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Introduction

The incompressible Navier-Stokes equation

− ν∇2u + u.∇u +∇p = f in Ω

∇.u = 0 in Ω.

u is the fluid velocity
p is the pressure field
ν > 0 is the kinematic viscosity coefficient ( 1/Re).
Ω ⊂ R2 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u
∂n

− np = 0 on ∂ΩN .
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Finite element discretization

Weak formulation

X̃ = (H1
E(Ω))d , X = (H1

0 (Ω))d , M = L2(Ω)

Find u ∈ X̃ and p ∈ M

ν

Z
Ω
∇u : ∇vdΩ +

Z
Ω
(u.∇u).vdΩ−

Z
Ω

p(∇.v)dΩ =

Z
Ω

f.vdΩ, ∀v ∈ XZ
Ω

q(∇.u)dΩ = 0, ∀q ∈ M
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Finite element discretization

Discrete weak formulation

X̃h = (H1
E(Ω))d , Xh = (H1

0 (Ω))d , Mh = L2(Ω)

Find uh ∈ X̃h and ph ∈ Mh

ν

Z
Ω
∇uh : ∇vhdΩ +

Z
Ω
(uh.∇uh).vhdΩ−

Z
Ω

ph(∇.vh)dΩ =

Z
Ω

f.vhdΩ, ∀vh ∈ Xh,

Z
Ω

qh(∇.uh)dΩ = 0 ∀qh ∈ Mh.

Matrix notation
Au + N(u) + BT p = f

Bu = 0.
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Linearization

Stokes problem

− ν∇2u +∇p = f

∇.u = 0

Picard’s method

− ν∆u(k+1) + (u(k).∇)u(k+1) +∇p(k+1) = f

∇.u(k+1) = 0

Newton’s method

− ν∆uk+1 + uk+1.∇uk + uk .∇uk+1 +∇pk+1 = f + uk .∇uk ,

∇.uk+1 = 0.

Rehman , Vuik and Segal Solution of the Navier-Stokes problem



Introduction
Solution techniques

Preconditioning
Numerical Experiments

Conclusions

Linear system

Matrix form after linearization[
F BT

B 0

] [
u
p

]
=

[
f
0

]
or Ax = b

F ∈ Rn×n, B ∈ Rm×n, f ∈ Rn and m ≤ n

Sparse linear system, Symmetric(Stokes problem), nonsymmetric indefinite
otherwise.

Saddle point problem having large number of zeros on the main diagonal
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Solution techniques

Direct methods
To solve Ax = b,
factorize A into upper U and lower L triangular matrices
(LUx = b)
First solve Ly = b, then Ux = y

Classical iterative methods
Methods based on matrix splitting, generates sequence of
iterations
xk+1 = M−1(Nxk + b) = Qxk + s
where A = M − N
Jacobi, Gauss Seidel, SOR, SSOR
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Solution techniques
Krylov subspace methods
Find the approximate solution xn = x0 + c, where c is a linear
combination of basis functions of Krylov subspace Kn(A, b),
where Kn = 〈b,Ab,A2b, ....,An−1b〉 of dimension n.

CGNR [Paige and Saunders - 1975]
QMR [Freund and Nachtigal - 1991]
CGS [Sonneveld - 1989]
Bi-CGSTAB [van der Vorst - 1992]
GMRES [Saad and Schultz - 1986]
GMRESR [van der Vorst and Vuik - 1994]
GCR [Eisenstat, Elman and Schultz - 1986]

matrix-vector multiplications, good convergence properties, optimal and short
recurrence
Convergence depends strongly on eigenvalues distribution clustered around 1 or
away from 0.
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Preconditioner for the Navier-Stokes equations

Definition

A linear system Ax = b is transformed into P−1Ax = P−1b
such that

Eigenvalues of P−1A are more clustered than A
P ≈ A

Pz = r cheap to compute

Several approaches, we will discuss here
Block triangular preconditioners

Incomplete LU factorization
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Preconditioners for the Navier-Stokes equations

Block triangular preconditioners»
F BT

B 0

–
=

»
I 0

BF−1 I

– »
F 0
0 S

– »
I F−1BT

0 I

–
| {z }

Pt =

»
F BT

0 S

–
, S = −BF−1BT (Schur complement matrix)

Subsystem solve Sz2 = r2, Fz1 = r1 − BT z2

In practice F−1 and S−1 are expensive.

F−1 is obtained by an approximate solve

S is first approximated and then solved inexactly
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Preconditioners for the Navier-Stokes equations

Well-known approximations to Schur complement
Pressure convection diffusion (PCD) [Kay, Login and Wathen,
2002]

S ≈ −ApF−1
p Qp

Least squares commutator (LSC) [Elman, Howle, Shadid, Silvester
and Tuminaro, 2002]

S ≈ −(BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT )

Augmented Lagrangian approach (AL) [Benzi and Olshanskii,

2006]

Convergence independent of the mesh size and mildly dependent on Reynolds
number

Require iterative solvers (Multigrid) for the (1,1) and (2,2) blocks

Require extra operators
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Preconditioners for the Navier-Stokes equations

Incomplete LU preconditioners

A = LD−1U + R,
(LD−1U)i,j = ai,j for (i, j) ∈ S,
where R consist of dropped entries that are absent in the index set S(i, j). [Meijerink
and van der Vorst, 1977]
- dropping based on position, S = {(i, j)| aij 6= 0} (positional dropping)
- dropping based on numerical size (Threshold dropping)

Simple to implement,

Computation is inexpensive

Inaccuracies and instabilities,
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Preconditioners for the Navier-Stokes equations

Pivoting
Prevent zero diagonal, small pivots

A priori estimation of the memory required to store the matrix a difficult task

A priori reordering/renumbering
Improve profile and bandwidth of the matrix

Minimizes dropped entries in ILU

Well-known renumbering schemes
Cuthill McKee renumbering (CMK) [Cuthill McKee - 1969]

Sloan renumbering [Sloan - 1986]

Minimum degree renumbering (MD) [Tinney and Walker - 1967]

[Dutto-1993, Benzi-1997, Duff and Meurant-1989, Wille-2004, Chow and Saad - 1997]
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Preconditioners for the Navier-Stokes equations

ILUPACK
Devloped by Matthias Bollhöfer and his team. Gives robust and
stable ILU preconditioner

Static reordering [RCM, AMD etc]

Scaling, pivoting

Inverse traingular factors are kept bounded.

The above steps are perfomed recursively

Krylov method is applied to solve the preconditioned system

Matthias Bollhöfer, Yousef Saad. Multilevel Preconditioners Constructed From

Inverse-Based ILUs, SIAM Journal on Scientific Computing, 27 , 5(2005), 1627-1650
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Preconditioners for the Navier-Stokes equations

New priori ordering scheme

Two Steps:
Renumbering of grid points: Grid points are renumbered
with Sloan or Cuthill McKee algorithms
Reordering of unknowns

p-last ordering, first all the velocity unknowns are ordered followed by pressure
unknowns. Usually it produces a large profile but avoids breakdown of LU
decomposition.
p-last per node ordering, The velocity unknowns are ordered followed by pressure
unknowns per node (Optimal profile but breakdown of ILU may occur, therefore
pivoting required)
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Preconditioners for the Navier-Stokes equations
p-last per level reordering
Levels?
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Preconditioners for the Navier-Stokes equations

p-last per level reordering

First we take all the velocities of level 1, then all pressures of level 1. Next we do the
same for level 2, and repeat this process for all nodes.

The profile is hardly enlarged

Zero pivots becomes nonzero, therefore no pivoting required

Choice of first level: The first level may be defined as a point, or even a line in R2 or a

surface in R3.
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Preconditioners for the Navier-Stokes equations
p-last per level reordering
Remark: The ILU decomposition does not breakdown if there is at least one nonzero

connection between a velocity and pressure unknown. In each level, velocity unknowns

must be followed by pressure unknowns.
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Preconditioners for the Navier-Stokes equations

Some features of SILU preconditioner
1 Fill-in based on the connectivity in the finite element grid
2 Extra-fill in
3 Lumping of positve off-diagonal entries
4 Artificial compressibility
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Numerical Experiments
Flow domains

Channel flow The Poiseuille channel flow in a square domain (−1, 1)2 with a
parabolic inflow boundary condition and the natural outflow condition having the
analytic solution: u = 1− y2; v = 0; p = 2νx

Backward facing step

Q2-Q1 finite element discretization [Taylor, Hood - 1973]
Q2-P1 finite element discretization [Crouzeix, Raviart - 1973]
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Numerical experiments
Renumbering/Reordering used in direct methods
The reordering methods helps in minimizing storage in band
and envelope storage scheme.

Bandwidth(A)=maxi{βi (A), 1 ≤ i ≤ n}
Profile(A)=

Pn
i=1 βi (A)

16× 16 channel flow with Q2-Q1 discretization
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Numerical experiments

Renumbering/Reordering used in direct methods
Profile and bandwidth reduction in the backward facing step with Q2-Q1 discretization

Grid Profile reduction Bandwidth reduction
- Sloan Cuthill-McKee Sloan Cuthill-McKee

4× 12 0.37 0.61 0.18 0.17
8× 24 0.28 0.54 0.13 0.08
16× 48 0.26 0.5 0.11 0.04
32× 96 0.25 0.48 0.06 0.02
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Numerical experiments

Stokes Problem in a square domain with BiCGSTAB , accuracy = 10−6, Sloan
renumbering

Q2− Q1 Q2− P1
Grid size p-last p-last per level p-last p-last per level
16× 16 36(0.11) 25(0.09) 44(0.14) 34(0.13)
32× 32 90(0.92) 59(0.66) 117(1.08) 75(0.80)
64× 64 255(11.9) 135(6.7) 265(14) 165(9.0)
128× 128 472(96) 249(52) 597(127) 407(86)
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Numerical experiments

Convergence of the ILU preonconditioned Bi-CGSTAB for the Stokes Problem in a
backward facing domain with an accuracy = 10−6

Grid Q2−Q1 Q2− P1
- Sloan Cuthill-McKee Sloan Cuthill-McKee
- Iter. Iter. Iter. Iter.

8x24 9 15 29 97
16x48 22 32 40 288
32x96 59 65 73 1300

64x192 172 285 330 1288
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Numerical experiments

Effect of grid increase(Left) and Reynolds number(Right) on inner iterations for the
Navier-Stokes backward facing step problem with accuracy = 10−2 using the
p-last-level reordering
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Numerical experiments

Comparison of the preconditioners using MG solver for (1,1),(2,2) blocks of PCD and
LSC preconditioner with Bi-CGSTAB and accuracy = 10−4 ( IFISS)

Grid PCD SILU LSC
Re=100

Iter. Mflops Iter. Mflops Iter. Mflops
8× 24 40 3.7 9 0.6 24 4
16× 48 36 15.3 13 3.9 19 14.9
32× 96 39 70.9 21 27.5 13 44.4

64× 192 61 458 55 297 13 185
64× 192 grid with increasing Re

Re = 200 48 259 17 241
Re = 300 50 269 19 270
Re = 400 48 259 29 412

Extra-fillin: 16 iterations, 155 flops
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Numerical experiments
Comparison with ILUPACK-Stokes Problem in a backward facing domain with an
accuracy = 10−6, Q2-Q1 elements
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Numerical experiments
Comparison with ILUPACK-Stokes Problem in a backward facing domain with an
accuracy = 10−6, Q2-Q1 elements
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Conclusions

A new scheme for the renumbering of grid points and reordering of unknowns is
introduced that prevents the break down of the ILU preconditioner and leads to
faster convergence of Krylov subspace methods.

Improves profile and bandwidth of a matrix

Sloan with p-last per level reordering leads to best results for the Taylor Hood
and Crouzeix Raviart elements.

Since the block preconditioners are independent of the grid size and weakly
dependent of the Reynolds number there performance can be better than the S
ILU preconditioners for large grid sizes and large Reynolds numbers

Varying stretched grids

Testing the preconditioner for the problems with high Reynolds number (SUPG
implementation)

Use of SILU preconditioner in 3D
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Thank you for your attention !
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