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The Even Eigenvalue Problem

» special case of generalized eigenvalue problem
Mx = ANx

M = MT symmetric, N = —NT skew symmetric

» M,N € C™", dense, ()7 denotes the complex transpose
(*-case, real case are similar, but different)

» is called: even eigenvalue problem, as

P(\):=AN—M=P(-)\)T

» related to Hamiltonian eigenvalue problem = similar methods
for this talks topic in particular: [Wat06]!

'David Watkins, On the reduction of a Hamiltonian matrix to Hamiltonian
Schur form, Electron. Trans. Numer. Anal. 23, 2006



Application: The LQ optimal control problem
» dynamic system (matrices E, A, B given):
Ex(t) = Ax(t) + Bu(t), x(0)=xo

chosing u(t) determines x(t)

> problem chose u(t) which minimizes

Jo7 ()T Qx(t) + 2x(t) " Su(t) 4 u(t) " Ru(t)dt



Application: The LQ optimal control problem
» dynamic system (matrices E, A, B given):
Ex(t) = Ax(t) + Bu(t), x(0)=xo

chosing u(t) determines x(t)
> problem chose u(t) which minimizes
Jo7 ()T Qx(t) + 2x(t) " Su(t) 4 u(t) " Ru(t)dt

> ylelds eigenvalue problem for
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N=—NT M=MT

» needed: deflating subspace for eigenvalues with negative real
part



Why not use standard algorithms?

> system features spectral symmetry:
AT
Mx=ANx  £5 XM= (CaxTN

i.e., also —\ is eigenvalue = pairs A

> structure is important for applications
(positive/negative real part)

» general algorithms (like the QZ algorithm) destroy this
eigenvalue pairing due to rounding errors



Special case: skew triangular

> If M, N are skew triangular, i.e., mjj = 0 whenever / 4 j < n,

m=/1 n=/

> then
Me; = mpre,,  Nep = npre,

so, €1 Is eigenvector, e, is image vector, ’:"11
n

is eigenvalue,



Special case: skew triangular

> If M, N are skew triangular, i.e., mjj = 0 whenever / 4 j < n,

M=/, nN=/]

> then
Me; = mpre,,  Nep = npre,

so, €1 Is eigenvector, e, is image vector, ’:"11

is eigenvalue,

» and more general
[e1, €2, ..., €] span right deflating subspace,
[€n—k+1,---, €n] span left deflating subspace,

Mp_jt1, . .
e are eigenvalues (i =1,..., k).

» So, our problem is already solved.

» What if M, N are not skew triangular?
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» Answer: make them,

2C. Schréder, URV decomposition based structured methods for palindromic
and even eigenvalue problems, MATHEON Preprint 375, 2007
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What if M, N are not skew triangular?
» Answer: make them, by finding unitary Q (i.e., Q*Q =)

such that
Q"MQ =], Q"nQ=/].

Called even Schur form; Existence: always; Algorithm: many,
but no completely satisfying one

» What we can compute: unitary U, V such that
T _ T _ T _
utnu =], uTmv=], vinv=/]
R

called even URV form (as M = URV*); algorithm: [Sch07]?;
provides eigenvalues, eigenvectors, not subspaces

» note reduces to even Schur form if U =V

» Idea: transform a URV form to Schur form =
Equalizing what should be equal

2C. Schréder, URV decomposition based structured methods for palindromic
and even eigenvalue problems, MATHEON Preprint 375, 2007



Today: first step

» Given an even URV form
unu=T=/], uUMmv=r=/], vinv=pP=/]
modify U,V to U = UAy, V = VAy

U'NO=T , UMV =R ,
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such that 1) the first and last columns of U and V coincide
=", = n
2) T, R, P are still skew triangular.



Today: first step

» Given an even URV form
unu=T=/], uUMmv=r=/], vinv=pP=/]

modify U,V to U = UAy, V = VAy

U'NO=T , UMV =R ., VInNV =P

such that 1) the first and last columns of U and V coincide
iy = vy, @n =V,
2) T, R, P are still skew triangular.
» remaining columns can be treated recursively

» Lets concentrate on first goal.



Goal 1: Equalizing first/last column of U, V
Note: 07 = 3 must be eigenvector, {i, = v, must be image vector.
Procedure: obtain eigen/imagevector x, y,

then chose Ay, Ay suchthatih =" =c1-x, U=V, =0y

Goal 1 achived,



Goal 1: Equalizing first/last column of U, V

Note: 07 = 3 must be eigenvector, {i, = v, must be image vector.
Procedure: obtain eigen/imagevector x,y, from URV form

_ _410 m
Ml = (ool | )]

_ _ th1 0
Nlui,vi] = [bn, va] | 2
ol = il |5 0]
= span(uy, v1) right deflating subspace
= span(Up, Vp) left deflating subspace of (M, N)
~» contain x,y with Mx = ay, Nx = Jy.
then chose Ay, Ay suchthat iy = 1 =1+ X, Up=Vn= -y

Goal 1 achived,
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and y, to e,, (same for Ay/)
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Goal 1: Equalizing first/last column of U, V
Note: 07 = 3 must be eigenvector, {i, = v, must be image vector.
Procedure: obtain eigen/imagevector x,y, from URV form

_ _410 m
Ml = (ool | )]

th1 0 :|

Mol = ol |3 0

= span(uy, v1) right deflating subspace

= span(Up, Vp) left deflating subspace of (M, N)

~» contain x,y with Mx = ay, Nx = (y.

then chose Ay, Ay suchthat iy = 1 =1+ X, Up=Vn= -y
this implys that

Ayer = x, = U'x, Aye,=y,:=UTy

= choose Ay as series of Givens rotations that transform x, to e;
and y, to e,, (same for Ay)
Goal 1 achived, what about goal 27



Goal 2: Invariance of URV form

To understand, why R, T, P stay skew triangular, the following
relation is essential

Nx = By
UTNUU*x = UTy
Txy = yu

ATAUAx, = Aly,
So, (1) stays valid under an update of form

Xy — AUxy
Yu < AZJ—}/u
T « AlTAy

for any unitary Ay.



A 6-by-6 example
Given M, N € C®®°

we compute URV form, and xu, xy, yu, ¥v

Tv Ra Pa [Xua.yu]v [XV’yV] =

X X X X X

X X X X X X X X

X X X X X X X X X X X

x 0 x x|’ X x x x|’ x 0 x x| |x x

x x x 0 x X X X X X x x x 0 x X X
[x x x x x 0] |[xxxxx x| |[xxxxx0] [x x|

assumption 1: M, N nonsingular = skew diagonal entries of
T, R, P nonzero, «, 3 non-zero

assumption 2: last entries of x,, x, and first entries of y,, y, are
nonzero

goal: xy,x, — €1 Yu, Yv — 6.

X X X X X X
X X X X X X




A 6-by-6 example

x 0
X X X
| X x x x

X O X X X
O X X X X

X

T7 R7 P7 [Xu7)/u]7 [XV7yV] =

X X
X X X

X X X X

eleminate by Givens rotations:

X X X
[ X X X X

X X X X X
X X X X X X
x
o
X O X X X

last entries of x,, x,,
first entries of y,, y,

O X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X




A 6-by-6 example

T7 R7 P7 [Xm)/u]a [Xv;}/v] =

[ 7y Ty Ty
yy yy yy

xXyy Xyy xXyy
x0yyl|’ xxyyl| x0yy
?yyyQOy tyyyyy TyyyQOy
lyyyyy O] lyyyyyyl lyyyyy?0}]

fill-in at (1,5) and (5,1) in R, T, P 111!

<N X X< ©

O X X <X X<

oKX X X <X X<
<NK< X X< ©



A 6-by-6 example

T7 R7 P7 [Xm)/u]a [Xv;}/v] =

[ 7y Ty Ty
yy yy yy

xXyy Xyy xXyy
x0yyl|’ xxyyl| x0yy
?yyyQOy tyyyyy TyyyQOy
lyyyyy O] lyyyyyyl lyyyyy?0}]

fill-in at (1,5) and (5,1) in R, T, P 1!l really?
remember, Tx, = By, still holds.

first row — t15 Xus = ﬁyml =0, so t15 = 0= —t5,1.
Simillar for other question marks

<NK< X X< ©

<N X X< ©

oKX X X <X X<
O X X <X X<



A 6-by-6 example

T7 R7 P7 [Xm)/u]a [Xv;}/v] =

[ ? v Pyl T ?y] [y O
yy yy yyl| |yy

xXyy xXyy Xy y| |xx
x0yyl|’ xxyyl| x 0y vyl |x x
Pyyy Oyl |[?Pyyyyy| |?PyyyOy| |yy
yyyyy Ol lyyyyyyl lyyyyy 0] [0y]

fill-in at (1,5) and (5,1) in R, T, P 1!l really?
remember, Tx, = By, still holds.

first row — t15 Xus = ﬁyml =0, so t15 = 0= —t5,1.
Simillar for other question marks

next, eleminate by Givens rotations: second last entries of x,, x,,
second entries of y,, y,

O X X <X X<

<N X X< ©



A 6-by-6 example

X
tyy
yyy

Py Oyy
yyy Oy
 xyyyy0]

T7 Ru Pu [quyu]v [XV’yV] =

Ty
yy
tyyy
yyyy

X yyyy

Again, fill-in in T, R, P.

X NN XK X

OO KX X X
X <N X< oo




A 6-by-6 example

X
tyy
yyy

Py Oyy
yyy Oy

(xyyyy0]

T7 Ru Pu [quyu]v [XV’yV] =

Ty
yy
tyyy
yyyy

X yyyy

Again, fill-in in T, R, P.

again, fake!!l

second row of Tx, = y,:

X NN XK X

T2 4xu4 =0

OO KX X X
X <N X< oo




A 6-by-6 example

X
tyy
yyy

Py Oyy
yyy Oy

(xyyyy0]

T7 Ru Pu [quyu]v [va.yV] =

Ty
yy
tyyy
yyyy

X yyyy

Again, fill-in in T, R, P.

again, fake!!l

second row of Tx, = y,:

next, eleminate by Givens rotations: third entries of y,, y,

X NN XK X

T2 4xu4 =0

OO KX X X
X <N X< oo




A 6-by-6 example

X X

X X X X
Oyvyy Pyyy 0
y 0y yl’ yyyyl y
xyy0x XyyXxXx Xy
x xyyx0] [xxyyxx]| [xxy

T7 R7 P7 [Xu7)/u]7 [XV7yV] =

» fake non-zeros in x,, x,, because quyu =0
» no fill-in in T, P, because skew symmetry
» fake fill-in in R

<< ox

X O < X

O X <X <X X X

O O V< X X

X X< © oo

O O V< X X

X X< © oo




A 6-by-6 example

X X

X X X X
Oyvyy Pyyy 0
y 0y yl’ yyyyl y
xyy0x XyyXxXx Xy
x xyyx0] [xxyyxx]| [xxy

T7 R7 P7 [Xu7)/u]7 [XV7yV] =

» fake non-zeros in x,, x,, because quyu =0
» no fill-in in T, P, because skew symmetry
» fake fill-in in R

remaining steps as before

<< ox

X O < X

O X <X <X X X

O O V< X X

X X< © oo

O O V< X X
X X< © oo




A 6-by-6 example

X
tyy
yyy

?yOyy
yyy Oy
xyyyy0]

and finally

T7 R7 P7 [Xuvyu]v [Xv;}/v] =

Ty
yy
tyyy
yyyy

xXyyyy

X NN XK X

tyy
yyy
?yOyy
yyy Oy

(xyyyyO]

OO0 o0 OKX X
X< ©oo oo

O OO0 OK X
X< ©@o oo




A 6-by-6 example

? y]

yy
Xyy
x0yy
?yyyOy
lyyyyyQOl

As before, 7 = 0.

T,R,P, [Xua)/u]a [Xv,}/v] =

? vy

yy
Xyy

X Xyy
yyyyy

Ly yyyypyl

yy
xXyy
x0yy
?yyy Oy

lyyyyyO]

OO0 oo oKX
< oo oo

ol eNoNol—iN
< o oo o




A 6-by-6 example

T,R,P, [Xua)/u]a [Xv,}/v] =

? v ? vy ?y] [y O y 0

yy yy yy|l |00l (00

Xyy Xyy Xyy 00 00
x0yyl|’ xxyyl| x0yyl|l’|O0["]00
Pyyy Oyl |?yyyyy|l |?yyy Oyl [00f (00
yyyyy Ol lyyyyyyl lyyyyy 0] [0y] LOy]

As before, 7 = 0.

At this point:x,, x, = const - e1, and y,, y, = const - g
= the first columns of U and V are multiples of each other
= after scaling they coincide
= Donel!
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» Algorithm to compute even Schur form
» not from scratch, but
» by transforming an even URV form

> preprint soon to come
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(2-by-2 blocks for conjugate quadruples +\, £)



Summary

» Algorithm to compute even Schur form
» not from scratch, but
» by transforming an even URV form

> preprint soon to come

Comments
» can be extended to non-singular M, N (deflation, adaption)

> can be extended to real arithmetic _
(2-by-2 blocks for conjugate quadruples +\, £)

Thanks for your attention. Any questions? Enjoy the dinner!



	What, Where, Why, How?

