TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Institut für Numerische Mathematik und Optimierung

Solvers for large linear systems arising in the Stochastic Finite Element Method

Elisabeth Ullmann

Collaborators

- Catherine Powell, David Silvester
 University of Manchester, School of Mathematics, Manchester, UK
- Oliver Ernst TU Bergakademie Freiberg, Freiberg, Germany

Support: DAAD/British Council Grant Uncertainty quantification in computer simulations of groundwater flow problems with emphasis on contaminant transport

Outline

- Stochastic Finite Element Method (SFEM)
 - Variational formulation of elliptic SPDEs
 - $\circ~$ Structure of Galerkin matrix
- Aspects of the stochastic discretization
 - Multivariate basis functions: complete/tensor polynomials
 - $\circ~$ Structure and spectral properties of stochastic Galerkin matrices
- Solvers for the global Galerkin system
 - $\circ\,$ block-diagonal Galerkin system: Krylov subspace recycling method
 - $\circ~$ fully-coupled Galerkin system: Mean-based preconditioner
- Numerical examples

1 Review of SFEM

[Ghanem & Spanos, 1991]

Stochastic elliptic boundary value problem

<u>Given</u>: bounded spatial domain $D \subset \mathbb{R}^2$ with boundary $\Gamma = \Gamma_D \cup \Gamma_N$ and a complete probability space (Ω, \mathscr{A}, P) .

Task: solve the second order elliptic stochastic boundary value problem

$$-\nabla \cdot (T(\boldsymbol{x}, \boldsymbol{\omega}) \nabla p(\boldsymbol{x}, \boldsymbol{\omega})) = F(\boldsymbol{x}), \qquad \boldsymbol{x} \in D, \ \boldsymbol{P}. - \boldsymbol{a}.\boldsymbol{s}.$$
(1a)

$$p(\boldsymbol{x}) = p_D(\boldsymbol{x}), \qquad \boldsymbol{x} \in \Gamma_D,$$
 (1b)

$$\boldsymbol{n} \cdot (T \nabla p)(\boldsymbol{x}) = p_N(\boldsymbol{x}),$$

$$oldsymbol{x}\in\Gamma_N.$$
 (1c)

Note: T and therefore p are **random fields**.

Mixed formulation of stochastic elliptic bvp

$$u(\boldsymbol{x},\omega) = -T(\boldsymbol{x},\omega)\nabla p(\boldsymbol{x},\omega), \qquad \boldsymbol{x} \in D, \ P.-a.s \qquad (2a)$$

$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x},\omega) = F(\boldsymbol{x}), \qquad \boldsymbol{x} \in D, \ P.-a.s. \qquad (2b)$$

$$p(\boldsymbol{x}) = p_D(\boldsymbol{x}), \qquad \boldsymbol{x} \in \Gamma_D, \qquad (2c)$$

$$\boldsymbol{n} \cdot \boldsymbol{u}(\boldsymbol{x}) = -p_N(\boldsymbol{x}), \qquad \boldsymbol{x} \in \Gamma_N. \qquad (2d)$$

Mixed stochastic variational formulation

Find functions $\boldsymbol{u} \in H_{\Gamma_N}(\operatorname{div}, D) \otimes L^2_P(\Omega)$ and $p \in L^2(D) \otimes L^2_P(\Omega)$ such that for all test functions $\boldsymbol{v} \in H_{\Gamma_N}(\operatorname{div}, D) \otimes L^2_P(\Omega)$ and $q \in L^2(D) \otimes L^2_P(\Omega)$ there holds

$$\left\langle \int_{D} T^{-1} \boldsymbol{u} \cdot \boldsymbol{v} \, d\boldsymbol{x} \right\rangle - \left\langle \int_{D} p \, \nabla \cdot \boldsymbol{v} \, d\boldsymbol{x} \right\rangle = - \left\langle \int_{\Gamma_{D}} p_{D} \, \boldsymbol{n} \cdot \boldsymbol{v} \right\rangle$$
(3a)
$$\left\langle - \int_{D} \nabla \cdot \boldsymbol{u} q \, d\boldsymbol{x} \right\rangle = - \left\langle \int_{D} F q \, d\boldsymbol{x} \right\rangle.$$
(3b)

Notation:

 $\langle \cdot \rangle$ denotes the expectation operator w.r.t. the measure P

$$\langle \xi \rangle := \int_{\Omega} \xi(\omega) dP(\omega),$$

 $L^2_P(\Omega) := \left\{ \xi(\omega): \ \int_\Omega \xi^2(\omega) dP(\omega) < \infty \right\} = \left\{ \xi: \langle \xi^2 \rangle < \infty \right\}$

Discretization steps of stochastic variational formulation

• Input random fields depend on M mutually independent random variables $\{\xi_m\}_{m=1}^M$ with given probability density functions $\rho_m: \Gamma_m \to [0, \infty)$.

 $\rho(\boldsymbol{\xi}) := \rho_1(\xi_1) \cdots \rho_M(\xi_M), \qquad \boldsymbol{\xi} \in \Gamma := \Gamma_1 \times \cdots \times \Gamma_M.$

- Reformulation of (3): Identify $L^2_P(\Omega)$ with $L^2_\rho(\Gamma)$ and $\langle \cdot \rangle$ with $\int_{\Gamma} \rho(\boldsymbol{\xi}) \cdot d\boldsymbol{\xi}$.
- Deterministic discretization: choose finite dimensional spaces

$$X^{h} := \operatorname{span} \{ \phi_{1}, \phi_{2}, \dots, \phi_{N_{x}^{u}} \} \subset H_{\Gamma_{N}}(\operatorname{div}, D)$$
$$Y^{h} := \operatorname{span} \{ \pi_{1}, \pi_{2}, \dots, \pi_{N_{x}^{p}} \} \subset L^{2}(D)$$

• Stochastic discretization:

$$W^h := \text{ span } \{\psi_1(\boldsymbol{\xi}), \psi_2(\boldsymbol{\xi}), \dots, \psi_{N_{\boldsymbol{\xi}}}(\boldsymbol{\xi})\} \subset L^2_{\rho}(\Gamma).$$

• Variational space:

 $(X^h \times Y^h) \otimes W^h \subset (H_{\Gamma_N}(\operatorname{div}, D) \times L^2(D)) \otimes L^2_{\rho}(\Gamma)$

Representation of input random field

$$T^{-1}(\boldsymbol{x},\boldsymbol{\xi}) = \sum_{n=1}^{N_{\boldsymbol{\xi}}} T_n(\boldsymbol{x}) \psi_n(\boldsymbol{\xi})$$

Karhunen-Loève expansion	Wiener's polynomial chaos expansion
$T^{-1} = \langle T^{-1} \rangle + \sum_{m=1}^{M} T_m(\boldsymbol{x}) \xi_m$	$T^{-1} = \sum_{\alpha \in \mathscr{I}} T_{\alpha}(\boldsymbol{x}) H_{\alpha}(\boldsymbol{\xi})$
For details see O. Ernst's talk.	$\mathscr{I} := \{ \alpha \in \mathbb{N}_0^M, \ \alpha \le d \}$
linear in <i>ξ</i>	nonlinear in $\boldsymbol{\xi}$ for $d > 1$
M+1 terms	$\binom{M+d}{M}$ terms
Example: Gaussian random fields	Example: lognormal random fields

$$A = \sum_{n=1}^{N_{\xi}} G_n \otimes K_n$$

Stochastic part:

$$[G_n]_{\ell,j} = \langle \psi_n \psi_\ell \psi_j \rangle, \qquad n, j, \ell = 1, \dots, N_{\boldsymbol{\xi}}.$$

Deterministic part:

$$K_{1} = \begin{bmatrix} A_{1} & B^{T} \\ B & O \end{bmatrix} \quad K_{n} = \begin{bmatrix} A_{n} & O \\ O & O \end{bmatrix} \quad n = 2, 3, \dots, N_{\boldsymbol{\xi}},$$
$$[B]_{i,k} = -\int_{D} \nabla \cdot \boldsymbol{\phi}_{i}(\boldsymbol{x}) \pi_{k}(\boldsymbol{x}) d\boldsymbol{x}, \qquad i = 1, 2, \dots, N_{\boldsymbol{x}}^{\boldsymbol{u}}, k = 1, 2, \dots, N_{\boldsymbol{x}}^{p},$$
$$[A_{n}]_{i,k} = \int_{D} T_{n}(\boldsymbol{x}) \boldsymbol{\phi}_{i}(\boldsymbol{x}) \cdot \boldsymbol{\phi}_{k}(\boldsymbol{x}) d\boldsymbol{x}, \qquad i, k = 1, 2, \dots, N_{\boldsymbol{x}}^{\boldsymbol{u}}, n = 1, \dots, N_{\boldsymbol{\xi}}.$$

2 The stochastic discretization

Basis functions for $W_h \subset L^2_\rho(\Gamma)$: $\psi_\alpha(\boldsymbol{\xi}) = \prod_{m=1}^M p^{(m)}_{\alpha_m}(\xi_m)$

where $\left\langle p_i^{(m)} p_j^{(m)} \right\rangle = \delta_{ij}$ and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_M) \in \mathbb{N}_0^M$ is a multi-index.

tensor polynomials (TP)	complete polynomials (CP)
$\deg\left(p_{\alpha_m}^{(m)}\right) \le d, \ m = 1, \dots, M$	$\sum_{m=1}^{M} \deg\left(p_{\alpha_m}^{(m)}\right) \le d$
$W_h = \mathbb{Q}_d$	$W_h = \mathbb{P}_d$
$\dim(\mathbb{Q}_d) = (d+1)^M$	$\dim(\mathbb{P}_d) = \binom{M+d}{M}$

Numbering convention of basis polynomials: $n \leftrightarrow \alpha$, $G_n \leftrightarrow G_{\alpha}$

(TP)
$$\alpha_1 = 0, \alpha_1 = 1, \dots, \alpha_1 = d, \alpha_2 = 0, \alpha_2 = 1, \dots, \alpha_2 = d, \dots, \alpha_M = d$$

(CP) Same as for (TP), but drop multi-indices with $|\alpha| > d$.

lpha	ψ_{lpha}	In \mathbb{P}_d ?
(0,0)	$p_0(\xi_1)p_0(\xi_2)$	\checkmark
(1,0)	$p_1(\xi_1)p_0(\xi_2)$	\checkmark
(2,0)	$p_2(\xi_1)p_0(\xi_2)$	\checkmark
(0,1)	$p_0(\xi_1)p_1(\xi_2)$	\checkmark
(1,1)	$p_1(\xi_1)p_1(\xi_2)$	\checkmark
(2,1)	$p_2(\xi_1)p_1(\xi_2)$	×
(0,2)	$p_0(\xi_1)p_2(\xi_2)$	\checkmark
(1,2)	$p_1(\xi_1)p_2(\xi_2)$	x
(2,2)	$p_2(\xi_1)p_2(\xi_2)$	×

Table 1: Dropping of basis polynomials for M = 2, d = 2.

Matrix structure and	eigenvalue bounds
----------------------	-------------------

		G_{lpha}	$\lambda_{\max}(G_{lpha})$
M = 1		$\langle p_n p_i p_j \rangle = [U_n]_{ij}$	
	n = 0	I_{d+1}	= 1
	n = 1	$\langle \xi p_i p_j \rangle$	largest root of p_{d+1} [Golub, Welsch]
	n = 2	$\langle p_2 p_i p_j angle$	$\mathscr{O}(d)$ [U.] for Gaussian ξ
\mathbb{Q}_d		$U^{(M)}_{\alpha_M}\otimes\cdots\otimes U^{(1)}_{\alpha_1}$	$= \max\left\{\prod_{m=1}^{M} \lambda_m, \lambda_m \in \Lambda(U_{\alpha_m}^{(m)})\right\}$
	$ \alpha = 1$	-	$=\lambda_{\max}\left(U_1^{(m)}\right), \alpha_m = 1$
\mathbb{P}_d		-	$\leq \max\left\{\prod_{m=1}^{M} \lambda_m, \lambda_m \in \Lambda(U_{\alpha_m}^{(m)})\right\}$
	$ \alpha = 1$	-	$=\lambda_{\max}\left(U_{1} ight)$
			[U.], [Elman, Powell] for $\{\xi_i\}_{i=1}^M$ iid

The input random field \boldsymbol{T} is

- linear $\Rightarrow G_{\alpha}, |\alpha| \leq 1$. The stochastic basis functions are
 - ► complete polynomials: Solve system in N_x · N_ξ unknowns. [Ghanem & Pellissetti], [Ghanem & Kruger], [Le Maître et al.], [Matthies & Keese], [Seynaeve et al.], [Elman & Furnival], [Elman & Powell], [Rosseel et al.]

The input random field \boldsymbol{T} is

- linear $\Rightarrow G_{\alpha}, |\alpha| \leq 1$. The stochastic basis functions are
 - ▶ complete polynomials: Solve system in N_x · N_ξ unknowns. [Ghanem & Pellissetti], [Ghanem & Kruger], [Le Maître et al.], [Matthies & Keese], [Seynaeve et al.], [Elman & Furnival], [Elman & Powell], [Rosseel et al.]
 - ► tensor polynomials: Construct <u>biorthogonal</u> stochastic basis functions. Solve N_ξ systems in N_x unknowns in parallel or use <u>Krylov subspace</u> <u>recycling</u> techniques. [Eiermann, Ernst & U.], [Cai et al.], [Ernst, U. et al.]

The input random field \boldsymbol{T} is

- linear $\Rightarrow G_{\alpha}, |\alpha| \leq 1$. The stochastic basis functions are
 - ► complete polynomials: Solve system in N_x · N_ξ unknowns. [Ghanem & Pellissetti], [Ghanem & Kruger], [Le Maître et al.], [Matthies & Keese], [Seynaeve et al.], [Elman & Furnival], [Elman & Powell], [Rosseel et al.]
 - ► tensor polynomials: Construct <u>biorthogonal</u> stochastic basis functions. Solve N_ξ systems in N_x unknowns in parallel or use <u>Krylov subspace</u> <u>recycling</u> techniques. [Eiermann, Ernst & U.], [Cai et al.], [Ernst, U. et al.]
- **nonlinear** \Rightarrow G_{α} , $|\alpha| > 1$. The stochastic basis functions are
 - ▶ complete polynomials: Solve system in $N_x \cdot N_{\xi}$ unknowns. [Matthies & Keese], [Rosseel et al.], [Ernst, U. et al.]

The input random field \boldsymbol{T} is

- linear $\Rightarrow G_{\alpha}, |\alpha| \leq 1$. The stochastic basis functions are
 - ► complete polynomials: Solve system in N_x · N_ξ unknowns. [Ghanem & Pellissetti], [Ghanem & Kruger], [Le Maître et al.], [Matthies & Keese], [Seynaeve et al.], [Elman & Furnival], [Elman & Powell], [Rosseel et al.]
 - ► tensor polynomials: Construct <u>biorthogonal</u> stochastic basis functions. Solve N_ξ systems in N_x unknowns in parallel or use <u>Krylov subspace</u> <u>recycling</u> techniques. [Eiermann, Ernst & U.], [Cai et al.], [Ernst, U. et al.]
- **nonlinear** \Rightarrow G_{α} , $|\alpha| > 1$. The stochastic basis functions are
 - ▶ complete polynomials: Solve system in $N_x \cdot N_{\xi}$ unknowns. [Matthies & Keese], [Rosseel et al.], [Ernst, U. et al.]
 - ▶ tensor polynomials: Solve system in $N_x \cdot N_{\xi}$ unknowns. [?]

(A) Decoupled case

<u>Task</u>: Solution of $N_{\boldsymbol{\xi}}$ linear systems of size $N_{\boldsymbol{x}} \times N_{\boldsymbol{x}}$.

$$K_{\ell} = \begin{bmatrix} A_1 & B^T \\ B & O \end{bmatrix} + \sum_{n=2}^{N_{\xi}} g_{n,\ell} \begin{bmatrix} A_n & O \\ O & O \end{bmatrix}, \quad \ell = 1, \dots, N_{\xi}.$$

Our approach: Sequential solution of systems by iterative methods.

- MINRES [Paige & Saunders]
- R-MINRES [De Sturler et al.]

13

(A) Decoupled case - preconditioning

$$P = \begin{bmatrix} D & O \\ O & S \end{bmatrix}, \quad D = \operatorname{diag}(A_1), \quad S = BD^{-1}B^T$$

(a) [Powell & Silvester, 2004] (b)

$$P_{amg} = \begin{bmatrix} D & O \\ O & \text{amg}(S) \end{bmatrix} P_{chol} = \begin{bmatrix} D & O \\ O & \text{cholinc}(S,0) \end{bmatrix}$$

(B) Coupled case

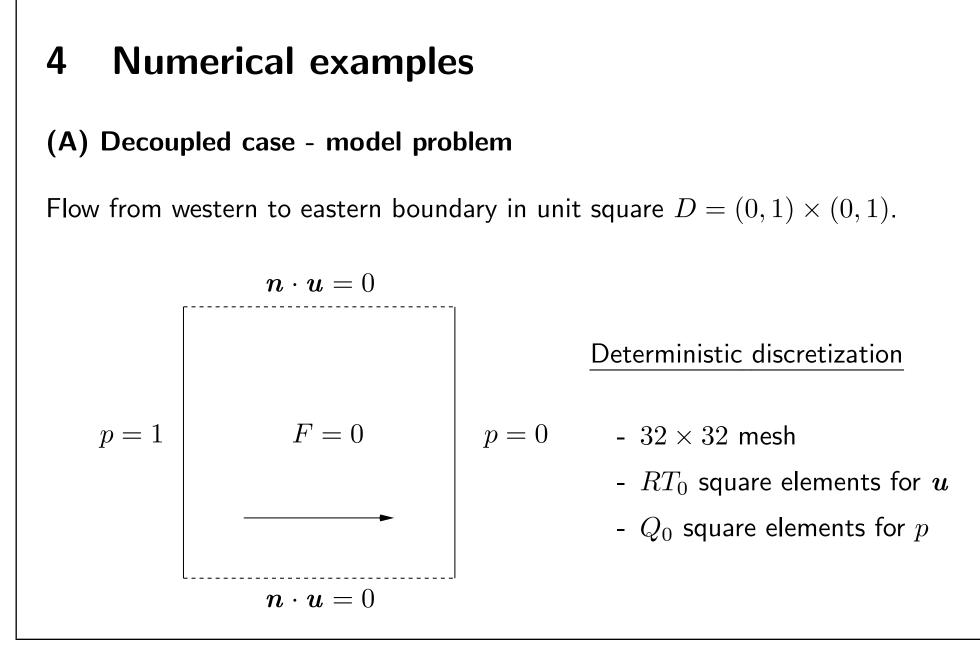
<u>Task</u>: Solution of **one** linear system of size $(N_x \cdot N_{\xi}) \times (N_x \cdot N_{\xi})$

Our approach: use MINRES together with a mean-based preconditioner

$$P = I_{N_{\xi}} \otimes \begin{bmatrix} D & O \\ O & \operatorname{amg}(S) \end{bmatrix}$$

 $D = \operatorname{diag}(A_1), \quad S = BD^{-1}B^T, \quad [\text{Powell \& Silvester, 2004}]$

$$(A_1)_{i,k} = \int_D \langle T^{-1}(\boldsymbol{x}) \rangle \boldsymbol{\phi}_i(\boldsymbol{x}) \cdot \boldsymbol{\phi}_k(\boldsymbol{x}) d\boldsymbol{x}, \quad i,k = 1, 2, \dots, N_{\boldsymbol{x}}^{\boldsymbol{u}}.$$



Random field model:

 T^{-1} is a **Gaussian random field** with constant mean $\mu = \langle T^{-1} \rangle = 1$ and double exponential covariance function

$$\mathsf{Cov}_{T^{-1}}(\boldsymbol{x}, \boldsymbol{y}) = \sigma^2 \exp\left(-\frac{|x_1 - y_1|}{c_1} - \frac{|x_2 - y_2|}{c_2}\right), \quad c_1 = c_2 = 3.$$

• Truncated Karhunen-Loève (KL) expansion:

$$T^{-1}(\boldsymbol{x}, \boldsymbol{\xi}) = \boldsymbol{\mu} + \sigma \sum_{m=1}^{M} T_m(\boldsymbol{x}) \xi_m, \qquad \xi_m \sim N(0, 1), \quad m = 1, \dots, M.$$

• Use analytic expressions for KL expansion terms [Ghanem & Spanos].

• Mean problem has solution $\boldsymbol{u} = [1, 0]^T$, p = 1 - x.

Pe	Performance of preconditioners - no recycling												
A١	Average MINRES iterations, $\frac{ r_k _{P^{-1}}}{ r_0 _{P^{-1}}} < 10^{-8}$, $N_{\boldsymbol{x}} = 3072$.												
	AMG version CHOL version												
	σ	$M \backslash d$	2	3	4	5		-	$M \backslash d$	2	3	4	5
	0.1	3	39	40	40	40	0.	1	3	159	161	162	163
		4	39	40	40	41			4	159	161	163	164
		5	39	40	41	41			5	160	162	164	165
	0.2	3	42	44	45	48	0.	2	3	166	172	175	182
		4	42	44 45	46	-			4	168	174	178	-
		5	43	45	48	-			5	169	175	182	-

Performance of R-MINRES(m,k)

Average iterations, $\frac{||r_k||_{P^{-1}}}{||r_0||_{P^{-1}}} < 10^{-8}$, $N_x = 3072$, M = 5, d = 3, $N_{\xi} = 1024$. Store at most m + k vectors, recycle k vectors.

AMG version

CHOL version

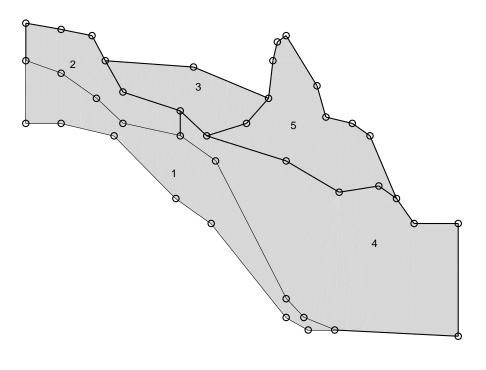
m	k	$\sigma = 0.1$	$\sigma = 0.2$	m	k	$\sigma = 0.1$	$\sigma = 0.2$
20	10	40	46	20	10	86	103
20	20	40	46	20	20	68	83
40	20	40	46	40	20	68	82
40	40	39	45	40	40	55	69
-	Ι	40	45	I	Ι	162	175

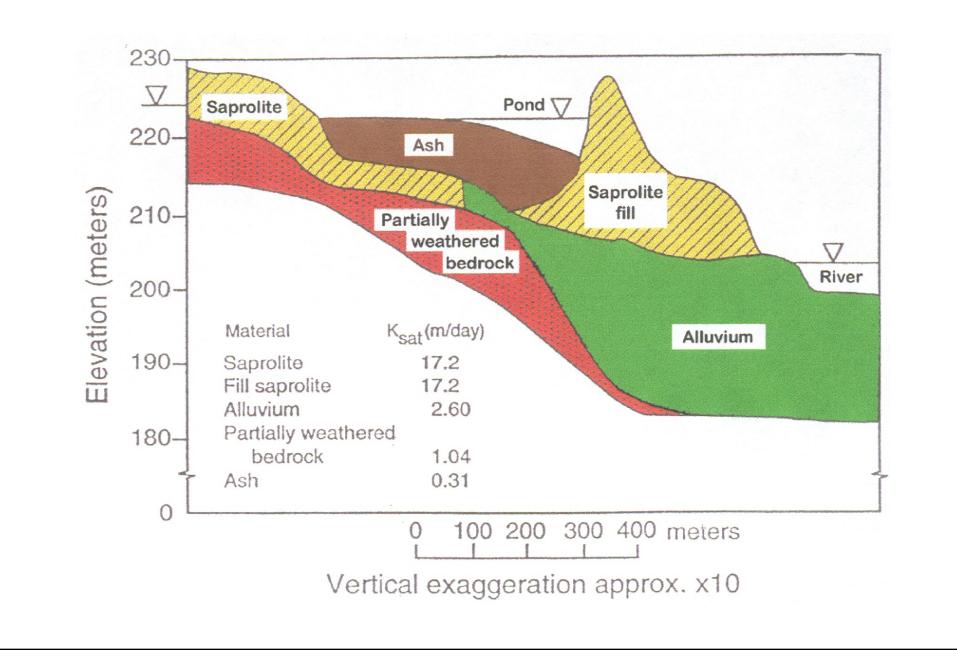
(B) Coupled case - model problem

Fluid flow in a geological site in the south-eastern United States. (cf. Wheeler et al.)

Deterministic discretization:

- 1961 elemental triangular mesh
- RT_0 triangular elements for \boldsymbol{u}
- P_0 triangular elements for p





Random field model:

 T^{-1} is a lognormal random field:

$$T^{-1}(\boldsymbol{x},\boldsymbol{\xi}) = \exp(-G(\boldsymbol{x},\boldsymbol{\xi})),$$

where G is a Gaussian field with mean μ_G and Bessel covariance function

$$\operatorname{Cov}_G(r) = \sigma_G^2\left(\frac{r}{\ell}\right) K_1\left(\frac{r}{\ell}\right).$$

Truncated KL expansion: $G(\boldsymbol{x},\boldsymbol{\xi}) = \mu_G + \sigma_G \sum_{m=1}^M \sqrt{\nu_m} g_m(\boldsymbol{x}) \xi_m$.

Polynomial chaos expansion:

$$T^{-1}(\boldsymbol{x},\boldsymbol{\xi}) = \sum_{\alpha} T_{\alpha}(\boldsymbol{x}) H_{\alpha}(\boldsymbol{\xi})$$
$$T_{\alpha}(\boldsymbol{x}) = \mu_{T^{-1}} \frac{(-1)^{|\alpha|} \sigma_{G}^{|\alpha|}}{\sqrt{\alpha!}} \prod_{m=1}^{M} \left(\sqrt{\nu_{m}} g_{m}(\boldsymbol{x})\right)^{\alpha_{m}}$$

Performance of mean-based preconditioner

MINRES iterations,
$$\frac{||\boldsymbol{r}_k||_{P^{-1}}}{||\boldsymbol{r}_0||_{P^{-1}}} < 10^{-8}$$
, $N_{\boldsymbol{x}} = 4763$, $N_{\boldsymbol{\xi}} = 5, \dots, 84$.

 $\ell = 600, \quad M = 4$

 $\ell = 400, \quad M = 6$

σ_T/μ_T	d = 1	d = 2	d = 3	 σ_T/μ_T	d = 1	d = 2	d = 3
0.01	81	99	100	0.01	81	98	98
0.1	81 106	124	143	0.1	104	124	143
0.2		159		0.2	117	159	191
0.3	135	190	250	0.3	135	193	250

Summary

- Large linear systems arise from the Stochastic Finite Element Method.
- The structure of the global Galerkin matrix is mainly determined by the coefficient random field and the stochastic shape functions.
- In case the Galerkin matrix can be decoupled, R-MINRES reduces the average iteration count when applied together with a weak preconditioner. Recycling is less efficient when using a stronger preconditioner for R-MINRES.
- When solving the fully-coupled system, mean-based preconditioners work for lognormal random fields when σ_T/μ_T is not too large.