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Linear approximation problems

Noisy linear system Ax ≈ b

A is a given m×n matrix (m ≥ n)

b is an m-dimensional given vector

Least Squares finds the smallest correction to b

LS: min
∆b,x
‖
[
∆b
]
‖2

2 s.t. Ax = b +∆b

Total Least Squares finds the nearest compatible system

TLS: min
∆A,∆b,x

‖
[
∆A ∆b

]
‖2

F s.t. (A+∆A)x = b +∆b
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Total Least Squares

Solution method: Rank reduction of
[
A b

]
by one.

TLS is classically solved using the SVD of
[
A b

]
= UΣV>.

 the right singular vector in V corresponding to the smallest singular
value gives the TLS solution xTLS :=−v1:n,n+1/vn+1,n+1.

Possible problems

non-uniqueness: non-unique smallest singular value

multicollinearities: linearly dependent columns in A

non-genericity: non-existence of the solution x (e.g., when b is
orthogonal to the left singular subspace corresp. to smallest
singular value of A)
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Ill-posed linear algebraic systems.

When Ax ≈ b originates from an ill-posed problem . . .[
A b

]
is ill-conditioned

there is no clear gap between singular values of
[
A b

]
singular vectors corresponding to decreasing singular values
contain increasing number of sign changes
b can be almost orthogonal onto left singular subspaces of A

Example (ilaplace)

A – a smooth integral kernel

x0 – discretized smooth function

Singular values of
[
A b

]
Right singular vectors of

[
A b

]
U>b close-to-nongenericity

A =
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]
singular vectors corresponding to decreasing singular values
contain increasing number of sign changes
b can be almost orthogonal onto left singular subspaces of A

Example (ilaplace)
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Ill-posed linear algebraic systems.
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Least Squares and Total Least Squares solutions

Consider the SVDs:

A = U ′Σ′V ′> =
n

∑
i=1

σ
′
i u
′
i v
′
i
>

[
A b

]
= UΣV> =

n+1

∑
i=1

σiuivi
>

Least Squares solution

xLS = A†b =
(

A>A
)−1

A>b =
n

∑
i=1

u′i
>b

σ ′i
v ′i

Total Least Squares solution

xTLS =
(

A>A−σ
2
n+1In

)−1
A>b =−v1:n,n+1/vn+1,n+1

xTLS is a de-regularized LS solution.
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Truncated SVD

Truncated SVD
let k ≤ n be a truncation level

compute the nearest rank k approximation of A using the SVD:
A′k = U ′Σ′k

†V ′>, with Σ′k = diag{σ ′1, . . . ,σ ′k ,0, . . . ,0︸ ︷︷ ︸
n−k

}.

solve in the LS sense the ‘truncated’ problem A′k x ≈ bk

xTSVD,k = V ′Σ′k
†U ′>b

=
k

∑
i=1

u′i
>b

σ ′i
v ′i
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Truncated Total Least Squares

Truncated TLS
let k ≤ n be a truncation level

compute the nearest rank k approximation of
[
A b

]
,[

Ak bk
]
, using the SVD

solve in the TLS sense the ‘truncated’ problem Ak x ≈ bk

xTTLS,k =−V k
12(V

k
22)

† =−V k
12(V

k
22)
>/‖V k

22‖2,

where we partition V as (with ` = n− k +1):

k←→ `←→

V =

[
V k

11 V k
12

V k
21 V k

22

]
l n
l 1
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Example: effect of truncation levels
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Example: effect of truncation levels
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Example: effect of truncation levels
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Example: effect of truncation levels
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Example: effect of truncation levels
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Example: effect of truncation levels
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Example: effect of truncation levels
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Optimal truncation level
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The filter factors for regularized solutions

The TSVD solution has a simple interpretation in terms of filter factors.
If we set

f ′1 = f ′2 = . . . = f ′k = 1, and f ′k+1 = . . . = f ′n = 0,

then the TSVD solution with truncation level k is simply:

xTSVD,k =
n

∑
i=1

f ′i
u′i
>b

σ ′i
v ′i ,

In general, a regularized solution to Ax ≈ b can be written as

x reg =
n

∑
i=1

fi
u′i
>b

σ ′i
v ′i ,

with fi ∈ [0,1].
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The TTLS filter factors

Fierro et al. (1997): filter factors for the TTLS solution xTTLS,k

f k
i =

n+1

∑
j=k+1
σj 6=σ ′i

v2
n+1,j

‖V k
22‖2

(
σ ′i

2

σ ′i
2−σj

2

)
, i = 1, . . . ,n,

Properties of the TTLS filter factors:

the first k filter factors f k
i form a monotonically increasing

sequence and satisfy
i = 1, . . . ,k

the last n− k filter factors satisfy
i = k +1, . . . ,n
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The TTLS filter factors

Fierro et al. (1997): filter factors for the TTLS solution xTTLS,k

f k
i =

n+1

∑
j=k+1
σj 6=σ ′i

v2
n+1,j

‖V k
22‖2

(
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2

σ ′i
2−σj

2

)
, i = 1, . . . ,n,

Properties of the TTLS filter factors:

the first k filter factors f k
i form a monotonically increasing

sequence and satisfy

1+
σ2

n+1

σ ′i
2−σ2

n+1
≤ f k

i ≤ 1+
σ2

k+1

σ ′i
2−σ2

k+1
i = 1, . . . ,k

the last n− k filter factors satisfy
‖V k

21‖2

‖V k
22‖2

(
σ ′i

2

σ2
1−σ ′i

2

)
≤ f k

i ≤ ‖V k
22‖−2 σ ′i

2

σ2
k−σ ′i

2 i = k +1, . . . ,n

Diana Sima, Sabine Van Huffel Level choice in truncated total least squares



The TTLS filter factors

Fierro et al. (1997): filter factors for the TTLS solution xTTLS,k

f k
i =

n+1

∑
j=k+1
σj 6=σ ′i

v2
n+1,j

‖V k
22‖2

(
σ ′i

2

σ ′i
2−σj

2

)
, i = 1, . . . ,n,

Properties of the TTLS filter factors:

the first k filter factors f k
i form a monotonically increasing

sequence and satisfy

1+
σ2

n+1

σ ′i
2−σ2

n+1
≤ f k

i ≤ 1+
σ2

k+1

σ ′i
2−σ2

k+1
i = 1, . . . ,k

the last n− k filter factors satisfy
‖V k

21‖2

‖V k
22‖2

(
σ ′i

2

σ2
1−σ ′i

2

)
≤ f k

i ≤ ‖V k
22‖−2 σ ′i

2

σ2
k−σ ′i

2 i = k +1, . . . ,n

Diana Sima, Sabine Van Huffel Level choice in truncated total least squares



The TTLS filter factors

Fierro et al. (1997): filter factors for the TTLS solution xTTLS,k

f k
i =

n+1

∑
j=k+1
σj 6=σ ′i

v2
n+1,j

‖V k
22‖2

(
σ ′i

2

σ ′i
2−σj

2

)
, i = 1, . . . ,n,

Properties of the TTLS filter factors:

the first k filter factors f k
i form a monotonically increasing

sequence and satisfy

1+
σ2

n+1

σ ′i
2−σ2

n+1
≤ f k

i ≤ 1+
σ2

k+1

σ ′i
2−σ2

k+1
i = 1, . . . ,k

the last n− k filter factors satisfy
‖V k

21‖2

‖V k
22‖2

(
σ ′i

2

σ2
1−σ ′i

2

)
≤ f k

i ≤ ‖V k
22‖−2 σ ′i

2

σ2
k−σ ′i

2 i = k +1, . . . ,n

Diana Sima, Sabine Van Huffel Level choice in truncated total least squares



The TTLS filter factors
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Example

The filter factors for
TTLS: f k

1 , . . . , f k
n .

For too large truncation
levels, the filter factors
increase dramatically
above 1.
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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The TTLS filter factors
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Choosing the truncation level

Generalized Cross Validation (GCV)

GCV for TSVD:

min
k

‖AxTSVD,k −b‖2

(m− k)2

GCV for TTLS:

min
k

‖AxTSVD,k −b‖2

(m−peff
k )2

,

where peff
k = ∑

n
i=1 f k

i = effective number
of parameters.

peff
k � k =⇒ the GCV function for TTLS has

a better defined minimum compared to the
GCV function for TSVD
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Choosing the truncation level

L-Curve

the norm of truncated solution ‖xk‖2 is plotted against norm of
residual error for various k ’s

the k corresponding to the corner is chosen
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Choosing the truncation level

L-Curve
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Comparison of GCV-TSVD and GCV-TTLS

Best truncation level defined as: argmink ‖xtrunc,k − xtrue‖

Estimated truncation level minus best truncation level
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k

noise only on b, TSVD

8 examples from the
Regularization Tools:

1. ilaplace(n,1)
2. ilaplace(n,3)
3. baart
4. shaw
5. phillips
6. foxgood
7. deriv2
8. wing
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Comparison of GCV-TSVD and GCV-TTLS

Best truncation level defined as: argmink ‖xtrunc,k − xtrue‖
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Summary

Truncated Total Least Squares—an alternative to Truncated SVD
for discrete ill-posed linear systems

good truncation levels are more easily identified in the context of
Truncated Total Least Squares

R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O’Leary (1997)
“Regularization by truncated total least squares”,
SIAM J. Sci. Comput. 18.

D.M. Sima and Sabine Van Huffel (2007) “Level choice in truncated
total least squares”, Comp. Stat. & Data Anal. (to
appear).
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Thank you for your attention!
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