 θ(X ,Y)/2 term

from our general bound?
• Are our bounds useful for studying the

convergence analysis of the algorithms
which use Ritz approximations?
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Questions
• Can we remove thesin4 θ(X ,Y)/2 term

from our general bound?
• Are our bounds useful for studying the

convergence analysis of the algorithms
which use Ritz approximations?

• Can majorization be usefully applied in
the convergence analysis of other
numerical algorithms?
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Questions
• Can we remove thesin4 θ(X ,Y)/2 term

from our general bound?
• Are our bounds useful for studying the

convergence analysis of the algorithms
which use Ritz approximations?

• Can majorization be usefully applied in
the convergence analysis of other
numerical algorithms?

This talk is dedicated to my mother.
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Questions
• Can we remove thesin4 θ(X ,Y)/2 term

from our general bound?
• Are our bounds useful for studying the

convergence analysis of the algorithms
which use Ritz approximations?

• Can majorization be usefully applied in
the convergence analysis of other
numerical algorithms?

This talk is dedicated to my mother.

THANK YOU!
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