Numerical Solutions of Population-Balance Models in Particulate Systems

Shamsul Qamar Gerald Warnecke

Institute for Analysis and Numerics Otto-von-Guericke University Magdeburg, Germany

In collaboration with Max-Planck Institute for Dynamical Systems, Magdeburg

Harrachov, August 19-25, 2007

Outline

- Aim
- Application Areas
- 2 Mathematical Model
 - General Population Balance Equation (PBE)
 - Reformulation of PBE
 - Preferential Crystallization Model
- 3 Numerical Procedure
 - Domain Discretization
 - Numerical Method 1: Combination of MOC and FVS
 - Numerical method 2: Semi-Discrete HR-Schemes

Numerical Results

Aim Applications

Outline

Motivation Aim Application Areas Reformulation of PBE Preferential Crystallization Model Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes Numerical Results

< 🗇 🕨

Aim Applications

Motivation

Aim

To model and simulate nucleation, growth, aggregation and Breakage phenomena in processes engineering by solving population balance equations (PBEs).

Numerical Methods

To solve population balance models we use the high resolution finite volume schemes as well as their combination with the method of characteristics

Aim Applications

Outline

- Aim
- Application Areas
- Mathematical Model
 - General Population Balance Equation (PBE)
 - Reformulation of PBE
 - Preferential Crystallization Model
- 3 Numerical Procedure
 - Domain Discretization
 - Numerical Method 1: Combination of MOC and FVS
 - Numerical method 2: Semi-Discrete HR-Schemes
 - Numerical Results

- 17 ▶

Motivation

Mathematical Model Numerical Procedure

Numerical Results

Aim Applications

Industrial Applications

Applications

- Pharmaceutical
- Chemical industries
- Biomedical science
- Aerosol formation
- Atmospheric physics
- Food industries

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Outline

- Motivation
 - Aim
 - Application Areas
- 2 Mathematical Model
 - General Population Balance Equation (PBE)
 - Reformulation of PBE
 - Preferential Crystallization Model
- 3 Numerical Procedure
 - Domain Discretization
 - Numerical Method 1: Combination of MOC and FVS
 - Numerical method 2: Semi-Discrete HR-Schemes
 - Numerical Results

・ 同 ト ・ ヨ ト ・ ヨ

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

General Population Balance Equation (PBE)

$$rac{\partial f(t, \mathbf{x})}{\partial t} + rac{\partial [\mathbf{G}(t, \mathbf{x})f(t, \mathbf{x})]}{\partial \mathbf{x}} = \mathcal{Q}^{\pm}_{\mathrm{agg}}(t, \mathbf{x}) + \mathcal{Q}^{\pm}_{\mathrm{break}}(t, \mathbf{x}) + \mathcal{Q}^{+}_{\mathrm{nuc}}(t, \mathbf{x})
onumber \ f(0, \mathbf{x}) = f_0 \,, \quad \mathbf{x} \in \mathbb{R}_+ :=]0, +\infty[, t \ge 0$$

- f(t, x) is the number density function,
- 2 t denotes the time and x is an internal coordinate
- G(t, x) is the growth/dissolution rate along x,
- **Q** $^{\pm}_{\alpha}(t, x)$ are the aggregation, breakage and nucleation terms for $\alpha = \{agg, break, nuc\}$.
- The entities in the population density can be crystals, droplets, molecules, cells, and so on.

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Figure: A schematic representation of different particulate processes

4

臣

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

< 17 ►

$$\mathcal{Q}_{agg}^{\pm}(t,x) = \frac{1}{2} \int_{0}^{x} \beta(t,x',x-x') f(t,x') f(t,x'-x) dx' - \int_{0}^{\infty} \beta(t,x,x') f(t,x) f(t,x') dx'.$$

Where: $\beta = \beta(t, x, x')$ is the rate at which the aggregation of two particles with respective volumes *x* and *x'* produces a particle of volume x + x' and is a nonnegative symmetric function,

$$0 \leq \beta(t, \boldsymbol{x}, \boldsymbol{x}') = \beta(t, \boldsymbol{x}', \boldsymbol{x}), \quad \boldsymbol{x}' \in]0, \boldsymbol{x}[, \quad (\boldsymbol{x}, \boldsymbol{x}') \in \mathbb{R}^2_+.$$

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

イロト イヨト イヨト イヨト

$$\mathcal{Q}_{\text{break}}^{\pm}(t,x) = \int_{x}^{\infty} b(t,x,x') \, S(x') \, f(t,x') dx' - S(x) \, f(t,x) \, .$$

b := b(t, x, x') is the probability density function for the formation of particles of size *x* from particle of size *x'*. The selection function S(x') describes the rate at which particles are selected to break.

Moments:
$$\mu_i(t) = \int_0^\infty x^i f(t, x) dx$$
, $i = 0, 1, 2, \cdots$,

 $\mu_0(T)$ =total number of particles, $\mu_1(t)$ =total volume of particles

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Outline

Motivation

- Aim
- Application Areas
- 2 Mathematical Model
 - General Population Balance Equation (PBE)
 - Reformulation of PBE
 - Preferential Crystallization Model
- 3 Numerical Procedure
 - Domain Discretization
 - Numerical Method 1: Combination of MOC and FVS
 - Numerical method 2: Semi-Discrete HR-Schemes
 - Numerical Results

・ 同 ト ・ ヨ ト ・ ヨ

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Reformulation of PBE

Multiply the original PBE with x and re-arrange the terms, we get

$$rac{\partial ilde{f}(t,x)}{\partial t} + rac{\partial [(G ilde{f})(t,x)]}{\partial x} - rac{(G ilde{f})(t,x)}{x} = -rac{\partial \mathcal{F}_{
m agg}(t,x)}{\partial x} + rac{\partial \mathcal{F}_{
m break}(t,x)}{\partial x} + ilde{\mathcal{Q}}_{
m nuc} \,, \ ilde{f}(0,x) = ilde{f}_0 \,, \quad x \in \mathbb{R}_+ \,, \ t \ge 0 \,,$$

where $\tilde{f}(t, \mathbf{x}) := \mathbf{x} f(t, \mathbf{x}), \quad \tilde{\mathcal{Q}}_{\text{nuc}} = \mathbf{x} \mathcal{Q}_{\text{nuc}}^+$ and

 $\mathcal{F}_{agg}(t, \mathbf{x}) = -\int_{0}^{\mathbf{x}} \int_{\mathbf{x}-u}^{\infty} u \beta(t, u, v) f(t, u) f(t, v) \, dv du \, (\text{Filbet \& Laurencot, 2004})$

$$\mathcal{F}_{\text{break}}(t, \mathbf{x}) = \int_{0}^{\mathbf{x}} \int_{\mathbf{x}}^{\infty} u \, b(t, u, v) \, S(v) \, f(t, v) \, dv du \, .$$

イロト イヨト イヨト イヨト

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Outline

Motivation

- Aim
- Application Areas
- 2 Mathematical Model
 - General Population Balance Equation (PBE)
 - Reformulation of PBE
 - Preferential Crystallization Model
 - 3 Numerical Procedure
 - Domain Discretization
 - Numerical Method 1: Combination of MOC and FVS
 - Numerical method 2: Semi-Discrete HR-Schemes
 - Numerical Results

・ 同 ト ・ ヨ ト ・ ヨ

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Amino acid enantiomers

▶ < ≣ >

< D > < B >

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Ternary Phase Diagram

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

Preferential Batch Crystallizer With Fines Dissolution

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

★ E → < E →</p>

< 🗇 🕨

2

Model for Preferential Crystallization

Balance for solid phase

$$\frac{\partial f^{(k)}(t,x)}{\partial t} = -G^{(k)}(t)\frac{\partial f^{(k)}(t,x)}{\partial x} - \frac{1}{\tau_1}h(x)f^{(k)}(t,x) , \quad k \in [p,c].$$

Mass balance for liquid phase in cyrstallizer

$$\frac{dm^{(k)}(t)}{dt} = \dot{m}_{in}^{(k)}(t) - \dot{m}_{out}^{(k)}(t) - 3\rho k_{v} G^{(k)}(t) \int_{0}^{\infty} x^{2} f^{(k)}(t,x) dx.$$

$$\begin{split} f^{(k)}(t,0) &= \frac{B^{(k)}(t)}{G^{(k)}(t)}, \qquad w^{(k)}(t) = \frac{m^{(k)}(t)}{m^{(p)}(t) + m^{(c)}(t) + m_W(t)} \\ S^{(k)}(t) &= \frac{w^{(k)}(t)}{w^{(k)}_{eq}} - 1, \quad G^{(k)}(t) = k_g \left[S^{(k)}(t)\right]^{\alpha}, \ k_g \ge 0, \ \alpha \ge 1. \end{split}$$

General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\begin{split} B_{0}^{(p)}(t) &= k_{b}^{(p)} \left(S^{(p)}(t) \right)^{b^{(p)}} \mu_{3}^{(p)}(t) \\ B_{0}^{(c)}(t) &= k_{b}^{(c)} e^{-\frac{b^{(c)}}{\ln(S^{(c)}(t))^{2}}} \\ \dot{m}_{out}^{(k)}(t) &= w^{(k)}(t) \rho_{liq}(T) \\ \dot{m}_{in}^{(k)}(t) &= \dot{m}_{out}^{(k)}(t - \tau_{2}) + \frac{k_{v}\rho}{\tau_{1}} \int_{0}^{\infty} x^{3}h(x) f^{(k)}(t - \tau_{2}, x) \, dx \end{split}$$

.

(< ≥) < ≥)</p>

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

Outline

Motivation

 Aim
 Application Areas

 Mathematical Model

 General Population Balance Equal
 Reformulation of PBE
 Preferential Crystallization Model

 Numerical Procedure

- Domain Discretization
- Numerical Method 1: Combination of MOC and FVS
- Numerical method 2: Semi-Discrete HR-Schemes
- 4 Numerical Results

A (B) > A (B) > A (B)

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

・ロト ・回ト ・ヨト ・ヨト

Domain Discretization

Regular/Irregular grid: Let *N* be a large integer and denote by $(x_{i-\frac{1}{2}})_{i \in \{1,\dots,N+1\}}$ a mesh of $[x_{\min}, x_{\max}]$. We set

 $x_{1/2} = x_{\min}, \quad x_{N+1/2} = x_{\max}, \quad x_{i+1/2} = x_{\min} + i \cdot \Delta x_i, \ \forall \ i = 1, 2, \cdots N - 1.$

Here $x_i = (x_{i-1/2} + x_{i+1/2})/2$, $\Delta x_i = x_{i+1/2} - x_{i-1/2}$.

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

イロト イヨト イヨト イヨト

2

Geometric grid:

$$x_{1/2} = x_{\min}, \ x_{i+1/2} = x_{\min} + 2^{(i-N)/q} (x_{\max} - x_{\min}), \ \forall \ i = 1, 2, \cdots, N$$

where the parameter q is any positive integer.

Let $\Omega_i = [x_{i-1/2}, x_{i+1/2}]$ for $i \ge 0$. We approximate the initial data $f_0(x)$ in each grid cell by

$$f_i = rac{1}{\Delta x_i} \int\limits_{\Omega_i} f_0(x) dx$$
.

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

A (B) > A (B) > A (B)

Outline

Aim Application Areas General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model 3 Numerical Procedure Domain Discretization Numerical Method 1: Combination of MOC and FVS

- Numerical method 2: Semi-Discrete HR-Schemes
- Numerical Results

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

Method 1: Combination of MOC and FVS

Let us substitute the growth rate G(t, x) by

$$\frac{dx}{dt} := \dot{x}(t) = G(t, x).$$

Then we have to solve:

where

$$\begin{aligned} \frac{d\tilde{f}_{i}}{dt} &= -\frac{1}{\Delta x_{i}(t)} \left[(\mathcal{F}_{agg})_{i+\frac{1}{2}} - (\mathcal{F}_{agg})_{i-\frac{1}{2}} \right] + \frac{1}{\Delta x_{i}(t)} \left[(\mathcal{F}_{break})_{i+\frac{1}{2}} - (\mathcal{F}_{break})_{i-\frac{1}{2}} \right] \\ &+ \frac{G_{i+\frac{1}{2}}\tilde{f}_{i}}{x_{i}(t)} - \left(G_{i+\frac{1}{2}} - G_{i-\frac{1}{2}} \right) \frac{\tilde{f}_{i}}{\Delta x_{i}(t)} + \tilde{\mathcal{Q}}_{i} \\ \frac{dx_{i+\frac{1}{2}}}{dt} &= G_{i+\frac{1}{2}}, \qquad \forall \ i = 1, 2, \cdots, N \quad \text{with i.c.} \quad \tilde{f}(0, x_{i}) = \tilde{f}_{0}(x_{i}) \end{aligned}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

イロト イヨト イヨト イヨト

$$(\mathcal{F}_{agg})_{i+1/2} = \sum_{k=0}^{i} \Delta x_{k}(t) \tilde{f}_{k} \left\{ \sum_{j=\alpha_{i,k}}^{N} \int \frac{\beta(x', x_{k})}{x'} dx' \tilde{f}_{j} + \int_{x_{i+1/2}-x_{k}}^{\alpha_{i,k}-1/2} \frac{\beta(x', x_{k})}{x'} dx' \tilde{f}_{\alpha_{i,k}-1} \right\}$$
$$(\mathcal{F}_{break})_{i+1/2} = \sum_{k=0}^{i} \int x^{*} \left(\sum_{j=i+1}^{N} \tilde{f}_{j} \int \Omega_{j} b(x^{*}, x') \frac{S(x')}{x'} dx' \right) dx^{*} + \mathcal{O}(\Delta x^{3}).$$

Here, the integer $\alpha_{i,k}$ corresponds to the index of the cell such that $x_{i+1/2}(t) - x_k(t) \in \Omega_{\alpha_{i,k}-1}(t)$.

A standard ODE-solver can be used to solve the above ODEs.

-1

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

Outline

Aim Application Areas General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model 3 Numerical Procedure Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes Numerical Results

・ 同 ト ・ ヨ ト ・ ヨ

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

Method 2: Semidiscrete HR-schemes

Integration of PBE over the control volume $\Omega_i = \left| \mathbf{x}_{i-\frac{1}{2}}, \mathbf{x}_{i+\frac{1}{2}} \right|$ implies

$$\int_{\Omega_i} \frac{\partial \tilde{f}(t,x)}{\partial t} dx + \int_{\Omega_i} \frac{\partial [G(t,x)\tilde{f}(t,x)]}{\partial x} dx - \int_{\Omega_i} \frac{G(t,x)\tilde{f}(t,x)}{x} dx \\ = -\int_{\Omega_i} \frac{\partial \mathcal{F}_{agg}(t,x)}{\partial x} dx + \int_{\Omega_i} \frac{\partial \mathcal{F}_{break}(t,x)}{\partial x} dx + \int_{\Omega_i} \tilde{\mathcal{Q}}(t,x) dx .$$

Let $\tilde{f}_i = \tilde{f}_i(t)$ and $\tilde{Q}_i = \tilde{Q}_i(t)$ be the averaged values, then we have

$$\begin{split} \frac{\partial f_i}{\partial t} &= -\frac{1}{\Delta x} \left[\mathcal{F}_{i+\frac{1}{2}} - \mathcal{F}_{i-\frac{1}{2}} \right] - \frac{1}{\Delta x} \left[(\mathcal{F}_{\text{agg}})_{i+\frac{1}{2}} - (\mathcal{F}_{\text{agg}})_{i-\frac{1}{2}} \right] \\ &+ \left[(\mathcal{F}_{\text{break}})_{i+\frac{1}{2}} - (\mathcal{F}_{\text{break}})_{i-\frac{1}{2}} \right] + \frac{\mathbf{G}_{i+\frac{1}{2}} \tilde{f}_i}{\mathbf{x}_i} + \tilde{\mathcal{Q}}_i \,, \end{split}$$

where $\mathcal{F}_{i+\frac{1}{2}} = (G\tilde{f})_{i+\frac{1}{2}}$ and (\mathcal{F}_{agg}) & (\mathcal{F}_{break}) are as given in Method 1.

Domain Discretization Numerical Method 1: Combination of MOC and FVS Numerical method 2: Semi-Discrete HR-Schemes

The flux $\mathcal{F}_{i+\frac{1}{2}}$ at the right cell interface is given as (*Koren, 1993*):

$$\mathcal{F}_{i+\frac{1}{2}} = \left(\mathcal{F}_{i} + \frac{1}{2}\Phi\left(r_{i+\frac{1}{2}}\right)\left(\mathcal{F}_{i} - \mathcal{F}_{i-1}\right)\right)$$

and Φ is defined as:

$$\Phi(r_{i+\frac{1}{2}}) = \max\left(0, \min\left(2r_{i+\frac{1}{2}}, \min\left(\frac{1}{3} + \frac{2}{3}r_{i+\frac{1}{2}}, 2\right)\right)\right) \,.$$

The argument $r_{i+\frac{1}{2}}$ of the function Φ is given as

$$r_{i+\frac{1}{2}} = \frac{\mathcal{F}_{i+1} - \mathcal{F}_i + \varepsilon}{\mathcal{F}_i - \mathcal{F}_{i-1} + \varepsilon}$$

Analogously, one can formulate the flux $\mathcal{F}_{i-\frac{1}{2}}$. Here, $\varepsilon = 10^{-10}$.

There are several other limiting functions, namely, minmod, superbee and MC limiters, etc. Each of them leeds to a different HR-scheme (*LeVeque 2002, Koren 1993*).

Further Reading

Example 1: All Processes

The initial data:

$$f(0,x) = \left\{ \begin{array}{ll} 100 & \quad \text{for } 0.4 \leq x \leq 0.6 \,, \\ 0.01 & \quad \text{elsewhere} \,. \end{array} \right.$$

B.C.:
$$f(t,0) = 100 + 10^{6} \exp(-10^{4} (t - 0.215)^{2})$$
.

G = 1.0, $\beta = 1.5 \cdot 10^{-5}$, $b(t, x, x') = \frac{2}{x'}$ and $S(x) = x^2$. The exact solution in growth and nucleation case is:

$$f(t, x) = \begin{cases} 10^2 + 10^6 \exp(-10^4((G't - x) - 0.215)^2) \text{ for } 0 \le x \le Gt \\ 10^2 & \text{for } 0.4 \le x - Gt \le 0.6 \\ 0.01 & \text{elsewhere }. \end{cases}$$

 $t_{\rm max} = 0.5$ and N = 200.

< 🗇 🕨

-1

Further Reading

Results of Method 1: MOC+FVM

S. Qamar, G. Warnecke

Otto-von-Guericke University Magdeburg

Further Reading

Results of Method 2: FVM

S. Qamar, G. Warnecke

Otto-von-Guericke University Magdeburg

Further Reading

Example 2: Pure Growth

The initial data are:

$$f(0,x) = \begin{cases} 1 \times 10^{10} \\ 0 \end{cases}$$

 $\begin{array}{l} \text{if } 10 < x < 20\,, \\ \text{elsewhere}\,. \end{array}$

For mesh adaptation we have used a moving mesh technique of T. Tang et al. (2003)

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Further Reading

Preferential Crystallization

Isothermal Case

Temperature = $33C^{\circ}$.

Non-isothermal Case

 $T(t)[C^o] = -1.24074e^{-7}t^3 + 4.50926e^{-5}t^2 - 0.00405556t + 33.$

イロト イヨト イヨト イヨト

Further Reading

Example 3: Preferential Crystallization

The initial data:

$$f^{(p)}(0,x) = \frac{1}{\sqrt{2\pi\sigma}I_a} \cdot \frac{1}{x} \cdot \exp\left[-\frac{1}{2} \cdot \left(\frac{\ln(x) - \mu}{\sigma}\right)^2\right],$$

$$f^{(c)}(0,x) = 0, \qquad \text{with} \qquad I_a = \frac{k_V \cdot \rho_s}{M_s} \mu_3^{(p)}(0).$$

Here $M_s = 2.5 \cdot 10^{-3} kg$ is the mass of initial seeds. The maximum crystal size is $x_{max} = 0.005 m$ with N = 500 for t = 600 min.

Further Reading

Example 3: Preferential Crystallization

S. Qamar, G. Warnecke

Otto-von-Guericke University Magdeburg

Further Reading

Example 3: Preferential Crystallization

600

600

<...≣

S. Qamar, G. Warnecke

Otto-von-Guericke University Magdeburg

Further Reading

Example 3: Mass Preservation in the Schemes

Table: Percentage errors in mass preservation without fines dissolution.

Method	Isothermal		Non-isothermal		CPU time (s)	
					(isothermal)	
	N=500	N=1000	N=500	N=1000	N=500	N=1000
First order	3.737	3.775	4.460	4.669	1.5	3.1
$HR-\kappa = -1$	3.811	3.813	4.733	4.736	2.2	4.4
$HR-\kappa = 1/3$	3.813	3.814	4.736	4.737	2.3	4.6
MOC	2.604	1.844	3.792	2.917	0.34	0.41

Table: Percentage errors in mass preservation with fines dissolution.

Method	Isothermal		Non-isothermal		CPU time (s)	
					(isothermal)	
	N=500	N=1000	N=500	N=1000	N=500	N=1000
First order	2.801	2.838	2.841	2.904	2.3	5.5
$HR-\kappa = -1$	2.873	2.875	2.962	2.965	3.1	7.5
$HR-\kappa = 1/3$	2.875	2.876	2.965	2.967	3.5	7.7
MOC	1.823	1.30	2.055	1.086	0.39	0.71

E → < E →

< 17 ▶

Further Reading

Current Project

Results of isothermal (30 °C) seeded growth experiments with mandelic acid in water. Left:without counter enantiomer; Right: with counter-enantiomer (Lorenz et al., 2006).

Further Reading

For Further Reading

S. Qamar, M. Elsner, I. Angelov, G. Warnecke and A. Seidel-Morgenstern
 A comparative study of high resolution schemes for solving population balances in crystallization.
 Compt. & Chem. Eng., Vol. 30, 1119-1131, 2006.

S. Qamar, and G. Warnecke

Solving population balance equations for two-component aggregation by a finite volume scheme. *Chem. Sci. Eng.*, 62, 679-693, 2006.

S. Qamar, and G. Warnecke Numerical solution of population balance equations for nucleation growth and aggregation processes. *Compt. & Chem. Eng. (in press)*, 2007.

Further Reading

Thanks for your Attention

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg