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Aim of this talk

What is the aim of this talk?

Promote the upcoming release 1.1 of the LyaPack software
package.

What is LyaPack?

Matlab toolbox for solving large scale

Lyapunov equations (applications like in M. Embrees
plenary talk on Tuesday)

Riccati equations

linear quadratic optimal control problems

2/26 jens.saak@mathematik.tu-chemnitz.de Jens Saak Efficient Large Scale Lyapunov and ARE Solvers



LRCF Newton Method for the ARE
Reordering Strategies
ADI Shift Parameters

Column Compression for the LRCF
Generalized Systems

Conclusions and Outlook

Aim of this talk

What is the aim of this talk?

Promote the upcoming release 1.1 of the LyaPack software
package.

What is LyaPack?

Matlab toolbox for solving large scale

Lyapunov equations (applications like in M. Embrees
plenary talk on Tuesday)

Riccati equations

linear quadratic optimal control problems

2/26 jens.saak@mathematik.tu-chemnitz.de Jens Saak Efficient Large Scale Lyapunov and ARE Solvers



LRCF Newton Method for the ARE
Reordering Strategies
ADI Shift Parameters

Column Compression for the LRCF
Generalized Systems

Conclusions and Outlook

Aim of this talk

What is the aim of this talk?

Promote the upcoming release 1.1 of the LyaPack software
package.

What is LyaPack?

Matlab toolbox for solving large scale

Lyapunov equations (applications like in M. Embrees
plenary talk on Tuesday)

Riccati equations

linear quadratic optimal control problems

2/26 jens.saak@mathematik.tu-chemnitz.de Jens Saak Efficient Large Scale Lyapunov and ARE Solvers



LRCF Newton Method for the ARE
Reordering Strategies
ADI Shift Parameters

Column Compression for the LRCF
Generalized Systems

Conclusions and Outlook

Origin of the Riccati equations

semi discrete parabolic PDE

ẋ(t) = Ax(t) + Bu(t) x(0) = x0 ∈ X .
(Cauchy)

output equation

y(t) = Cx(t)
(output)

cost function

J (u) =
1

2

∞∫
0

< y , y > + < u, u > dt (cost)

and the linear quadratic regulator problem is

LQR problem

Minimize the quadratic (cost) with respect to the linear constraints
(Cauchy),(output).

3/26 jens.saak@mathematik.tu-chemnitz.de Jens Saak Efficient Large Scale Lyapunov and ARE Solvers



LRCF Newton Method for the ARE
Reordering Strategies
ADI Shift Parameters

Column Compression for the LRCF
Generalized Systems

Conclusions and Outlook

Origin of the Riccati equations

semi discrete parabolic PDE
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Origin of the Riccati equations

In the open literature it is well understood that the

optimal feedback control

is given as
u = −BTX∞x ,

where X∞ is the minimal, positive semidefinite, selfadjoint solution of the

algebraic Riccati equation

0 = R(X ) := CTC + ATX + XA− XBBTX .
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Large Scale Riccati and Lyapunov Equations

We are interested in solving

algebraic Riccati equations

0 = ATP + PA− PBBTP + CTC =: R(P). (ARE)

where

A ∈ Rn×n sparse, n ∈ N “large”

B ∈ Rn×m and m ∈ N with m � n
C ∈ Rp×n and p ∈ N with p � n

and

Lyapunov equations

FTP + PF = −GGT . (LE)

with

F ∈ Rn×n sparse or sparse + low
rank update, n ∈ N “large”

G ∈ Rn×m and m ∈ N with m � n
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Newton’s method for solving the ARE

Newton’s iteration for the ARE

R′|P(Nl) = −R(Pl), Pl+1 = Pl + Nl ,

where the Frechét derivative of R at P is the Lyapunov operator

R′|P : Q 7→ (A− BBTP)TQ + Q(A− BBTP),

can be rewritten as

one iteration step

(A− BBT Pl )
T Pl+1 + Pl+1(A− BBT Pl ) = −CT C − PlBBT Pl

i.e. in every Newton step we have to solve a Lyapunov equation of the
form (LE)
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Cholesky factor ADI for Lyapunov equations

Recall Peaceman Rachford ADI:
Consider Au = s where A ∈ Rn×n spd, s ∈ Rn. ADI Iteration Idea:
Decompose A = H + V with H,V ∈ Rn×n such that

(H + pI )v = r
(V + pI )w = t

can be solved easily/efficiently.

ADI Iteration

If H,V spd ⇒ ∃pj , j = 1, 2, ...J such that

u0 = 0
(H + pj I )uj− 1

2
= (pj I − V )uj−1 + s

(V + pj I )uj = (pj I − H)uj− 1
2
+ s

(PR-ADI)

converges to u ∈ Rn solving Au = s.
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The Lyapunov operator

L : P 7→ FTP + PF

can be decomposed into the linear operators

LH : P 7→ FTP LV : P 7→ PF .

Such that in analogy to (PR-ADI) we find the

ADI iteration for the Lyapunov equation (LE)

P0 = 0
(FT + pj I )Pj− 1

2
= −GGT − Pj−1(F − pj I )

(FT + pj I )P
T
j = −GGT − PT

j− 1
2

(F − pj I )
(LE-ADI)
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Cholesky factor ADI for Lyapunov equations

Remarks:

If F is sparse or sparse + low rank update, i.e. F = A + VUT then
FT + pj I can be written as Ã + UV T , where Ã = AT + pj I and its
inverse can be expressed as

(FT + pj I )
−1 = (Ã + UV T )−1 = Ã−1 − Ã−1U(I + V T Ã−1U)−1V T Ã−1

by the Sherman-Morrison-Woodbury formula.

Note: We only need to be able to multiply with A, solve systems
with A and solve shifted systems with AT + pj I
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FT + pj I can be written as Ã + UV T , where Ã = AT + pj I and its
inverse can be expressed as

(FT + pj I )
−1 = (Ã + UV T )−1 = Ã−1 − Ã−1U(I + V T Ã−1U)−1V T Ã−1

by the Sherman-Morrison-Woodbury formula.

(LE-ADI) can be rewritten to iterate on the low rank Cholesky
factors Zj of Pj to exploit rk(Pj) � n. [J. R. Li and J. White 2002; T.

Penzl 1999; P. Benner, J.R. Li and T. Penzl 2000]

When solving (ARE) to compute the feedback in an LQR-problem
for a semidiscretized parabolic PDE, the LRCF-Newton-ADI can
directly iterate on the feedback matrix K ∈ Rn×p to save even more
memory. [T. Penzl 1999; P. Benner, J. R. Li and T. Penzl 2000]
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Introduction

Use sparse direct solvers ⇒ Store LU or Cholesky factors frequently used
(e.g. for M or A + pj I in case of cyclically used shifts).

⇒ Save storage by reordering

Upcoming LyaPack 1.1 let’s you choose between:

symmetric reverse Cuthill-McKee (RCM1) reordering

approximate minimum degree (AMD2) reordering

symmetric AMD2

1[A. George and J. W.-H. Liu 1981]
2[P. Amestoy, T. A. Davis, and I. S. Duff 1996.]
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Motivating example: Mass matrix M from a FEM semidiscretization of a
2d heat equation. Dimension of the discrete system: 1357
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Introduction

Optimal parameters solve the

min-max-problem

min
{pj |j=1,...,J}⊂R

max
γ∈σ(F )

∣∣∣∣∣∣
J∏

j=1

(pj − λ)

(pj + λ)

∣∣∣∣∣∣ .

Remark

Also known as rational Zolotarev problem since he solved it first on
real intervals enclosing the spectra in 1877.

Another solution for the real case was presented by
Wachspress/Jordan in 1963.
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Introduction

Optimal parameters solve the

min-max-problem

min
{pj |j=1,...,J}⊂R

max
γ∈σ(F )

∣∣∣∣∣∣
J∏

j=1

(pj − λ)

(pj + λ)

∣∣∣∣∣∣ .

Remark

Wachspress and Starke presented different strategies to compute
suboptimal shifts for the complex case around 1990.

Wachspress: elliptic Integral evaluation based shifts

Starke: Leja Point based shifts (recall M. Embrees plenary talk on
Tuesday)
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ADI Shift Parameters
Available (sub)optimal choices

ADI shift parameter choices in upcoming LyaPack 1.1
1 heuristic parameters [T. Penzl 1999]

use selected Ritz values as shifts
suboptimal ⇒ convergence might be slow
in general complex for complex spectra

2 approximate Wachspress parameters [P. Benner, H. Mena, J. Saak 2006]

optimal for real spectra
parameters real if imaginary parts are “small”
good approximation of the “outer” spectrum of F needed
⇒ possibly expensive computation

3 only real heuristic parameters
avoids complex computation and storage requirements
can be slow if many Ritz values are complex

4 real parts of heuristic parameters
avoids complex computation and storage requirements
suitable if imaginary parts are “small”
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Numerical Tests

Test example

Centered finite difference discretized 2d convection diffusion equation:

ẋ = ∆x− 10xx − 100xy + b(x , y)u(t)

on the unit square with Dirichlet boundary conditions. (demo l1.m)

grid size: 75× 75 ⇒ #states = 5625 ⇒ #unknowns in X = 56252 ≈ 32 · 106

heuristic parameters time: 44s residual norm: 1.0461e-11
heuristic real parts time: 13s residual norm: 9.0846e-12
appr. Wachspress time: 16s residual norm: 5.3196e-12

Remark

heuristic parameters are complex

problem size exceeds memory limitations in complex case

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB
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Introduction

Problem

Low rank factors Z of the solutions X grow rapidly, since a constant
number of columns is added in every ADI step.

If convergence is weak, at some point #columns in Z > rk(Z ).

Idea [Antoulas, Gugercin, Sorensen 2003]

Use sequential Karhunen-Loeve algorithm; see [Baker 2004]

uses QR + SVD for rank truncation
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Introduction

Problem

Low rank factors Z of the solutions X grow rapidly, since a constant
number of columns is added in every ADI step.

If convergence is weak, at some point #columns in Z > rk(Z ).

Cheaper idea:
Column compression using rank revealing QR factorization (RRQR)

Consider X = ZZT and rk(Z ) = r . Compute the RRQR3 of Z

ZT = QRΠ where R =

[
R11 R12

0 R22

]
and R11 ∈ Rr×r

now set Z̃T = [R11R12] Π
T then Z̃ Z̃T =: X̃ = X .

3[ C.H. Bischof and G. Quintana-Ort́ı 1998]
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Test example

Centered finite difference discretized 2d convection diffusion equation:

ẋ = ∆x− 10xx − 100xy + b(x , y)u(t)

on the unit square with Dirichlet boundary conditions. (demo l1.m)

grid size: 75× 75 ⇒ #states = 5625 ⇒ #unknowns in X = 56252 ≈ 32 · 106

truncation TOL # col. in LRCF time res. norm
– 47 13s 9.0846e-12

eps 46 14s 1.9516e-11√
eps 28 13s 1.9924e-11

Observation

[Benner and Quintana-Ort́ı 2005] showed that truncation tolerance
√

eps in the
low rank factor Z is sufficient to achieve an error eps in the solution X .

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB
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2 Basic Ideas in Contrast

Current Method

Transform

Mẋ = Ax + Bu
y = Cx

to
˙̃x = Ãx̃ + B̃u

y = C̃ x̃

where M = MLMU and x̃ = MUx , Ã = M−1
L AM−1

U , B̃ = M−1
L B, C̃ = CM−1

U .

- 2 additional sparse triangular solves in every multiplication with A

- 2 additional sparse matrix vector multiplies in solution of Ãx = b
and (Ã + pj I )x = b

- B̃ and C̃ are dense even if B and C are sparse.

+ preserves symmetry if M, A are symmetric.
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2 Basic Ideas in Contrast

Alternative Method

Transform

Mẋ = Ax + Bu
y = Cx

to
ẋ = Ãx + B̃u
y = Cx

where Ã = M−1A and B̃ = M−1B

+ state variable untouched ⇒ solution to (ARE), (LE) not transformed

+ exploiting pencil structure in (Ã + pj I ) = M−1(A + pjM) reduces
overhead

- current user supplied function structure inefficient here
⇒ rewrite of LyaPack kernel routines needed (work in progress)
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y = Cx

to
ẋ = Ãx + B̃u
y = Cx

where Ã = M−1A and B̃ = M−1B

+ state variable untouched ⇒ solution to (ARE), (LE) not transformed

+ exploiting pencil structure in (Ã + pj I )
−1 = (A + pjM)−1M reduces

overhead

- current user supplied function structure inefficient here
⇒ rewrite of LyaPack kernel routines needed (work in progress)
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Conclusions and Outlook
Conlusions

Reordering strategies can reduce memory
requirements by far

new shift parameter selection allows easy
improvements in ADI performance

Column compression via RRQR also drastically
reduces storage requirements.

Especially helpful
in differential Riccati equation solvers where 1
ARE solution needs to be stored in every step.

Optimized treatment of generalized systems is
work in progress
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Theoretical Outlook

Improve stopping Criteria for the ADI process.
e.g. inside the LRCF-Newton method by interpretation as inexact
Newton method following the ideas of Sachs et al.

Optimize truncation tolerances for the RRQR
Investigate dependence of residual errors in X on the truncation
tolerance

Stabilizing initial feedback computation
Investigate whether the method in [K. Gallivan, X. Rao and P. Van Dooren

2006] can be implemented exploiting sparse matrix arithmetics.
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Implementation TODOs

User supplied functions for B (and C?)

Introduce solvers for DREs

Initial stabilizing feedback computation

Improve handling of generalized systems of the form Mẋ = Ax + Bu.

Improve the current Arnoldi implementation inside the heuristic ADI
Parameter computation

RRQR and column compression for complex factors.

Simplify calling sequences, i.e. shorten commands by grouping
parameters in structures

Improve overall performance

. . .
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