
On the direct solution of very large sparse linear
systems using out-of-core techniques

Jennifer A. Scott (j.a.scott@rl.ac.uk)
Joint work with John Reid

Harrachov August 2007 – p. 1/20

Sparse systems

We are interested in solving
Ax = b

where A is
LARGE

s p a r s e

Problem sizes of order > 10
7 not uncommon and growing larger

Direct methods (eg A = PLUQ) are popular because they are robust

But their storage requirements generally grow more rapidly than problem size

Harrachov August 2007 – p. 2/20

Options for large problems

Possibilities:

Iterative method ... but preconditioner?

Combine iterative and direct methods? Important new area.

Buy a bigger machine and use exisiting direct solver ... but expensive and
inflexible

Parallel direct solver?

Use an out-of-core direct solver

An out-of-core solver holds the matrix factors in files and may also hold the matrix
data and some work arrays in files.

Note: out-of-core working becoming even more important because of more limited
local memories on distributed memory machines

Harrachov August 2007 – p. 3/20

Options for large problems

Possibilities:

Iterative method ... but preconditioner?

Combine iterative and direct methods? Important new area.

Buy a bigger machine and use exisiting direct solver ... but expensive and
inflexible

Parallel direct solver?

Use an out-of-core direct solver

An out-of-core solver holds the matrix factors in files and may also hold the matrix
data and some work arrays in files.

Note: out-of-core working becoming even more important because of more limited
local memories on distributed memory machines

Harrachov August 2007 – p. 3/20

Out-of-core solvers

Idea of out-of-core solvers not new: band and frontal solvers developed in
1970s and 1980s held matrix data and factors out-of-core.

For example, MA32 in HSL (superseded in 1990s by MA42).

30 years ago John Reid at Harwell developed a Cholesky out-of-core
multifrontal code TREESOLV for element applications.

More recent codes include:

BCSEXT-LIB (Boeing)

Oblio (Dobrian and Pothen)

TAUCS (Toledo and students)

MUMPS currently developing out-of-core version

Also work by Rothberg and Schreiber

Harrachov August 2007 – p. 4/20

Out-of-core solvers

Idea of out-of-core solvers not new: band and frontal solvers developed in
1970s and 1980s held matrix data and factors out-of-core.

For example, MA32 in HSL (superseded in 1990s by MA42).

30 years ago John Reid at Harwell developed a Cholesky out-of-core
multifrontal code TREESOLV for element applications.

More recent codes include:

BCSEXT-LIB (Boeing)

Oblio (Dobrian and Pothen)

TAUCS (Toledo and students)

MUMPS currently developing out-of-core version

Also work by Rothberg and Schreiber

Harrachov August 2007 – p. 4/20

HSL MA77

Our new out-of-core solver is HSL MA77

HSL MA77 is designed to solve LARGE sparse symmetric systems

HSL MA77 implements a multifrontal algorithm

First release for positive definite problems (Cholesky A = LL
T); coming

VERY soon is version for symmetric indefinite problems (A = LDL
T)

Matrix data, matrix factor, and the main work space (multifrontal stack) held
in files

Aim today: to provide brief introduction to HSL MA77 and to present some
numerical results hope you will go away wanting to try the code

Harrachov August 2007 – p. 5/20

Key features of HSL MA77

Written in Fortran 95 (HSL is Fortran library)

Harrachov August 2007 – p. 6/20

Key features of HSL MA77

Written in Fortran 95 (HSL is Fortran library)

Matrix A may be either in assembled form or a sum of element matrices

Harrachov August 2007 – p. 6/20

Key features of HSL MA77

Written in Fortran 95 (HSL is Fortran library)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Harrachov August 2007 – p. 6/20

Key features of HSL MA77

Written in Fortran 95 (HSL is Fortran library)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Separate calls for each phase
Entering of integer and real matrix data
Analyse phase (set up data structures using user-supplied pivot order)
Factorization (compute and store factor plus optional solve)
Solve (any number of right-hand sides)
Optional restart (save data for later factorization and/or solves)

Harrachov August 2007 – p. 6/20

Key features of HSL MA77

Written in Fortran 95 (HSL is Fortran library)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Separate calls for each phase
Entering of integer and real matrix data
Analyse phase (set up data structures using user-supplied pivot order)
Factorization (compute and store factor plus optional solve)
Solve (any number of right-hand sides)
Optional restart (save data for later factorization and/or solves)

Additional flexibility through user-controlled parameters (default settings
minimize decisions user must make)

Harrachov August 2007 – p. 6/20

Key features of HSL MA77

Written in Fortran 95 (HSL is Fortran library)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Separate calls for each phase
Entering of integer and real matrix data
Analyse phase (set up data structures using user-supplied pivot order)
Factorization (compute and store factor plus optional solve)
Solve (any number of right-hand sides)
Optional restart (save data for later factorization and/or solves)

Additional flexibility through user-controlled parameters (default settings
minimize decisions user must make)

Separate code (HSL MA54) written to perform the (partial) factorizations of
the dense frontal matrices

Harrachov August 2007 – p. 6/20

Input/Output in HSL MA77

For HSL MA77 to perform well, the I/O must be efficient. I/O involves:
writing the original real and integer data
analyse phase (integer data only)

reading data for input matrix
writing data at each node of the assembly tree
reading data at each node
writing reordered data ready for factorization

factorization phase
reading integer data at each node of the tree
reading real data for each leaf node
writing columns of L as they are computed
writing Schur complements to stack
reading matrix from stack

solve phase
reading integer/ real factor data once for forward sub. and once for back sub.

Harrachov August 2007 – p. 7/20

Input/Output in Fortran

In Fortran 77/90/95 - standard I/O is entirely record based

Fine if every read/write is of the same amount of data
But we need to read/write different numbers of reals and integers at each stage
of the computation
Also, we do not want to be restricted to only accessing the data in the same
order as it was written

We have got around these limitations while adhering to the strict Fortran standard
by writing our own virtual memory management system

Harrachov August 2007 – p. 8/20

Input/Output in Fortran

In Fortran 77/90/95 - standard I/O is entirely record based

Fine if every read/write is of the same amount of data
But we need to read/write different numbers of reals and integers at each stage
of the computation
Also, we do not want to be restricted to only accessing the data in the same
order as it was written

We have got around these limitations while adhering to the strict Fortran standard
by writing our own virtual memory management system

Harrachov August 2007 – p. 8/20

Virtual memory management

We have a separate Fortran 95 package HSL OF01 that handles all i/o

HSL OF01 provides read/write facilities for one or more direct access files
through a single in-core buffer (work array)

Version for real data and another for integer data. Each has its own buffer.

The buffer is divided into fixed length pages ... a page is the same length as a
record in the file

Careful handling of the buffer within HSL OF01 avoids actual input-output
operations whenever possible

Harrachov August 2007 – p. 9/20

Virtual memory management

Each set of data (such as the reals in the matrix and its factor) is accessed as a
virtual array i.e. as if it were a very long array

Long integers (64-bit) are used for addresses in the virtual array

Any contiguous section of the virtual array may be read or written

Each virtual array is associated with a primary file

For very large problems, the virtual array may be too large for a single file so
secondary files are used

The primary and secondary files are direct access files.

Harrachov August 2007 – p. 10/20

Virtual memory management

Superfiles

Virtual arrays

temp_filemain_file main_file1 main_file2

Buffer

In this example, two superfiles associated with the in-core buffer

First superfile has two secondaries, the second has none

Important: user shielded from this but can control where the files are stored
(primary and secondary files may be on different devices).

Actual i/o is not needed if user has supplied long buffer

Harrachov August 2007 – p. 11/20

Use of HSL OF01 within HSL MA77

HSL MA77 has one integer buffer and one real buffer

The integer buffer is associated with a file that holds the integer data for the
matrix A and the matrix factor

The real buffer is associated with two files:
one holds the real data for the matrix A and the matrix factor
the other is used for the multifrontal stack (work space)

The indefinite case also uses a further real file to hold data associated with
delayed pivots

The user supplies pathnames together with names for the primary files

NOTE: HSL MA77 includes option for the files to be replaced by in-core arrays
(faster for problems for which user has enough memory) . A combination of files
and arrays may be used.

Harrachov August 2007 – p. 12/20

Use of HSL OF01 within HSL MA77

HSL MA77 has one integer buffer and one real buffer

The integer buffer is associated with a file that holds the integer data for the
matrix A and the matrix factor

The real buffer is associated with two files:
one holds the real data for the matrix A and the matrix factor
the other is used for the multifrontal stack (work space)

The indefinite case also uses a further real file to hold data associated with
delayed pivots

The user supplies pathnames together with names for the primary files

NOTE: HSL MA77 includes option for the files to be replaced by in-core arrays
(faster for problems for which user has enough memory) . A combination of files
and arrays may be used.

Harrachov August 2007 – p. 12/20

Comparisons with MA57

Want to compare the performance of HSL MA77 with existing solvers.

Test set of 24 problems of order up to 1.5 ∗ 10
6 from a range of applications

All available in University of Florida Sparse Matrix Collection

Tests used double precision (64-bit) reals on a single 3.6 GHz Intel Xeon
processor of a Dell Precision 670 with 4 Gbytes of RAM

f95 compiler with the -O3 option and ATLAS BLAS and LAPACK

Comparisons with flagship HSL solver MA57 (Duff)

Multifrontal solver (replaced earlier package MA27)
Primarily designed for indefinite problems (we use the option to switch off
numerical pivoting)

Harrachov August 2007 – p. 13/20

HSL MA77 factor time compared with MA57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

Ti
m

e
/ (

M
A7

7
ou

t−
of

−c
or

e
tim

e)

MA57
MA77 in−core

Harrachov August 2007 – p. 14/20

HSL MA77 solve time compared with MA57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.05

0.1

0.2

0.3

0.4

0.5

Problem Index

Ti
m

e
/ (

M
A7

7
ou

t−
of

−c
or

e
tim

e)

MA57
MA77 in−core

Harrachov August 2007 – p. 15/20

HSL MA77 total time compared with MA57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

Ti
m

e
/ (

M
A7

7
ou

t−
of

−c
or

e
tim

e)

MA57
MA77 in−core

Harrachov August 2007 – p. 16/20

Times (in seconds) for large problems

Phase inline 1 bones10 nd24k bone010

(n = 503, 712) (n = 914, 898) (n = 72, 000) (n = 986, 703)

Input 4.87 6.25 2.86 8.00

Ordering 14.2 22.8 16.4 34.7

MA77 analyse 4.20 6.70 22.1 26.7

MA77 factor 90.6 174.6 1284 1491

MA77 solve(1) 5.30 36.0 10.4 311

MA77 solve(8) 10.6 41.3 20.7 331

MA77 solve(64) 60.5 141.0 90.2 499

MA57 not able to solve these on our test computer (insufficient memory).

Harrachov August 2007 – p. 17/20

Unsymmetric element problems

Recently developed out-of-core multifrontal code for unsymmetric element
problems. Code is called HSL MA78

Based on the design of HSL MA77

Again uses HSL OF01 to handle out-of-core

Separate package HSL MA74 written to compute the partial factorization of
the dense unsymmetric frontal matrices

Implements a block factorization ... employs level 3 BLAS

Incorporates threshold pivoting (options for partial, diagonal or rook
pivoting)

Also option for static pivoting (prevents delayed pivots but may produce
inaccurate factorization)

HSL MA78 solves AX = B or AT X = B

Harrachov August 2007 – p. 18/20

Comparison with frontal solver

HSL MA42 ELEMENT is an unsymmetric out-of-core (uni-)frontal code

n Time (secs) Factors (∗10
6)

MA42 ELEMENT MA78 MA42 ELEMENT MA78

crplat2 18010 1.85 1.84 4.35 2.94

ship 001 34920 10.5 13.4 15.5 15.6

m t1 97578 552 101 135.5 56.2

shipsec8 114919 950 101 196.0 55.6

troll 213453 3042 74 672.0 63.7

These results illustrate the benefits of the multifrontal algorithm.

Appeal: We need large test problems in element form from real applications.

Harrachov August 2007 – p. 19/20

Concluding remarks

Writing these solvers has been (and still is) a major project

Positive definite code and unsymmetric element code performing well
Out-of-core working adds an overhead but appears not to be prohibitive
(exception is solve phase)

Indefinite code written, currently testing the indefinite kernel

Versions for complex arithmetic will be developed

Out-of-core solvers and virtual memory management package will be in HSL 2007

For details of HSL see www.cse.scitech.ac.uk/nag/hsl

Harrachov August 2007 – p. 20/20

Concluding remarks

Writing these solvers has been (and still is) a major project

Positive definite code and unsymmetric element code performing well
Out-of-core working adds an overhead but appears not to be prohibitive
(exception is solve phase)

Indefinite code written, currently testing the indefinite kernel

Versions for complex arithmetic will be developed

Out-of-core solvers and virtual memory management package will be in HSL 2007

For details of HSL see www.cse.scitech.ac.uk/nag/hsl

Harrachov August 2007 – p. 20/20

	Sparse systems
	Options for large problems
	Options for large problems

	Out-of-core solvers
	Out-of-core solvers

	{	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}

	Input/Output in {	t HSL_MA77}
	Input/Output in Fortran
	Input/Output in Fortran

	Virtual memory management
	Virtual memory management
	Virtual memory management
	Use of {	t HSL_OF01} within {	t HSL_MA77}
	Use of {	t HSL_OF01} within {	t HSL_MA77}

	Comparisons with {	t MA57}
	{	t HSL_MA77} factor time compared with {	t MA57}
	{	t HSL_MA77} solve time compared with {	t MA57}
	{	t HSL_MA77} total time compared with {	t MA57}
	Times (in seconds)
for large problems
	Unsymmetric element problems
	Comparison with frontal solver
	Concluding remarks
	Concluding remarks

