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“Aristotle has said that ‘the sweetest of all things is knowledge’.
And he is right. But if you were to suppose that the publication
of a new view were productive of unbounded sweetness, you
would be highly mistaken. No one disturbs his fellow man with a
new view unpunished.”

E. Mach

“Most people would rather die than think. Most do.”

B. Russell

“Everything of importance has been said by somebody who did
not discover it.”

A. N. Whitehead
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Body

κτ , κt - Placers

κτ (B), κt(B) -
Configurations

Motion is a
one-parameter family of
placers.

Motion

x = χκR
(X, t). (1)

Relative Motion

ξ = χκR

(
χ−1

κR
(x, t), τ

)
= χt(x, τ). (2)
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Kinematics

Deformation Gradient

FκR
≡

∂χκR

∂X
. (3)

FκR
is a linear transformation from the tangent space at X to the

tangent space at x.

Relative Deformation Gradient

Fκt ≡
∂χt

∂x
. (4)
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Kinematics

Lagrangian

φ = φ̂(X, t); 5φ :=
∂φ̂

∂X
;

dφ

dt
:=

∂φ̂

∂t
(5)

Eulerian

φ = φ̃(x, t); gradφ :=
∂φ̃

∂x
;

∂φ

∂t
:=

∂φ̃

∂t
(6)
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Classical Constitutive Relations

Classical Elasticity

T = fκR
(FκR

) (7)

Navier Stokes Fluid

T = −pI + 2µD; D :=
1

2

[
gradV + (gradV)T

]
(8)

Stokesian Fluid

T = f(D) (9)
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Implications and Assumptions in Classical Elasticity

There is only one stress-free configuration modulo rigid motion.

The stress is completely known from a kinematical measurement from
a single configuration.
It would be more appropriate to express equation (9) as

T = fκt(Dκ(t)
) (10)

The tacit assumption is that

fκt = f ∀t, For example,T = −pI + 2µD (11)

However, it is possible that

T =

−p1I + 2µ1Dκ(t)
∀t ≤ t

′
,

−p2I + µ̂1Dκ(t)
+ µ̂2(Dκ(t)

)2 ∀t > t
′ (12)
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Natural Configuration

Most bodies have more than one stress-free configuration (modulo
rigid motion) . . . Eckart (1940s)

The symmetry of the body in these natural configurations can be
different.

A “Body” is not necessarily a fixed set of material particles.

. . . Growth, Adaptation

To define a “Body” it is necessary to know the natural configurations
that a body is capable of existing in. In any process, we need to know
which natural configurations are accessed.

Natural configuration ≈ Equivalence class of configurations.

Rajagopal
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Natural Configuration

It is “incorrect” to talk about a body being “elastic”, etc. The same
piece of steel can undergo

1 a non-dissipative process,
2 twinning,
3 slip,
4 solid to solid phase transitions,
5 melting, etc.

We need to define “states”, “processes”, and “process classes”:
Isothermal, Adiabatic, Isentropic, Isenthalpic, Isobaric, Isotonic,
Non-Dissipative, etc.

Different natural configurations are accessed during different
processes. The natural configuration is a part of the specification of
the “state” of the body.
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Natural Configurations

Figure: κp(τ) Natural configuration corresponding to κτ and κp(t) natural
configuration corresponding to κt

We are used to drawing the ubiquitous potato.

The notion of configuration is a local notion.

If one inhomogeneously deforms a body and then removes the
traction, it is possible that the unloaded body will not fit together
compatably and be simultaneously stress free in an Euclidean space.
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Natural Configuration

However, it can be unloaded in a non-Euclidean space in which it fits
together and is stress free (Eckart 1940s ).

However, a “sufficiently small” neighborhood of a material point can
be unloaded to a stress free state in Euclidean space, i.e., if the
deformation is reasonably smooth, we can pick sufficiently small
neighborhoods wherein the deformation is homogeneous. The notion
of a configuration really applies to an appropriately small
neighborhood of a point.

Henceforth, for the sake of illustration, let us assume homogeneous
deformations.
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Natural Configuration

Can think of it as a stress-free
configuration

It is really an equivalence class
of configurations. Eg: Classical
Plasticity

Figure: Traditional Plasticity
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Twinning

Figure: Modulo variants, we have two natural configurations, that corresponding
to O and F, and these two natural configurations have different material
symmetries.

In twinning there are a finite number. As many as the number of
variants.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 13 / 41



Twinning

Figure: Modulo variants, we have two natural configurations, that corresponding
to O and F, and these two natural configurations have different material
symmetries.

In twinning there are a finite number. As many as the number of
variants.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 13 / 41



Further examples of the importance of the evolution of Natural Configurations

Viscoelasticity

Superplasticity

Crystallization

Classical theories are trivial examples:

In classical elasticity the natural configuration does not evolve.

In classical fluids the current configuration is the natural configuration.
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Further examples of the importance of the evolution of Natural Configurations

Figure: Configuration as a local notion

Figure: Spider spinning a web

New material is laid in a stressed state. It can have a different natural
configuration than the material laid down previously.
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Further examples of the importance of the evolution of Natural Configurations

Think in terms of Global
configurations.

Figure: Non-uniqueness of stress-free
state (Modulo rigid motion)

More than one Natural
Configuration can be associated
with the current deformed
configuration.
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Balance Equations

Balance of Mass

∂ρ

∂t
+ div(ρv) = 0 (13)

Assumption of incompressibility implies that the body can undergo
only isochoric motion, i.e.,

divv = 0. (14)

Balance of Linear Momentum

divT + ρb = ρ
dv

dt
. (15)

Balance of Angular Momentum

T = TT (16)
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Balance Equations

Balance of Energy

ρ
dε

dt
+ divq− T · L− ρr = 0 (17)

Second Law

ρ
dη

dt
+ div

q

θ
− ρr

θ
:= ρξ ≥ 0 (18)

Here T = Stress, η= Specific entropy, θ= Temperature, q= Heat flux
vector, r= Radiant heating
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Thermodynamic considerations

The evolution of the natural configuration, amongst other things, is
determined by the maximization of entropy production.

Ziegler suggested the use of maximization of dissipation, but not
within this context.

The maximization of entropy production makes choices amongst
possible response functions. For instance, it will pick a rate of
dissipation (or entropy production) from amongst a class of
candidates.
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Thermodynamic considerations

For a class of materials, such a choice leads to a Liapunov function
that decreases with time to a minimum value (Onsager/Prigogine-
Minimum entropy production criterion). Rajagopal and
Srinivasa(2003), Proc. Royal Society.

There is no contradiction between these two criteria:

Maximization of entropy production to pick constitutive equations and
the minimization of entropy production with time once a choice has
been made. (Rajagopal and Srinivasa (2002)).
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Thermodynamic considerations

During the process entropy is produced in a variety of ways:

1 Due to conduction

2 Due to mixing

3 Due to work being converted to heat (dissipation)

4 Phase change

5 Growth
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Thermodynamic considerations

Part of the energy that is supplied to the body is stored in the body
in a variety of ways.

The energy supplied

1 Can change the kinetic energy.

2 Can change the potential energy.

3 Is stored as “strain energy”

that can be recovered in a purely mechanical process

that can only be recovered in a thermal process.

Part of the energy due to mechanical working is transferred as energy
in its thermal form (Heat).

Part of the energy changes the “Latent Energy”.

Part goes towards “Latent Heat”.
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Material Symmetry

The symmetry of the natural configuration associated with the
material that is laid down could change as the process progresses.

Consider crystallization of a polymer melt. The symmetry of the
material that crystallizes could be determined by the deformation.

For example one could have the crystalline material being orthotropic
with the axis of othotropy being determined by the eigen-vectors of
the stretch tensor or the symmetric part of the velocity gradient.
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Symmetry Issues

Classical Elasticity

Gκ := {H ∈ U|fκ(FH) = fκ(F)}, (19)

P = ∇λ (20)

Gκ is a group. If Gκ ⊇ θ, we say that the body is isotropic.

Noll’s Rule

Gκ̂ := PGκP, (21)

The symmetry group for a simple fluid is the unimodular group, U
(Noll).
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Symmetry Issues

After shearing the lattice structure remains the same.

Contradicts Nolls rule.
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Solidification and Melting

“The properties of normal liquids are strictly isotropic; they possess
no crystalline structure which singles out any one direction as
different from another, while true solids (excluding glasses and
amorphous phases) possess non-spherical symmetries which are
characteristic of the regular arrangement of their molecules in a
crystalline lattice. In order to go from a liquid to a crystalline phase,
therefore, it is necessary to make a change of symmetry”.

Pippard (1957)

“Every transition from a crystal to a liquid and a liquid to a crystal,
or a crystal to another with different symmetry is associated with the
appearance or disappearance of some element of symmetry, . . . it can
appear or disappear only as a whole, and not gradually”.

Landau (1967)
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Reduced Energy-Dissipation Equation

T · L− ρε̇+ ρθη̇ − q · gradθ
θ

= ρθξ := h ≥ 0 (22)

For a single constituent and restricting to isothermal processes,

Rate of Dissipation

ζ = T ·D− ρψ̇ (23)

The above is used as a constraint on the processes. We automatically
pick ζ ≥ 0.

Suppose the material is incompressible,

detF = 1, or trD = 0. (24)

Maximize rate of dissipation subject to (23) and (24) as constraints:

Φ := ζ + λ1(ζ − T ·D + ρψ̇) + λ2(trD) (25)
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pick ζ ≥ 0.

Suppose the material is incompressible,

detF = 1, or trD = 0. (24)

Maximize rate of dissipation subject to (23) and (24) as constraints:

Φ := ζ + λ1(ζ − T ·D + ρψ̇) + λ2(trD) (25)
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Q: Starting from the assumption that the stress depends on the density
and the velocity gradient, how does one arrive at the Classical
Navier-Poisson-Stokes Fluid (compressible and incompressible)?

T = f(ρ,L) (26)

Frame-indifference

T = f̂(ρ,D) (27)

Isotropy

Qf̂(ρ,D)QT = f̂(ρQDQT), ∀Q ∈ Θ (28)
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Representation Theorem

f̂(ρ,D) = α1I + α2D + α2D2 (29)

Linearity in D

f̂(ρ,D) = −p(ρ)I + λ(ρ)trDI + 2µ(ρ)D (30)

Incompressibility

T = f̂(D) = −pI + 2µD (31)
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Q: Can the viscosity of a fluid depend on the pressure?

A: Yes.

Q: Is it reasonable to assume that a liquid is incompressible and its
viscosity depends on the pressure (normal stress)?

A: Yes.

Density changes in liquids in certain applications(wherein the pressure
(normal stresses) changes by several orders of magnitude) are of the
order of a few percent, while the viscosity changes by factor of 107 to
108 !!!

- Elastohydrodynamic Lubrication, Szeri (1998)
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Frictional force definitely depends on the normal force for solids. Why
should it be any different for fluids?
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Coulombs erroneous conclusions on the basis of his experiments:
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Stokes recognized that the viscosity can depend on the pressure for
incompressible liquids:

If we suppose µ to be independent of pressure also, and
substitute . . .

Let us now consider in what cases it is allowable to suppose
µ to be independent of the pressure. It has been concluded
by Du Buat from his experiments on the motion of water in
pipes and canals, that the total retardation of the velocity
due to friction is not increased by increasing the pressure... I
shall therefore suppose that for water, and by analogy for
other incompressible fluids, µ is independent of the pressure
. . .
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Barus (1891)

µ = A exp(αp), α − constant, α ≥ 0 (32)
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Q: Can the material moduli depend on the Lagrange multiplier?

A: Yes.

T = −pI + α̂1D + α̂2D2 (33)

α̂i = α̂i (p, IID , IIID) (34)

Q: Does the constraint response do no work(DAlembert, Bernoulli,
Lagrange)?

A: It is not correct to make such an assumption. Moreover, it depends
on what one means by the constraint response.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 35 / 41



Q: Can the material moduli depend on the Lagrange multiplier?

A: Yes.

T = −pI + α̂1D + α̂2D2 (33)

α̂i = α̂i (p, IID , IIID) (34)

Q: Does the constraint response do no work(DAlembert, Bernoulli,
Lagrange)?

A: It is not correct to make such an assumption. Moreover, it depends
on what one means by the constraint response.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 35 / 41



Q: Can the material moduli depend on the Lagrange multiplier?

A: Yes.

T = −pI + α̂1D + α̂2D2 (33)

α̂i = α̂i (p, IID , IIID) (34)

Q: Does the constraint response do no work(DAlembert, Bernoulli,
Lagrange)?

A: It is not correct to make such an assumption. Moreover, it depends
on what one means by the constraint response.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 35 / 41



Q: Can the material moduli depend on the Lagrange multiplier?

A: Yes.

T = −pI + α̂1D + α̂2D2 (33)

α̂i = α̂i (p, IID , IIID) (34)

Q: Does the constraint response do no work(DAlembert, Bernoulli,
Lagrange)?

A: It is not correct to make such an assumption. Moreover, it depends
on what one means by the constraint response.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 35 / 41



Q: Can the material moduli depend on the Lagrange multiplier?

A: Yes.

T = −pI + α̂1D + α̂2D2 (33)

α̂i = α̂i (p, IID , IIID) (34)

Q: Does the constraint response do no work(DAlembert, Bernoulli,
Lagrange)?

A: It is not correct to make such an assumption. Moreover, it depends
on what one means by the constraint response.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 35 / 41



Q: Can the material moduli depend on the Lagrange multiplier?

A: Yes.

T = −pI + α̂1D + α̂2D2 (33)

α̂i = α̂i (p, IID , IIID) (34)

Q: Does the constraint response do no work(DAlembert, Bernoulli,
Lagrange)?

A: It is not correct to make such an assumption. Moreover, it depends
on what one means by the constraint response.

K. R. Rajagopal (Texas A&M) Entropy producing processes Aug. 2007 35 / 41



The following representation stems from assuming that the constraint
response does no work, in this case the constraint being trD = 0;

T = −pI + 2µD (35)
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Goldstein (1981 ):

We now restrict ourselves to systems for which the net
virtual work of forces of constraint is zero. We have seen
that this condition holds for rigid bodies and it is valid for a
large number of other constraints. Thus, if a particle is
constrained to move on a surface, the force of constraint is
perpendicular to the surface, while the virtual displacement
must be tangent to it, and hence the virtual work vanishes.
This is no longer true if sliding friction forces are present,
and we must exclude such systems from our
formulation.
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Gauss (1829 - Translated into English and published in the
Philosophical Magazine in 1841):

The motion of a system of material points
connected together in any manner whatsoever, whose
motions are modified by any external restraints
whatsoever, proceeds in every instance in the greatest
possible accordance with free motion, or under the
least possible constraint; the measure of the constraint
which the whole system suffers in every particle of time
being considered equal to the sum of products of the square
of the deviation of every point from its free motion into its
mass.
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SIMPLY PUT: The constraint force ought to be the least force to
enforce the constraint.

Rajagopal & Srinivasa, Proc. Roy. Soc. London (2004): Implications
for Continua.
Rajagopal, Applications of Mathematics (2003): Constraints and their
consequences for implicit constitutive theories.
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There are several liquids that can shear thin or shear thicken. For
such liquids, when subject to a high range of pressures, the viscosity
would also depend on the pressure. It would thus be reasonable to
consider models of the form:

T = −pI + 2µ(p, |D|2)D with trD = 0 (36)

Thus p = −1
3trT and equation(36) takes the form,

f(T,D) = 0 (37)
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Thank You
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