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Introduction

Ax = λx, λ ∈ C, x ∈ C
n

seek λ near a given shift σ.

A is large, sparse, nonsymmetric (discretised PDE: Ax = λMx)
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Introduction

Ax = λx, λ ∈ C, x ∈ C
n

seek λ near a given shift σ.

A is large, sparse, nonsymmetric (discretised PDE: Ax = λMx)

Inverse Iteration: (A− σI)y = x

Preconditioned iterative solves

Extensions
Inverse Subspace Iteration

Jacobi-Davidson method

Shift-invert Arnoldi method (Melina Freitag)

Melina Freitag and Alastair Spence University of Bath

Inexact inverse iteration with preconditioning



Outline Introduction Preconditioned GMRES Inexact Subspace iteration Tuning and Jacobi-Davidson Conclusions

Inexact inverse iteration

Assume x(i) is an approximate normalised eigenvector

Iterative solves (e.g. GMRES) of

(A− σI)y = x
(i)
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Inexact inverse iteration

Assume x(i) is an approximate normalised eigenvector

Iterative solves (e.g. GMRES) of

(A− σI)y = x
(i)

inner-outer

‖x(i) − (A− σI)yk‖ ≤ τ (i) , (τ (i): solve tolerance)

Rescale yk to get x(i+1)
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Inexact inverse iteration

Assume x(i) is an approximate normalised eigenvector

Iterative solves (e.g. GMRES) of

(A− σI)y = x
(i)

inner-outer

‖x(i) − (A− σI)yk‖ ≤ τ (i) , (τ (i): solve tolerance)

Rescale yk to get x(i+1)

(Right-) preconditioned solves
P−1 “known”

(A − σI)P−1ỹ = x(i) , P−1ỹ = y.
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Convergence of inexact inverse iteration

Given x(i) and λ(i)

r
(i) = Ax

(i) − λ
(i)

x
(i) Eigenvalue residual

Theorem (Convergence)

If the solve tolerance, τ (i), is chosen to reduce proportional to the norm of

the eigenvalue residual ‖r(i)‖ then we recover the rate of convergence

achieved when using direct solves.

other options/strategies possible.
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TODAY
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TODAY

Assume σ = 0: Inverse Power method: Ay = x(i)

AP−1ỹ = x(i) , P−1ỹ = y.
inverse iteration

inverse subspace iteration

link with Jacobi-Davidson

Shift-Invert Arnoldi (Melina Freitag - this afternoon)

Always assume decreasing tolerance: τ (i) = C‖Ax(i) − λ(i)x(i)‖

Example →
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Convection-Diffusion problem

Finite difference discretisation on a 32× 32 grid of the convection-diffusion
operator

−∆u + 5ux + 5uy = λu on (0, 1)2,

with homogeneous Dirichlet boundary conditions (961× 961 matrix).

smallest eigenvalue: λ1 ≈ 32.18560954,

Preconditioned GMRES with tolerance τ (i) = 0.01‖r(i)‖,

ILU based preconditioners.
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Convection-Diffusion problem: No Preconditioning - ‖Ayk − x(i)‖ ≤ τ (i)
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Question

Why is there no increase in inner iterations as i increases?
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Convection-Diffusion problem: Preconditioning - ‖AP−1ỹk − x(i)‖ ≤ τ (i)
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Question

Why is P
−1
i better than P−1?
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Convection-Diffusion problem: Preconditioning - ‖AP−1ỹk − x(i)‖ ≤ τ (i)

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

outer iterations

in
ne

r 
ite

ra
tio

ns

 

 

P−1

P
i
−1
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Question

Why is P
−1
i better than P−1?

Also

Pi is a rank-one change to P , “tuned” to the eigenproblem!
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Theory: Unpreconditioned solves to find λ1, x1

x(i) is approximation to x1

x

xθ

1

(i) (i)

     (i)
 

    θ
     (i)

   Q x  = O (sin       )      measure for the error

x(i) = cos θ(i)x1 + sin θ(i)x⊥
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Theory: Unpreconditioned solves to find λ1, x1

x(i) is approximation to x1

x

xθ

1

(i) (i)

     (i)
 

    θ
     (i)

   Q x  = O (sin       )      measure for the error

x(i) = cos θ(i)x1 + sin θ(i)x⊥

r(i) = Ax(i) − λ(i)x(i), ‖r(i)‖ ≤ C‖ sin θ(i)‖

Parlett (1998) - ideas extend to nonsymmetric problems.
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GMRES applied to Ay = x(i)

yk after k steps

‖x(i) − Ayk‖ ≤ τ (i) = C‖r(i)‖
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GMRES applied to Ay = x(i)

yk after k steps

‖x(i) − Ayk‖ ≤ τ (i) = C‖r(i)‖

‖x(i) − Ayk‖ = min ‖pk(A)x(i)‖

≤ min ‖qk−1(A)(I −
1

λ1
A)(cos θ

(i)
x1 + sin θ

(i)
x⊥)‖

≤ Cρ
k sin θ

(i)
, 0 < ρ < 1.

k ≥ 1 + C1

„

log C2 + log
sin θ(i)

τ (i)

«

bound on k does not increase with i.
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GMRES applied to Ay = x(i)

yk after k steps

‖x(i) − Ayk‖ ≤ τ (i) = C‖r(i)‖

‖x(i) − Ayk‖ = min ‖pk(A)x(i)‖

≤ min ‖qk−1(A)(I −
1

λ1
A)(cos θ

(i)
x1 + sin θ

(i)
x⊥)‖

≤ Cρ
k sin θ

(i)
, 0 < ρ < 1.

k ≥ 1 + C1

„

log C2 + log
sin θ(i)

τ (i)

«

bound on k does not increase with i.

Reason: x(i) = cos θ(i)x1 + sin θ(i)x⊥

x
(i) = eigenvector of A + “term” → 0
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GMRES applied to AP−1ỹ = x(i)

AP−1u1 = µ1u1: (µ1, u1) eigenpair nearest zero of AP−1

x(i) = cos θ̃(i)u1 + sin θ̃(i)u⊥
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GMRES applied to AP−1ỹ = x(i)

AP−1u1 = µ1u1: (µ1, u1) eigenpair nearest zero of AP−1

x(i) = cos θ̃(i)u1 + sin θ̃(i)u⊥

k ≥ 1 + C̃1

„

log C̃2 + log
sin θ̃(i)

τ (i)

«

BUT sin θ̃(i) → 0 only if u1 ∈ span{x1} generally won’t hold
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GMRES applied to AP−1ỹ = x(i)

AP−1u1 = µ1u1: (µ1, u1) eigenpair nearest zero of AP−1

x(i) = cos θ̃(i)u1 + sin θ̃(i)u⊥

k ≥ 1 + C̃1

„

log C̃2 + log
sin θ̃(i)

τ (i)

«

BUT sin θ̃(i) → 0 only if u1 ∈ span{x1} generally won’t hold

sin θ̃(i) 6→ 0

inner iteration costs increase with i.

Reason: x(i) = cos θ̃(i)u1 + sin θ̃(i)u⊥

x
(i) = eigenvector of AP

−1 + “term” 6→ 0
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New “tuned” preconditioner Pi

Idea: recreate the good relationship between the right hand side and
the iteration matrix

x
(i) = eigenvector of iteration matrix + “term” → 0
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New “tuned” preconditioner Pi

Idea: recreate the good relationship between the right hand side and
the iteration matrix

x
(i) = eigenvector of iteration matrix + “term” → 0

Define
Pi = P + (A− P )x(i)

x
(i)H

Pi is a rank one change to P (Sherman-Morrison)
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New “tuned” preconditioner Pi

Idea: recreate the good relationship between the right hand side and
the iteration matrix

x
(i) = eigenvector of iteration matrix + “term” → 0

Define
Pi = P + (A− P )x(i)

x
(i)H

Pi is a rank one change to P (Sherman-Morrison)

Pix
(i) = Px(i) + (A− P )x(i)x(i)H

x(i)

Ax(i) = Pix
(i)
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New “tuned” preconditioner Pi

Idea: recreate the good relationship between the right hand side and
the iteration matrix

x
(i) = eigenvector of iteration matrix + “term” → 0

Define
Pi = P + (A− P )x(i)

x
(i)H

Pi is a rank one change to P (Sherman-Morrison)

Pix
(i) = Px(i) + (A− P )x(i)x(i)H

x(i)

Ax(i) = Pix
(i)

Hence
AP

−1
i (Ax

(i)) = Ax
(i)

Ax(i) is an eigenvector of AP
−1
i
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GMRES with the tuned preconditioner

Recall

AP
−1
i ỹ = x(i)

AP
−1
i Ax(i) = Ax(i)

Is x(i) a “nice” RHS for AP
−1?
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GMRES with the tuned preconditioner

Recall

AP
−1
i ỹ = x(i)

AP
−1
i Ax(i) = Ax(i)

Is x(i) a “nice” RHS for AP
−1?

r(i) = Ax(i) − λ(i)x(i) ⇒ x(i) =
1

λ(i)
Ax

(i) −
1

λ(i)
r
(i)

Idea of tuning: change iteration matrix so that

x
(i) = eigenvector of AP

−1
i + “term” → 0
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GMRES with the tuned preconditioner

Recall

AP
−1
i ỹ = x(i)

AP
−1
i Ax(i) = Ax(i)

Is x(i) a “nice” RHS for AP
−1?

r(i) = Ax(i) − λ(i)x(i) ⇒ x(i) =
1

λ(i)
Ax

(i) −
1

λ(i)
r
(i)

Idea of tuning: change iteration matrix so that

x
(i) = eigenvector of AP

−1
i + “term” → 0

GMRES analysis is essentially the same as for unpreconditioned case

No increase in inner iterations as i increases
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GMRES with the tuned preconditioner

Recall

AP
−1
i ỹ = x(i)

AP
−1
i Ax(i) = Ax(i)

Is x(i) a “nice” RHS for AP
−1?

r(i) = Ax(i) − λ(i)x(i) ⇒ x(i) =
1

λ(i)
Ax

(i) −
1

λ(i)
r
(i)

Idea of tuning: change iteration matrix so that

x
(i) = eigenvector of AP

−1
i + “term” → 0

GMRES analysis is essentially the same as for unpreconditioned case

No increase in inner iterations as i increases

Explains the numerical results earlier

Melina Freitag and Alastair Spence University of Bath
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Theory for tuned preconditioner

As before
Pi = P + (A− P )x(i)

x
(i)H

Now introduce
Pideal = P + (A− P )x1x1

H
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Theory for tuned preconditioner

As before
Pi = P + (A− P )x(i)

x
(i)H

Now introduce
Pideal = P + (A− P )x1x1

H

x1 is eigenvector of AP−1
ideal
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Theory for tuned preconditioner

As before
Pi = P + (A− P )x(i)

x
(i)H

Now introduce
Pideal = P + (A− P )x1x1

H

x1 is eigenvector of AP−1
ideal

AP−1
idealỹ = x1 ⇒ GMRES converges in 1 step
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Theory for tuned preconditioner

As before
Pi = P + (A− P )x(i)

x
(i)H

Now introduce
Pideal = P + (A− P )x1x1

H

x1 is eigenvector of AP−1
ideal

AP−1
idealỹ = x1 ⇒ GMRES converges in 1 step

AP−1
i ỹ = x(i)

⇒ close to ideal system

⇒ proof of independence of i
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Theory for tuned preconditioner

As before
Pi = P + (A− P )x(i)

x
(i)H

Now introduce
Pideal = P + (A− P )x1x1

H

x1 is eigenvector of AP−1
ideal

AP−1
idealỹ = x1 ⇒ GMRES converges in 1 step

AP−1
i ỹ = x(i)

⇒ close to ideal system

⇒ proof of independence of i

Subspace (block) version (Robbé/Sadkane/Sp.).
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Numerical Example

same PDE example as before (5→ 10)

n = 2025, nz = 9945

ILU preconditioner, drop tolerance 0.1

subspace dimension 6

seek first 4 eigenvalues (stop when residual ≤ 10−8)

Melina Freitag and Alastair Spence University of Bath
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Unpreconditioned Block-GMRES
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Figure: Inner iterations vs outer iterations
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Preconditioned Block-GMRES
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Preconditioned Block-GMRES
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Preconditioned Block-GMRES
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Numerical Example

matrix market library qc2534

complex symmetric (non-Hermitian)

n = 2534, nz = 463360

ILU preconditioner

subspace dimension 16

seek first 10 eigenvalues

Melina Freitag and Alastair Spence University of Bath
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Preconditioned GMRES
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Preconditioned GMRES
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2 Preconditioned GMRES

3 Inexact Subspace iteration

4 Preconditioned RQI and Jacobi-Davidson

5 Conclusions
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RQI and J-D: Exact solves

Rayleigh quotient iteration

At each iteration a system of the
form

(A− ρ(x)I)y = x

has to be solved.

Melina Freitag and Alastair Spence University of Bath

Inexact inverse iteration with preconditioning



Outline Introduction Preconditioned GMRES Inexact Subspace iteration Tuning and Jacobi-Davidson Conclusions

RQI and J-D: Exact solves

Rayleigh quotient iteration

At each iteration a system of the
form

(A− ρ(x)I)y = x

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

(I − xx
H)(A− ρ(x)I)(I − xx

H)s = −r

has to be solved, where r = (A− ρ(x)I)x
is the eigenvalue residual and s ⊥ x.

Melina Freitag and Alastair Spence University of Bath

Inexact inverse iteration with preconditioning



Outline Introduction Preconditioned GMRES Inexact Subspace iteration Tuning and Jacobi-Davidson Conclusions

RQI and J-D: Exact solves

Rayleigh quotient iteration

At each iteration a system of the
form

(A− ρ(x)I)y = x

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

(I − xx
H)(A− ρ(x)I)(I − xx

H)s = −r

has to be solved, where r = (A− ρ(x)I)x
is the eigenvalue residual and s ⊥ x.

Exact solves

Sleijpen and van der Vorst (1996):

y = α(x + s)

for some constant α

Melina Freitag and Alastair Spence University of Bath

Inexact inverse iteration with preconditioning



Outline Introduction Preconditioned GMRES Inexact Subspace iteration Tuning and Jacobi-Davidson Conclusions

RQI and J-D: Inexact solves

Rayleigh quotient iteration

At each iteration a system of the
form

(A− ρ(x)I)y = x

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

(I − xx
H)(A− ρ(x)I)(I − xx

H)s = −r

has to be solved, where r = (A− ρ(x)I)x
is the eigenvalue residual and s ⊥ x.

Galerkin-Krylov Solver

Simoncini and Eldén (2002), (Hochstenbach and Sleijpen (2003) for
two-sided RQ iteration):

yk+1 = β(x + sk)

for some constant β if both systems are solved using a Galerkin-Krylov
subspace method
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RQI and J-D: Preconditioned Solves

Preconditioning for RQ iteration

At each iteration a system of the
form

(A− ρ(x)I)P−1
ỹ = x,

(with y = P−1ỹ) has to be solved.
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RQI and J-D: Preconditioned Solves

Preconditioning for RQ iteration

At each iteration a system of the
form

(A− ρ(x)I)P−1
ỹ = x,

(with y = P−1ỹ) has to be solved.

Preconditioning for JD method

At each iteration a system of the form

(I − xx
H)(A− ρ(x)I)(I − xx

H)P̃ †
s̃ = −r

(with s = P̃ †s̃) has to be solved. Note
the restricted preconditioner

P̃ := (I − xx
H)P (I − xx

H).

Equivalence does not hold!
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Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver
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simplified Jacobi−Davidson without preconditoner
Inverse  iteration without preconditioner

Figure: Convergence history of the
eigenvalue residuals; no
preconditioner
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simplified Jacobi−Davidson with standard preconditoner
Inverse iteration with standard preconditioner

Figure: Convergence history of the
eigenvalue residuals; standard
preconditioner
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Preconditioned Solves

Tuned RQI ≡ preconditioned JD

Px = x

Preconditioning for RQ iteration

Inner solves in RQ iteration builds Krylov space

span{x, (A− ρ(x)I)P−1
x, ((A− ρ(x)I)P−1)2x, . . .}
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Preconditioned Solves

Tuned RQI ≡ preconditioned JD

Px = x

Preconditioning for RQ iteration

Inner solves in RQ iteration builds Krylov space

span{x, (A− ρ(x)I)P−1
x, ((A− ρ(x)I)P−1)2x, . . .}

Preconditioning for JD method

Inner solves in JD method builds Krylov space

span{r, Π1(A− ρ(x)I)ΠP
2 P

−1
r, (Π1(A− ρ(x)I)ΠP

2 P
−1)2r, . . .}

where (I − xxH) and ΠP
2 = I −

P−1xxH

xHP−1x
.
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Consider subspaces

A← A− ρ(x)I

Lemma

The subspaces

Kk = span{x, AP
−1

x, (AP
−1)2x, . . . , (AP

−1)k
x}

and

Lk = span{x, r, Π1AΠP
2 P

−1
r, (Π1AΠP

2 P
−1)2r, . . . , (Π1AΠP

2 P
−1)k−1

r}

are equivalent.

Proof.

Based on Stathopoulos and Saad (1998).
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Equivalence for inexact solves

Theorem

Let both

(A− ρ(x)I)P−1
ỹ = x, y = P

−1
ỹ

and

(I − xx
H)(A− ρ(x)I)(I − xx

H)P̃ †
s̃ = −r, s = P̃

†
s̃

be solved with the same Galerkin-Krylov method. Then

y
RQ

k+1 = γ(x + s
JD
k ).

Proof.

Based on Simoncini and Eldén (2002).
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Heuristic Explanation of RQI + P ≡ JD + P

Px = x

P = P + (I − P )xxH

P = xxH + P (I − xxH)
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Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver
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simplified Jacobi−Davidson without preconditoner
Inverse  iteration without preconditioner

Figure: Convergence history of the
eigenvalue residuals; no
preconditioner
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simplified Jacobi−Davidson with standard preconditoner
Inverse iteration with standard preconditioner
Inverse iteration with tuned preconditioner

Figure: standard preconditioner for
JD, tuned preconditioner for II
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Conclusions

When using Krylov solvers for shifted systems (A− σI)y = x(i) in
eigenvalue computations then it is best if the iteration matrix has a
“good relationship” with the right hand side,

For any preconditioner the “good relationship” is achieved by a small
rank change called “tuning”,

essentially no extra costs,

Numerical results on eigenvalue problems obtained from Mixed FEM
Navier-Stokes with DD preconditioner show the same gains.
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