Inexact inverse iteration with preconditioning

Melina Freitag and Alastair Spence

Department of Mathematical Sciences University of Bath

Computational Methods with Applications Harrachov, Czech Republic 24th August 2007

(joint work with M. Robbé and M. Sadkane (Brest))

Melina Freitag and Alastair Spence

Preconditioned GMRES

③ Inexact Subspace iteration

Preconditioned RQI and Jacobi-Davidson

Melina Freitag and Alastair Spence

Inexact inverse iteration with preconditioning

Outline

2 Preconditioned GMRES

B) Inexact Subspace iteration

Preconditioned RQI and Jacobi-Davidson

Conclusions

Introduction

$Ax = \lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$

- seek λ near a given shift σ .
- A is large, sparse, nonsymmetric (discretised PDE: $Ax = \lambda Mx$)

Introduction

 $Ax = \lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$

- seek λ near a given shift σ .
- A is large, sparse, nonsymmetric (discretised PDE: $Ax = \lambda Mx$)
- Inverse Iteration: $(A \sigma I)y = x$
- Preconditioned iterative solves

Introduction

 $Ax = \lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$

- seek λ near a given shift σ .
- A is large, sparse, nonsymmetric (discretised PDE: $Ax = \lambda Mx$)
- Inverse Iteration: $(A \sigma I)y = x$
- Preconditioned iterative solves
- Extensions
 - Inverse Subspace Iteration
 - Jacobi-Davidson method
 - Shift-invert Arnoldi method (Melina Freitag)

Inexact inverse iteration

- Assume $x^{(i)}$ is an approximate normalised eigenvector
- Iterative solves (e.g. GMRES) of

$$(A - \sigma I)y = x^{(i)}$$

Melina Freitag and Alastair Spence

Inexact inverse iteration

- Assume $x^{(i)}$ is an approximate normalised eigenvector
- Iterative solves (e.g. GMRES) of

$$(A - \sigma I)y = x^{(i)}$$

• inner-outer

•
$$||x^{(i)} - (A - \sigma I)y_k|| \le \tau^{(i)}$$
, $(\tau^{(i)}$: solve tolerance)

• Rescale y_k to get $x^{(i+1)}$

Melina Freitag and Alastair Spence

Inexact inverse iteration

- Assume $x^{(i)}$ is an approximate normalised eigenvector
- Iterative solves (e.g. GMRES) of

$$(A - \sigma I)y = x^{(i)}$$

• inner-outer

•
$$||x^{(i)} - (A - \sigma I)y_k|| \le \tau^{(i)}$$
, $(\tau^{(i)}:$ solve tolerance)

- Rescale y_k to get $x^{(i+1)}$
- (Right-) preconditioned solves
 - P^{-1} "known"

•
$$(A - \sigma I)P^{-1}\tilde{y} = x^{(i)}$$
 , $P^{-1}\tilde{y} = y$.

Convergence of inexact inverse iteration

• Given
$$x^{(i)}$$
 and $\lambda^{(i)}$

$$r^{(i)} = Ax^{(i)} - \lambda^{(i)}x^{(i)}$$
 Eigenvalue residual

Theorem (Convergence)

If the solve tolerance, $\tau^{(i)}$, is chosen to reduce proportional to the norm of the eigenvalue residual $||r^{(i)}||$ then we recover the rate of convergence achieved when using direct solves.

• other options/strategies possible.

Literature

- Ruhe/Wiberg (1972)
- Lai/Lin/Lin (1997)
- Smit/Paardekooper (1999)
- Golub/Ye (2000)
- Simoncini/Eldén (2002)
- Notay (2003), Notay/Hochstenbach (2007)
- Berns-Müller/Graham/Sp. (2006), Freitag/Sp. (2006), ...

TODAY

• Assume $\sigma = 0$: Inverse Power method: $Ay = x^{(i)}$

Melina Freitag and Alastair Spence

Inexact inverse iteration with preconditioning

TODAY

• Assume $\sigma = 0$: Inverse Power method: $Ay = x^{(i)}$

•
$$AP^{-1}\tilde{y} = x^{(i)}$$
 , $P^{-1}\tilde{y} = y$.

- inverse iteration
- inverse subspace iteration
- link with Jacobi-Davidson
- Shift-Invert Arnoldi (Melina Freitag this afternoon)

TODAY

• Assume $\sigma = 0$: Inverse Power method: $Ay = x^{(i)}$

•
$$AP^{-1}\tilde{y} = x^{(i)}$$
 , $P^{-1}\tilde{y} = y$.

- inverse iteration
- inverse subspace iteration
- link with Jacobi-Davidson
- Shift-Invert Arnoldi (Melina Freitag this afternoon)
- Always assume decreasing tolerance: $\tau^{(i)} = C \|Ax^{(i)} \lambda^{(i)}x^{(i)}\|$
- Example \rightarrow

Convection-Diffusion problem

Finite difference discretisation on a 32×32 grid of the convection-diffusion operator

$$-\Delta u + 5u_x + 5u_y = \lambda u \quad \text{on} \quad (0,1)^2,$$

with homogeneous Dirichlet boundary conditions $(961 \times 961 \text{ matrix})$.

- smallest eigenvalue: $\lambda_1 \approx 32.18560954$,
- Preconditioned GMRES with tolerance $\tau^{(i)} = 0.01 ||r^{(i)}||$,
- ILU based preconditioners.

Convection-Diffusion problem: No Preconditioning - $||Ay_k - x^{(i)}|| \le \tau^{(i)}$

Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Question

Why is there no increase in inner iterations as i increases?

Melina Freitag and Alastair Spence

Convection-Diffusion problem: Preconditioning - $||AP^{-1}\tilde{y}_k - x^{(i)}|| \leq \tau^{(i)}$

Figure: Inner iterations vs outer iterations

Question

Why is \mathbb{P}_i^{-1} better than P^{-1} ?

Melina Freitag and Alastair Spence

Convection-Diffusion problem: Preconditioning - $||AP^{-1}\tilde{y}_k - x^{(i)}|| \leq \tau^{(i)}$

Figure: Inner iterations vs outer iterations

Question

Why is \mathbb{P}_i^{-1} better than P^{-1} ?

Also

 \mathbb{P}_i is a rank-one change to P, "tuned" to the eigenproblem!

Melina Freitag and Alastair Spence

Outline

Preconditioned GMRES

Inexact Subspace iteration

Preconditioned RQI and Jacobi-Davidson

Theory: Unpreconditioned solves to find λ_1 , x_1

•
$$x^{(i)} = \cos \theta^{(i)} x_1 + \sin \theta^{(i)} x_1$$

Melina Freitag and Alastair Spence

Theory: Unpreconditioned solves to find λ_1 , x_1

• $x^{(i)}$ is approximation to x_1

•
$$x^{(i)} = \cos \theta^{(i)} x_1 + \sin \theta^{(i)} x_\perp$$

- $r^{(i)} = Ax^{(i)} \lambda^{(i)}x^{(i)}, \quad ||r^{(i)}|| \le C||\sin\theta^{(i)}||$
- Parlett (1998) ideas extend to nonsymmetric problems.

Melina Freitag and Alastair Spence

GMRES applied to $Ay = x^{(i)}$

- y_k after k steps
- $||x^{(i)} Ay_k|| \le \tau^{(i)} = C||r^{(i)}||$

Melina Freitag and Alastair Spence

GMRES applied to $Ay = x^{(i)}$

•
$$y_k$$
 after k steps
• $||x^{(i)} - Ay_k|| \le \tau^{(i)} = C||r^{(i)}|$

۹

$$\begin{aligned} \|x^{(i)} - Ay_k\| &= \min \|p_k(A)x^{(i)}\| \\ &\leq \min \|q_{k-1}(A)(I - \frac{1}{\lambda_1}A)(\cos\theta^{(i)}x_1 + \sin\theta^{(i)}x_\perp)\| \\ &\leq C\rho^k \sin\theta^{(i)}, \quad 0 < \rho < 1. \end{aligned}$$

$$\bullet \ k \ge 1 + C_1 \left(\log C_2 + \log \frac{\sin\theta^{(i)}}{\tau^{(i)}}\right)$$

• bound on k does not increase with i.

Melina Freitag and Alastair Spence

GMRES applied to $Ay = x^{(i)}$

•
$$y_k$$
 after k steps
• $||x^{(i)} - Ay_k|| \le \tau^{(i)} = C||r^{(i)}|$

٩

$$\begin{aligned} \|x^{(i)} - Ay_{k}\| &= \min \|p_{k}(A)x^{(i)}\| \\ &\leq \min \|q_{k-1}(A)(I - \frac{1}{\lambda_{1}}A)(\cos\theta^{(i)}x_{1} + \sin\theta^{(i)}x_{\perp})\| \\ &\leq C\rho^{k}\sin\theta^{(i)}, \quad 0 < \rho < 1. \end{aligned}$$

•
$$k \ge 1 + C_1 \left(\log C_2 + \log \frac{\sin \theta^{(i)}}{\tau^{(i)}} \right)$$

• bound on k does not increase with i.

• Reason:
$$x^{(i)} = \cos \theta^{(i)} x_1 + \sin \theta^{(i)} x_\perp$$

$$x^{(i)} =$$
eigenvector of $A +$ "term" $\rightarrow 0$

GMRES applied to $AP^{-1}\tilde{y} = x^{(i)}$

Melina Freitag and Alastair Spence

Inexact inverse iteration with preconditioning

GMRES applied to $AP^{-1}\tilde{y} = x^{(i)}$

•
$$AP^{-1}u_1 = \mu_1 u_1$$
: (μ_1, u_1) eigenpair nearest zero of AP^{-1}
• $x^{(i)} = \cos \tilde{\theta}^{(i)} u_1 + \sin \tilde{\theta}^{(i)} u_{\perp}$
• $k \ge 1 + \tilde{C}_1 \left(\log \tilde{C}_2 + \log \frac{\sin \tilde{\theta}^{(i)}}{\tau^{(i)}} \right)$
• BUT $\sin \tilde{\theta}^{(i)} \to 0$ only if $u_1 \in \operatorname{span}\{x_1\}$ generally won't hold

Melina Freitag and <u>Alastair Spence</u> Inexact inverse iteration with preconditioning

GMRES applied to $AP^{-1}\tilde{y} = x^{(i)}$

•
$$AP^{-1}u_1 = \mu_1 u_1$$
: (μ_1, u_1) eigenpair nearest zero of AP^{-1}

•
$$x^{(i)} = \cos \theta^{(i)} u_1 + \sin \theta^{(i)} u_\perp$$

•
$$k \ge 1 + \tilde{C}_1 \left(\log \tilde{C}_2 + \log \frac{\sin \theta^{(i)}}{\tau^{(i)}} \right)$$

- BUT sin θ⁽ⁱ⁾ → 0 only if u₁ ∈ span{x₁} generally won't hold
 sin θ⁽ⁱ⁾ → 0
- inner iteration costs increase with i.

• Reason:
$$x^{(i)} = \cos \tilde{\theta}^{(i)} u_1 + \sin \tilde{\theta}^{(i)} u_{\perp}$$

$$x^{(i)} =$$
 eigenvector of $AP^{-1} +$ "term" $\not\rightarrow 0$

Melina Freitag and Alastair Spence

Inexact inverse iteration with preconditioning

۹

• Idea: recreate the good relationship between the right hand side and the iteration matrix

 $x^{(i)} =$ eigenvector of iteration matrix + "term" $\rightarrow 0$

Melina Freitag and Alastair Spence

- Idea: recreate the good relationship between the right hand side and the iteration matrix
- $x^{(i)} =$ eigenvector of iteration matrix + "term" $\rightarrow 0$ • Define

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)H}$$

• \mathbb{P}_i is a rank one change to P (Sherman-Morrison)

• Idea: recreate the good relationship between the right hand side and the iteration matrix

• $x^{(i)} =$ eigenvector of iteration matrix + "term" $\rightarrow 0$

Define

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)H}$$

• \mathbb{P}_i is a rank one change to P (Sherman-Morrison)

•
$$\mathbb{P}_i x^{(i)} = P x^{(i)} + (A - P) x^{(i)} x^{(i)H} x^{(i)}$$

• $A x^{(i)} = \mathbb{P}_i x^{(i)}$

Melina Freitag and Alastair Spence

• Idea: recreate the good relationship between the right hand side and the iteration matrix

• $x^{(i)} =$ eigenvector of iteration matrix + "term" $\rightarrow 0$

Define

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)}$$

- \mathbb{P}_i is a rank one change to P (Sherman-Morrison)
- $\mathbb{P}_i x^{(i)} = P x^{(i)} + (A P) x^{(i)} x^{(i)H} x^{(i)}$ • $A x^{(i)} = \mathbb{P}_i x^{(i)}$
- Hence

$$A\mathbb{P}_i^{-1}(Ax^{(i)}) = Ax^{(i)}$$

•
$$Ax^{(i)}$$
 is an eigenvector of $A\mathbb{P}_i^{-1}$

Recall

•
$$A\mathbb{P}_i^{-1}\tilde{y} = x^{(i)}$$

• $A\mathbb{P}_i^{-1}Ax^{(i)} = Ax^{(i)}$
Is $x^{(i)}$ a "nice" RHS for $A\mathbb{P}^{-1}$?

Melina Freitag and Alastair Spence

Recall

- $A\mathbb{P}_i^{-1}\tilde{y} = x^{(i)}$
- $A\mathbb{P}_i^{-1}Ax^{(i)} = Ax^{(i)}$

Is $x^{(i)}$ a "nice" RHS for $A\mathbb{P}^{-1}$?

- $r^{(i)} = Ax^{(i)} \lambda^{(i)}x^{(i)} \Rightarrow x^{(i)} = \frac{1}{\lambda^{(i)}}Ax^{(i)} \frac{1}{\lambda^{(i)}}r^{(i)}$
- Idea of tuning: change iteration matrix so that

$$x^{(i)} = \fbox{eigenvector of } A \mathbb{P}_i^{-1} \hspace{0.1 in} + \hspace{0.1 in} ``term" \hspace{0.1 in} \rightarrow 0$$

Melina Freitag and Alastair Spence

Recall

- $A\mathbb{P}_i^{-1}\tilde{y} = x^{(i)}$
- $A\mathbb{P}_i^{-1}Ax^{(i)} = Ax^{(i)}$

Is $x^{(i)}$ a "nice" RHS for $A\mathbb{P}^{-1}$?

- $r^{(i)} = Ax^{(i)} \lambda^{(i)}x^{(i)} \Rightarrow x^{(i)} = \frac{1}{\lambda^{(i)}}Ax^{(i)} \frac{1}{\lambda^{(i)}}r^{(i)}$
- Idea of tuning: change iteration matrix so that

$$x^{(i)} = \begin{array}{ccc} \text{eigenvector of } A\mathbb{P}_i^{-1} & + & \text{``term''} & \rightarrow 0 \end{array}$$

- GMRES analysis is essentially the same as for unpreconditioned case
- No increase in inner iterations as *i* increases

Recall

- $A\mathbb{P}_i^{-1}\tilde{y} = x^{(i)}$
- $A\mathbb{P}_i^{-1}Ax^{(i)} = Ax^{(i)}$

Is $x^{(i)}$ a "nice" RHS for $A\mathbb{P}^{-1}$?

- $r^{(i)} = Ax^{(i)} \lambda^{(i)}x^{(i)} \Rightarrow x^{(i)} = \frac{1}{\lambda^{(i)}}Ax^{(i)} \frac{1}{\lambda^{(i)}}r^{(i)}$
- Idea of tuning: change iteration matrix so that

$$x^{(i)} = \boxed{\text{eigenvector of } A \mathbb{P}_i^{-1} \ + \ \text{``term''} \ \rightarrow 0}$$

- GMRES analysis is essentially the same as for unpreconditioned case
- No increase in inner iterations as *i* increases
- Explains the numerical results earlier

• As before

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)} + \frac{1}{2}$$

• Now introduce

 $P_{\text{ideal}} = P + (A - P)x_1x_1^H$

Melina Freitag and Alastair Spence

• As before

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)H}$$

• Now introduce

$$P_{\text{ideal}} = P + (A - P)x_1x_1^H$$

• x_1 is eigenvector of AP_{ideal}^{-1}

• As before

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)H}$$

• Now introduce

$$P_{\text{ideal}} = P + (A - P)x_1x_1^H$$

•
$$x_1$$
 is eigenvector of AP_{ideal}^{-1}

•
$$AP_{\text{ideal}}^{-1}\tilde{y} = x_1 \implies \text{GMRES converges in 1 step}$$

Melina Freitag and Alastair Spence

• As before

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)H}$$

• Now introduce

$$P_{\text{ideal}} = P + (A - P)x_1x_1^H$$

- x_1 is eigenvector of AP_{ideal}^{-1}
- $AP_{\text{ideal}}^{-1}\tilde{y} = x_1 \implies \text{GMRES converges in 1 step}$
- $AP_i^{-1}\tilde{y} = x^{(i)} \implies \text{close to ideal system}$
- $\bullet \ \Rightarrow \ {\rm proof} \ {\rm of} \ {\rm independence} \ {\rm of} \ i$

• As before

$$\mathbb{P}_i = P + (A - P)x^{(i)}x^{(i)H}$$

• Now introduce

$$P_{\text{ideal}} = P + (A - P)x_1x_1^H$$

- x_1 is eigenvector of AP_{ideal}^{-1}
- $AP_{\text{ideal}}^{-1}\tilde{y} = x_1 \implies \text{GMRES converges in 1 step}$
- $AP_i^{-1}\tilde{y} = x^{(i)} \Rightarrow \text{close to ideal system}$
- \Rightarrow proof of independence of i
- Subspace (block) version (Robbé/Sadkane/Sp.).

Outline

2 Preconditioned GMRES

Inexact Subspace iteration

Preconditioned RQI and Jacobi-Davidson

5 Conclusions

Numerical Example

- same PDE example as before $(5 \rightarrow 10)$
- n = 2025, nz = 9945
- ILU preconditioner, drop tolerance 0.1
- subspace dimension 6
- seek first 4 eigenvalues (stop when residual $\leq 10^{-8}$)

Unpreconditioned Block-GMRES

Figure: Inner iterations vs outer iterations

Melina Freitag and <u>Alastair Spence</u>

Preconditioned Block-GMRES

Figure: Inner iterations vs outer iterations

Melina Freitag and Alastair Spence

Preconditioned Block-GMRES

Figure: Residual norms vs outer iterations

Melina Freitag and Alastair Spence

Preconditioned Block-GMRES

Figure: Residual norms vs total number of iterations

Melina Freitag and <u>Alastair Spence</u>

Inexact inverse iteration with preconditioning

Numerical Example

- matrix market library qc2534
- complex symmetric (non-Hermitian)
- n = 2534, nz = 463360
- ILU preconditioner
- subspace dimension 16
- seek first 10 eigenvalues

Preconditioned GMRES

Figure: Inner iterations vs outer iterations

Melina Freitag and <u>Alastair Spence</u>

Preconditioned GMRES

Figure: Residual norms vs total number of iterations

Outline

2 Preconditioned GMRES

B) Inexact Subspace iteration

Preconditioned RQI and Jacobi-Davidson

Conclusions

Melina Freitag and Alastair Spence

RQI and J-D: Exact solves

Rayleigh quotient iteration

At each iteration a system of the form

 $(A - \rho(x)I)y = x$

has to be solved.

Melina Freitag and Alastair Spence

Inexact inverse iteration with preconditioning

RQI and J-D: Exact solves

Rayleigh quotient iteration

At each iteration a system of the form

 $(A - \rho(x)I)y = x$

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

$$(I - xx^{H})(A - \rho(x)I)(I - xx^{H})s = -r$$

has to be solved, where $r = (A - \rho(x)I)x$ is the eigenvalue residual and $s \perp x$.

Melina Freitag and Alastair Spence

RQI and J-D: Exact solves

Rayleigh quotient iteration

At each iteration a system of the form

 $(A - \rho(x)I)y = x$

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

$$(I - xx^{H})(A - \rho(x)I)(I - xx^{H})s = -r$$

has to be solved, where $r = (A - \rho(x)I)x$ is the eigenvalue residual and $s \perp x$.

Exact solves

Sleijpen and van der Vorst (1996):

$$y = \alpha(x+s)$$

for some constant α

RQI and J-D: Inexact solves

Rayleigh quotient iteration

At each iteration a system of the form

 $(A - \rho(x)I)y = x$

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

$$(I - xx^H)(A - \rho(x)I)(I - xx^H)s = -r$$

has to be solved, where $r = (A - \rho(x)I)x$ is the eigenvalue residual and $s \perp x$.

Galerkin-Krylov Solver

• Simoncini and Eldén (2002), (Hochstenbach and Sleijpen (2003) for two-sided RQ iteration):

$$y_{k+1} = \beta(x+s_k)$$

for some constant β if both systems are solved using a Galerkin-Krylov subspace method

RQI and J-D: Preconditioned Solves

Preconditioning for RQ iteration

At each iteration a system of the form

 $(A - \rho(x)I)P^{-1}\tilde{y} = x,$

(with $y = P^{-1}\tilde{y}$) has to be solved.

Melina Freitag and Alastair Spence

Inexact inverse iteration with preconditioning

RQI and J-D: Preconditioned Solves

Preconditioning for RQ iteration

At each iteration a system of the form

 $(A - \rho(x)I)P^{-1}\tilde{y} = x,$

(with $y = P^{-1}\tilde{y}$) has to be solved.

Equivalence does not hold!

Preconditioning for JD method At each iteration a system of the form $(I - xx^{H})(A - \rho(x)I)(I - xx^{H})\tilde{P}^{\dagger}\tilde{s} = -r$ (with $s = \tilde{P}^{\dagger}\tilde{s}$) has to be solved. Note the restricted preconditioner $\tilde{P} := (I - xx^{H})P(I - xx^{H}).$

Melina Freitag and Alastair Spence

Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

Figure: Convergence history of the eigenvalue residuals; no preconditioner

Figure: Convergence history of the eigenvalue residuals; standard preconditioner

Preconditioned Solves

Tuned RQI \equiv preconditioned JD

 $\mathbb{P}x = x$

Preconditioning for RQ iteration

Inner solves in RQ iteration builds Krylov space

 $\operatorname{span}\{x, (A - \rho(x)I)\mathbb{P}^{-1}x, ((A - \rho(x)I)\mathbb{P}^{-1})^2x, \ldots\}$

Preconditioned Solves

Tuned RQI \equiv preconditioned JD

 $\mathbb{P}x = x$

Preconditioning for RQ iteration

Inner solves in RQ iteration builds Krylov space

$$\operatorname{span}\{x, (A - \rho(x)I)\mathbb{P}^{-1}x, ((A - \rho(x)I)\mathbb{P}^{-1})^2x, \ldots\}$$

Preconditioning for JD method

Inner solves in JD method builds Krylov space

span{ $r, \Pi_1(A - \rho(x)I)\Pi_2^P P^{-1}r, (\Pi_1(A - \rho(x)I)\Pi_2^P P^{-1})^2 r, \ldots$ }

where
$$(I - xx^{H})$$
 and $\Pi_{2}^{P} = I - \frac{P^{-1}xx^{H}}{x^{H}P^{-1}x}$.

Consider subspaces

$$A \leftarrow A - \rho(x)I$$

Lemma

The subspaces

$$\mathcal{K}_k = span\{x, A\mathbb{P}^{-1}x, (A\mathbb{P}^{-1})^2x, \dots, (A\mathbb{P}^{-1})^kx\}$$

and

$$\mathcal{L}_{k} = span\{x, r, \Pi_{1}A\Pi_{2}^{P}P^{-1}r, (\Pi_{1}A\Pi_{2}^{P}P^{-1})^{2}r, \dots, (\Pi_{1}A\Pi_{2}^{P}P^{-1})^{k-1}r\}$$

are equivalent.

Proof.

Based on Stathopoulos and Saad (1998).

Equivalence for inexact solves

Theorem

Let both

$$(A - \rho(x)I)\mathbb{P}^{-1}\tilde{y} = x, \quad y = \mathbb{P}^{-1}\tilde{y}$$

and

$$(I - xx^{H})(A - \rho(x)I)(I - xx^{H})\tilde{P}^{\dagger}\tilde{s} = -r, \quad s = \tilde{P}^{\dagger}\tilde{s}$$

be solved with the same Galerkin-Krylov method. Then

$$y_{k+1}^{RQ} = \gamma(x + s_k^{JD}).$$

Proof.

Based on Simoncini and Eldén (2002).

Melina Freitag and Alastair Spence

Heuristic Explanation of RQI + $\mathbb{P} \equiv JD + P$

•
$$\mathbb{P}x = x$$

• $\mathbb{P} = P + (I - P)xx^{H}$

•
$$\mathbb{P} = xx^H + P(I - xx^H)$$

Melina Freitag and Alastair Spence

Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

Figure: Convergence history of the eigenvalue residuals; no preconditioner

Figure: standard preconditioner for JD, tuned preconditioner for II

Outline

2 Preconditioned GMRES

B) Inexact Subspace iteration

Preconditioned RQI and Jacobi-Davidson

Conclusions

- When using Krylov solvers for shifted systems $(A \sigma I)y = x^{(i)}$ in eigenvalue computations then it is best if the iteration matrix has a "good relationship" with the right hand side,
- For any preconditioner the "good relationship" is achieved by a small rank change called "tuning",
- essentially no extra costs,
- Numerical results on eigenvalue problems obtained from Mixed FEM Navier-Stokes with DD preconditioner show the same gains.

- M. A. FREITAG AND A. SPENCE, A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems, 2005. Submitted to IMAJNA.
- **—**, Convergence rates for inexact inverse iteration with application to preconditioned iterative solves, BIT, 47 (2007), pp. 27–44.
- —, Rayleigh quotient iteration and simplified Jacobi-Davidson method with preconditioned iterative solves, 2007.
 Submitted to LAA.
- M. ROBBÉ, M. SADKANE, AND A. SPENCE, Inexact inverse subspace iteration with preconditioning applied to non-hermitian eigenvalue problems, 2006. Submitted to SIMAX.

