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Outline
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◦ Structure of Galerkin matrix

• Aspects of the stochastic discretization

◦ Multivariate basis functions: complete/tensor polynomials

◦ Structure and spectral properties of stochastic Galerkin matrices

• Solvers for the global Galerkin system

◦ block-diagonal Galerkin system: Krylov subspace recycling method

◦ fully-coupled Galerkin system: Mean-based preconditioner
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1 Review of SFEM

[Ghanem & Spanos, 1991]

Stochastic elliptic boundary value problem

Given: bounded spatial domain D ⊂ R2 with boundary Γ = ΓD ∪ ΓN and a

complete probability space (Ω,A , P ).

Task: solve the second order elliptic stochastic boundary value problem

−∇ · (T (x , ω)∇ p(x , ω)) = F (x ), x ∈ D, P.− a.s. (1a)

p(x ) = pD(x ), x ∈ ΓD, (1b)

n · (T∇ p)(x ) = pN (x ), x ∈ ΓN . (1c)

Note: T and therefore p are random fields.

Solvers for large linear systems arising in SFEM Computational Methods with Applications, Harrachov 2007



Review of SFEM 4

Mixed formulation of stochastic elliptic bvp

u(x , ω) = −T (x , ω)∇ p(x , ω), x ∈ D, P.− a.s (2a)

∇ · u(x , ω) = F (x ), x ∈ D, P.− a.s. (2b)

p(x ) = pD(x ), x ∈ ΓD, (2c)

n · u(x ) = −pN (x ), x ∈ ΓN . (2d)
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Mixed stochastic variational formulation

Find functions u ∈ HΓN
(div, D)⊗ L2

P (Ω) and p ∈ L2(D)⊗ L2
P (Ω) such that

for all test functions v ∈ HΓN
(div, D)⊗L2

P (Ω) and q ∈ L2(D)⊗L2
P (Ω) there

holds 〈∫
D

T−1u · v dx
〉
−
〈∫

D

p ∇ · v dx
〉

= −
〈∫

ΓD

pD n · v
〉

(3a)〈
−
∫
D

∇ · uq dx
〉

= −
〈∫

D

Fq dx

〉
. (3b)

Notation:

〈·〉 denotes the expectation operator w.r.t. the measure P

〈ξ〉 :=
∫

Ω

ξ(ω)dP (ω),

L2
P (Ω) :=

{
ξ(ω) :

∫
Ω
ξ2(ω)dP (ω) <∞

}
=
{
ξ : 〈ξ2〉 <∞

}
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Discretization steps of stochastic variational formulation

◦ Input random fields depend on M mutually independent random variables

{ξm}Mm=1 with given probability density functions ρm : Γm → [0,∞).

ρ(ξ) := ρ1(ξ1) · · · ρM (ξM ), ξ ∈ Γ := Γ1 × · · · × ΓM .

◦ Reformulation of (3): Identify L2
P (Ω) with L2

ρ(Γ) and 〈·〉 with
∫

Γ
ρ(ξ) · dξ.

◦ Deterministic discretization: choose finite dimensional spaces

Xh := span {φ1,φ2, . . . ,φNu
x
} ⊂ HΓN

(div, D)

Y h := span {π1, π2, . . . , πNp
x
} ⊂ L2(D)

◦ Stochastic discretization:

Wh := span {ψ1(ξ), ψ2(ξ), . . . , ψNξ
(ξ)} ⊂ L2

ρ(Γ).

◦ Variational space:

(Xh × Y h)⊗Wh ⊂ (HΓN
(div, D)× L2(D))⊗ L2

ρ(Γ)
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Representation of input random field

T−1(x , ξ) =
∑Nξ

n=1 Tn(x )ψn(ξ)

Karhunen-Loève expansion Wiener’s polynomial chaos expansion

T−1 = 〈T−1〉+
∑M
m=1 Tm(x )ξm T−1 =

∑
α∈I Tα(x )Hα(ξ)

For details see O. Ernst’s talk. I := {α ∈ NM0 , |α| ≤ d}

linear in ξ nonlinear in ξ for d > 1

M + 1 terms
(
M+d
M

)
terms

Example: Gaussian random fields Example: lognormal random fields
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Structure of Galerkin matrix (ψ1 ≡ 1)

A =
Nξ∑
n=1

Gn ⊗Kn

Stochastic part:

[Gn]`,j = 〈ψnψ`ψj〉, n, j, ` = 1, . . . , Nξ.

Deterministic part:

K1 =

A1 BT

B O

 Kn =

An O

O O

 n = 2, 3, . . . , Nξ,

[B]i,k = −
∫
D

∇ · φi(x )πk(x )dx , i = 1, 2, . . . , Nu
x , k = 1, 2, . . . , Np

x ,

[An]i,k =
∫
D

Tn(x )φi(x ) · φk(x )dx , i, k = 1, 2, . . . , Nu
x , n = 1, . . . , Nξ.
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2 The stochastic discretization

Basis functions for Wh ⊂ L2
ρ(Γ): ψα(ξ) =

∏M
m=1 p

(m)
αm (ξm)

where
〈
p

(m)
i p

(m)
j

〉
= δij and α = (α1, α2, . . . , αM ) ∈ NM0 is a multi-index.

tensor polynomials (TP) complete polynomials (CP)

deg
(
p

(m)
αm

)
≤ d, m = 1, . . . ,M

∑M
m=1 deg

(
p

(m)
αm

)
≤ d

Wh = Qd Wh = Pd

dim(Qd) = (d+ 1)M dim(Pd) =
(
M+d
M

)
Numbering convention of basis polynomials: n↔ α, Gn ↔ Gα

(TP) α1 = 0, α1 = 1, . . . , α1 = d, α2 = 0, α2 = 1, . . . , α2 = d, . . . , αM = d

(CP) Same as for (TP), but drop multi-indices with |α| > d.
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α ψα In Pd ?

(0,0) p0(ξ1)p0(ξ2) X

(1,0) p1(ξ1)p0(ξ2) X

(2,0) p2(ξ1)p0(ξ2) X

(0,1) p0(ξ1)p1(ξ2) X

(1,1) p1(ξ1)p1(ξ2) X

(2,1) p2(ξ1)p1(ξ2) x

(0,2) p0(ξ1)p2(ξ2) X

(1,2) p1(ξ1)p2(ξ2) x

(2,2) p2(ξ1)p2(ξ2) x

Table 1: Dropping of basis polynomials for M = 2, d = 2.
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Matrix structure and eigenvalue bounds

Gα λmax(Gα)

M = 1 〈pnpipj〉 = [Un]ij

n = 0 Id+1 = 1

n = 1 〈ξpipj〉 largest root of pd+1 [Golub, Welsch]

n = 2 〈p2pipj〉 O(d) [U.] for Gaussian ξ

Qd U
(M)
αM ⊗ · · · ⊗ U (1)

α1 = max
{∏M

m=1 λm, λm ∈ Λ(U (m)
αm )

}
|α| = 1 - = λmax

(
U

(m)
1

)
, αm = 1

Pd - ≤ max
{∏M

m=1 λm, λm ∈ Λ(U (m)
αm )

}
|α| = 1 - = λmax (U1)

[U.], [Elman, Powell] for {ξi}Mi=1 iid
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3 Solution strategies

The input random field T is

• linear ⇒ Gα, |α| ≤ 1. The stochastic basis functions are

I complete polynomials: Solve system in Nx ·Nξ unknowns. [Ghanem &

Pellissetti], [Ghanem & Kruger], [Le Mâıtre et al.], [Matthies & Keese],

[Seynaeve et al.], [Elman & Furnival], [Elman & Powell], [Rosseel et al.]

I tensor polynomials: Construct biorthogonal stochastic basis functions.

Solve Nξ systems in Nx unknowns in parallel or use Krylov subspace

recycling techniques. [Eiermann, Ernst & U.], [Cai et al.], [Ernst, U. et

al.]

• nonlinear ⇒ Gα, |α| > 1. The stochastic basis functions are

I complete polynomials: Solve system in Nx ·Nξ unknowns. [Matthies

& Keese], [Rosseel et al.], [Ernst, U. et al.]

I tensor polynomials: Solve system in Nx ·Nξ unknowns. [?]
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(A) Decoupled case

Task: Solution of Nξ linear systems of size Nx ×Nx .

K` =

A1 BT

B O

+
Nξ∑
n=2

gn,`

An O

O O

 , ` = 1, . . . , Nξ.

Our approach: Sequential solution of systems by iterative methods.

- MINRES [Paige & Saunders]

- R-MINRES [De Sturler et al.]
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(A) Decoupled case - preconditioning

P =

D O

O S

 , D = diag(A1), S = BD−1BT

(a) [Powell & Silvester, 2004] (b)

Pamg =

D O

O amg(S)

 Pchol =

D O

O cholinc(S,0)



Solvers for large linear systems arising in SFEM Computational Methods with Applications, Harrachov 2007
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(B) Coupled case

Task: Solution of one linear system of size (Nx ·Nξ)× (Nx ·Nξ)

Our approach: use MINRES together with a mean-based preconditioner

P = INξ
⊗

D O

O amg(S)


D = diag(A1), S = BD−1BT , [Powell & Silvester, 2004]

(A1)i,k =
∫
D

〈T−1(x )〉φi(x ) · φk(x )dx , i, k = 1, 2, . . . , Nu
x .
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4 Numerical examples

(A) Decoupled case - model problem

Flow from western to eastern boundary in unit square D = (0, 1)× (0, 1).

n · u = 0

n · u = 0

p = 1 p = 0F = 0

Deterministic discretization

- 32× 32 mesh

- RT0 square elements for u

- Q0 square elements for p

Solvers for large linear systems arising in SFEM Computational Methods with Applications, Harrachov 2007
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Random field model:

T−1 is a Gaussian random field with constant mean µ = 〈T−1〉 = 1 and

double exponential covariance function

CovT−1(x ,y) = σ2 exp
(
−|x1 − y1|

c1
− |x2 − y2|

c2

)
, c1 = c2 = 3.

◦ Truncated Karhunen-Loève (KL) expansion:

T−1(x , ξ) = µ+ σ
M∑
m=1

Tm(x )ξm, ξm ∼ N(0, 1), m = 1, . . . ,M.

◦ Use analytic expressions for KL expansion terms [Ghanem & Spanos].

◦ Mean problem has solution u = [1, 0]T , p = 1− x.

Solvers for large linear systems arising in SFEM Computational Methods with Applications, Harrachov 2007
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Performance of preconditioners - no recycling

Average MINRES iterations,
||rk||P−1

||r0||P−1
< 10−8, Nx = 3072.

AMG version

σ M\d 2 3 4 5

0.1 3 39 40 40 40

4 39 40 40 41

5 39 40 41 41

0.2 3 42 44 45 48

4 42 44 46 -

5 43 45 48 -

CHOL version

σ M\d 2 3 4 5

0.1 3 159 161 162 163

4 159 161 163 164

5 160 162 164 165

0.2 3 166 172 175 182

4 168 174 178 -

5 169 175 182 -
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Performance of R-MINRES(m,k)

Average iterations,
||rk||P−1

||r0||P−1
< 10−8, Nx = 3072, M = 5, d = 3, Nξ = 1024.

Store at most m+ k vectors, recycle k vectors.

AMG version

m k σ = 0.1 σ = 0.2

20 10 40 46

20 20 40 46

40 20 40 46

40 40 39 45

- - 40 45

CHOL version

m k σ = 0.1 σ = 0.2

20 10 86 103

20 20 68 83

40 20 68 82

40 40 55 69

- - 162 175
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(B) Coupled case - model problem

Fluid flow in a geological site in the south-eastern United States.

(cf. Wheeler et al.)

Deterministic discretization:

- 1961 elemental triangular mesh

- RT0 triangular elements for u

- P0 triangular elements for p

2

3

4

1

5

Solvers for large linear systems arising in SFEM Computational Methods with Applications, Harrachov 2007



Numerical examples 21

Solvers for large linear systems arising in SFEM Computational Methods with Applications, Harrachov 2007



Numerical examples 22

Random field model:

T−1 is a lognormal random field:

T−1(x , ξ) = exp(−G(x , ξ)),

where G is a Gaussian field with mean µG and Bessel covariance function

CovG(r) = σ2
G

(r
`

)
K1

(r
`

)
.

Truncated KL expansion: G(x , ξ) = µG + σG
∑M
m=1

√
νmgm(x )ξm.

Polynomial chaos expansion:

T−1(x , ξ) =
∑
α

Tα(x )Hα(ξ)

Tα(x ) = µT−1
(−1)|α|σ|α|G√

α!

M∏
m=1

(
√
νmgm(x ))αm
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Performance of mean-based preconditioner

MINRES iterations,
||rk||P−1

||r0||P−1
< 10−8, Nx = 4763, Nξ = 5, . . . , 84.

` = 600, M = 4

σT /µT d = 1 d = 2 d = 3

0.01 81 99 100

0.1 106 124 143

0.2 117 159 190

0.3 135 190 250

` = 400, M = 6

σT /µT d = 1 d = 2 d = 3

0.01 81 98 98

0.1 104 124 143

0.2 117 159 191

0.3 135 193 250
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Summary

- Large linear systems arise from the Stochastic Finite Element Method.

- The structure of the global Galerkin matrix is mainly determined by the

coefficient random field and the stochastic shape functions.

- In case the Galerkin matrix can be decoupled, R-MINRES reduces the

average iteration count when applied together with a weak preconditioner.

Recycling is less efficient when using a stronger preconditioner for

R-MINRES.

- When solving the fully-coupled system, mean-based preconditioners work

for lognormal random fields when σT /µT is not too large.
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